1
|
Mero IL, Orozco Rodriguez JM, Bjørgo K, Hankin RA, Krupinska E, Kulseth MA, Rossow MA, Knecht W. A mild skeletal phenotype with overlapping features of Miller syndrome and functional characterisation of two new variants of human dihydroorotate dehydrogenase. Heliyon 2024; 10:e38659. [PMID: 39430512 PMCID: PMC11489341 DOI: 10.1016/j.heliyon.2024.e38659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) catalyzes the fourth enzymatic reaction of the pyrimidine biosynthesis pathway. Miller syndrome, also known as postaxial acrofacial dysostosis, is caused by biallelic pathogenic variants in DHODH. We present a patient with a relatively mild skeletal phenotype carrying a novel variant of unknown significance in DHODH: c.829G > A, p.(D277N), in combination with a known variant, c.403C > T, p.(R135C). We functionally characterized the DHODH variant D277N in comparison to a very recently reported, but functionally uncharacterized variant P43L, that was found in a patient with more pronounced Miller syndrome features. Because both cases share the same DHODH variant R135C, we aimed to study the effect on enzyme activity of the two variants D277N and P43L to determine pathogenicity and possibly a genotype-phenotype relationship on the R135C background. We found a significant reduction in enzyme activity for both variants. The variant P43L showed a more pronounced loss of function in all assays compatible with other pathogenic variants reported in Miller, whereas the D277N variant showed milder changes that could reflect the mild phenotypic features in our patient. Yet due to a lack of a known threshold of residual enzyme activity to determine pathogenicity, this needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | | | - Kathrine Bjørgo
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | | | - Ewa Krupinska
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | - Marvin Anthony Rossow
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| |
Collapse
|
2
|
Garrett O, Whalen KE. A bacterial quorum sensing signal is a potent inhibitor of de novo pyrimidine biosynthesis in the globally abundant Emiliania huxleyi. Front Microbiol 2023; 14:1266972. [PMID: 37869665 PMCID: PMC10587436 DOI: 10.3389/fmicb.2023.1266972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Interactions between marine phytoplankton, viruses, and bacteria drive biogeochemical cycling, shape marine trophic structures, and impact global climate. Microbially produced compounds have emerged as key players in influencing eukaryotic organismal physiology, and in turn, remodel microbial community structure. This work aimed to reveal the molecular mechanism by which the bacterial quorum sensing molecule 2-heptyl-4-quinolone (HHQ), produced by the marine gammaproteobacterium Pseudoalteromonas spp., arrests cell division and confers protection from virus-induced mortality in the bloom-forming coccolithophore Emiliania huxleyi. Previous work has established alkylquinolones as inhibitors of dihydroorotate dehydrogenase (DHODH), a fundamental enzyme catalyzing the fourth step in pyrimidine biosynthesis and a potential antiviral drug target. An N-terminally truncated version of E. huxleyi DHODH was heterologously expressed in E. coli, purified, and kinetically characterized. Here, we show HHQ is a potent inhibitor (Ki of 2.3 nM) of E. huxleyi DHODH. E. huxleyi cells exposed to brequinar, the canonical human DHODH inhibitor, experienced immediate, yet reversible cellular arrest, an effect which mirrors HHQ-induced cellular stasis previously observed. However, brequinar treatment lacked other notable effects observed in HHQ-exposed E. huxleyi including significant changes in cell size, chlorophyll fluorescence, and protection from virus-induced lysis, indicating HHQ has additional as yet undiscovered physiological targets. Together, these results suggest a novel and intricate role of bacterial quorum sensing molecules in tripartite interdomain interactions in marine ecosystems, opening new avenues for exploring the role of microbial chemical signaling in algal bloom regulation and host-pathogen dynamics.
Collapse
Affiliation(s)
| | - Kristen E. Whalen
- Department of Biology, Haverford College, Haverford, PA, United States
| |
Collapse
|
3
|
Watanabe M, Kosaka H, Sugawara M, Maemoto M, Ono Y, Uemori T, Shizu R, Yoshinari K. Screening for DAX1/EWS-FLI1 functional inhibitors identified dihydroorotate dehydrogenase as a therapeutic target for Ewing's sarcoma. Cancer Med 2023; 12:9802-9814. [PMID: 36825574 PMCID: PMC10166890 DOI: 10.1002/cam4.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE EWS-FLI1 is the most common oncogenic fusion protein in Ewing's sarcoma family tumors (ESFTs). DAX1, an orphan member of the nuclear receptor superfamily, is up-regulated by EWS-FLI1 and plays a key role in the transformed phenotype of ESFTs. METHODS To discover a functional inhibitor of DAX1 and EWS-FLI1, we screened small-molecular inhibitors using a DAX1 reporter assay system. RESULTS K-234 and its derivatives, which were dihydroorotate dehydrogenase (DHODH) inhibitors, showed inhibitory effects in the reporter assay. K-234 inhibited the growth of Ewing's sarcoma with various fusion types, and K-234 derivatives altered the expression of EWS-FLI1-regulated genes. The DAX1 expression had no effect on the growth inhibitory effect of the K-234 derivatives, while DHODH overexpression or uridine treatment attenuated their inhibitory effects, suggesting that inhibition by K-234 derivatives occurs through DHODH inhibition. An in vivo study showed that a K-234 derivative clearly inhibited tumor growth in an Ewing's sarcoma xenograft mouse model. CONCLUSION Taken together, the present results suggest that DHODH inhibitors can inhibit the function of DAX1/EWS-FLI1 in ESFTs and might be a therapeutic agent with potent anti-tumor activity for Ewing's sarcoma patients.
Collapse
Affiliation(s)
- Miwa Watanabe
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan.,Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiromichi Kosaka
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Masamori Sugawara
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Michihiro Maemoto
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Yoko Ono
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Takeshi Uemori
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Ryota Shizu
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
4
|
Lopez AJ, Narvaez-Ortiz HY, Rincon-Benavides MA, Pulido DC, Fuentes Suarez LE, Zimmermann BH. New Insights into rice pyrimidine catabolic enzymes. FRONTIERS IN PLANT SCIENCE 2023; 14:1079778. [PMID: 36818891 PMCID: PMC9930899 DOI: 10.3389/fpls.2023.1079778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and β-ureidopropionase (β-UP), has emerged as a potential participant in the abiotic stress response of rice. METHODS The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. RESULTS The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. DISCUSSION OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."
Collapse
|
5
|
Mullen NJ, Thakur R, Shukla SK, Chaika NV, Kollala SS, Wang D, He C, Fujii Y, Sharma S, Mulder SE, Sykes DB, Singh PK. ENT1 blockade by CNX-774 overcomes resistance to DHODH inhibition in pancreatic cancer. Cancer Lett 2023; 552:215981. [PMID: 36341997 PMCID: PMC10305837 DOI: 10.1016/j.canlet.2022.215981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Surendra K Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chunbo He
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Shikhar Sharma
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Scott E Mulder
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, 02114, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA; OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
Higashimura N, Hamada A, Ohara T, Sakurai S, Ito H, Banba S. The target site of the novel fungicide quinofumelin, Pyricularia oryzae class II dihydroorotate dehydrogenase. JOURNAL OF PESTICIDE SCIENCE 2022; 47:190-196. [PMID: 36514691 PMCID: PMC9716045 DOI: 10.1584/jpestics.d22-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 06/17/2023]
Abstract
The target site of the novel fungicide quinofumelin was investigated in the rice blast fungus Pyricularia oryzae. Quinofumelin-induced mycelial growth inhibition was reversed by orotate but not by dihydroorotate. Recovery tests suggested that the target site of quinofumelin was dihydroorotate dehydrogenase (DHODH), which catalyzes the oxidation of dihydroorotate to orotate. Quinofumelin strongly inhibited P. oryzae class 2 DHODH (DHODH II) (IC50: 2.8 nM). The inhibitory activities of mycelial growth and DHODH II were strongly positively correlated, indicating that DHODH II inhibition by quinofumelin lead to antifungal activity. A P. oryzae DHODH II gene (PoPYR4) disruption mutant (ΔPopyr4), showing the same tendency as the quinofumelin-treated wild strain in recovery tests, was constructed, and disease symptoms were not observed in rice plants infected by ΔPopyr4. Thus, DHODH II, which plays an important role in pathogenicity and mycelial growth, is found to be the target site of quinofumelin.
Collapse
Affiliation(s)
| | - Akira Hamada
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | - Toshiaki Ohara
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | | | - Hiroyuki Ito
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| |
Collapse
|
7
|
New Insights into the Interaction of Class II Dihydroorotate Dehydrogenases with Ubiquinone in Lipid Bilayers as a Function of Lipid Composition. Int J Mol Sci 2022; 23:ijms23052437. [PMID: 35269583 PMCID: PMC8910288 DOI: 10.3390/ijms23052437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.
Collapse
|
8
|
Orozco Rodriguez JM, Wacklin-Knecht H, Knecht W. Protein-lipid interactions of human dihydroorotate dehydrogenase and three mutants associated with Miller syndrome. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1337-1358. [PMID: 35184687 DOI: 10.1080/15257770.2022.2039393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human dihydroorotate dehydrogenase (DHODH) catalyzes the fourth step of the de novo pyrimidine biosynthesis pathway and uses ubiquinone Q10, a lipophilic molecule located in the inner mitochondrial membrane (IMM), as its co-substrate. DHODH is anchored to the IMM by a single transmembrane helix located at its N-terminus. Nevertheless, how DHODH function is determined by its surrounding membrane environment and protein-lipid interactions, as well as the mechanism by which ubiquinone Q10 accesses the active site of DHODH from within the membrane are still largely unknown. Here, we describe the interaction between wild-type DHODH and three DHODH mutants associated with Miller syndrome and lipids using enzymatic assays, thermal stability assays and Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). Our results provide evidence indicating that the N-terminal part of human DHODH is not only a structural element for mitochondrial import and location of DHODH, but also influences enzymatic activity and utilization of ubiquinone Q10 and ubiquinone analogues in in vitro assays. They also support the role of tetraoleoyl cardiolipin as a lipid interacting with DHODH. Additionally, the results from QCM-D show that the Miller syndrome mutants studied differ in their interactions with supported lipid bilayers compared to wild-type DHODH. These altered interactions add another dimension to the effects of mutations found in Miller syndrome. To the best of our knowledge, this is the first investigation of the protein-lipid interactions of DHODH variants associated with Miller syndrome.
Collapse
Affiliation(s)
| | - Hanna Wacklin-Knecht
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden.,European Spallation Source ERIC, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Orozco Rodriguez JM, Krupinska E, Wacklin-Knecht H, Knecht W. Protein production, kinetic and biophysical characterization of three human dihydroorotate dehydrogenase mutants associated with Miller syndrome. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1318-1336. [PMID: 35094635 DOI: 10.1080/15257770.2021.2023749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Miller syndrome is a rare Mendelian disorder caused by mutations in the gene encoding human dihydroorotate dehydrogenase (DHODH). Human DHODH, a Class II DHODH, is an integral protein of the inner mitochondrial membrane (IMM) catalyzing the fourth step of the de novo pyrimidine biosynthesis pathway. Here we present a summary of the state of knowledge regarding Miller syndrome in the absence of any current review on the topic. We then describe the production and characterization of three distinct DHODH missense mutations (G19E, E52G, R135C) associated with Miller syndrome by means of enzyme kinetics and biophysical techniques. These human DHODH mutants were produced both in E. coli and in insect cells using the baculovirus expression vector system. We can show that the effects of these mutations differ from each other and the wild-type enzyme with respect to decreased enzymatic activity, decreased protein stability and probably disturbance of the correct import into the IMM. In addition, our results show that the N-terminus of human DHODH is not only a structural element necessary for correct mitochondrial import and location of DHODH on the outer side of the IMM, but also influences thermal stability, enzymatic activity and affects the kinetic parameters.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.2023749 .
Collapse
Affiliation(s)
| | - Ewa Krupinska
- Department of Biology & Lund Protein Production Platform, Lund University, Lund, Sweden
| | - Hanna Wacklin-Knecht
- Department of Chemistry, Division of Physical Chemistry, Lund University, Lund, Sweden.,European Spallation Source ERIC, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Bouwknegt J, Koster CC, Vos AM, Ortiz-Merino RA, Wassink M, Luttik MAH, van den Broek M, Hagedoorn PL, Pronk JT. Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. Fungal Biol Biotechnol 2021; 8:10. [PMID: 34656184 PMCID: PMC8520639 DOI: 10.1186/s40694-021-00117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD. Results Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9. Conclusions Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure–function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus. Supplementary Information The online version contains supplementary material available at 10.1186/s40694-021-00117-4.
Collapse
Affiliation(s)
- Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Aurin M Vos
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mats Wassink
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter L Hagedoorn
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
11
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020; 25:E5144. [PMID: 31825806 PMCID: PMC7663840 DOI: 10.3390/molecules25215144] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the highest prevalent diseases in humans. The chances of surviving cancer and its prognosis are very dependent on the affected tissue, body location, and stage at which the disease is diagnosed. Researchers and pharmaceutical companies worldwide are pursuing many attempts to look for compounds to treat this malignancy. Most of the current strategies to fight cancer implicate the use of compounds acting on DNA damage checkpoints, non-receptor tyrosine kinases activities, regulators of the hedgehog signaling pathways, and metabolic adaptations placed in cancer. In the last decade, the finding of a lipid peroxidation increase linked to 15-lipoxygenases isoform 1 (15-LOX-1) activity stimulation has been found in specific successful treatments against cancer. This discovery contrasts with the production of other lipid oxidation signatures generated by stimulation of other lipoxygenases such as 5-LOX and 12-LOX, and cyclooxygenase (COX-2) activities, which have been suggested as cancer biomarkers and which inhibitors present anti-tumoral and antiproliferative activities. These findings support the previously proposed role of lipid hydroperoxides and their metabolites as cancer cell mediators. Depletion or promotion of lipid peroxidation is generally related to a specific production source associated with a cancer stage or tissue in which cancer originates. This review highlights the potential therapeutical use of chemical derivatives to stimulate or block specific cellular routes to generate lipid hydroperoxides to treat this disease.
Collapse
Affiliation(s)
- Sofia M. Clemente
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| |
Collapse
|
13
|
McDonald G, Chubukov V, Coco J, Truskowski K, Narayanaswamy R, Choe S, Steadman M, Artin E, Padyana AK, Jin L, Ronseaux S, Locuson C, Fan ZP, Erdmann T, Mann A, Hayes S, Fletcher M, Nellore K, Rao SS, Subramanya H, Reddy KS, Panigrahi SK, Antony T, Gopinath S, Sui Z, Nagaraja N, Dang L, Lenz G, Hurov J, Biller SA, Murtie J, Marks KM, Ulanet DB. Selective Vulnerability to Pyrimidine Starvation in Hematologic Malignancies Revealed by AG-636, a Novel Clinical-Stage Inhibitor of Dihydroorotate Dehydrogenase. Mol Cancer Ther 2020; 19:2502-2515. [PMID: 33082276 DOI: 10.1158/1535-7163.mct-20-0550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.
Collapse
Affiliation(s)
| | | | - John Coco
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Sung Choe
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Mya Steadman
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Erin Artin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lei Jin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Zi-Peng Fan
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | - Alan Mann
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Mark Fletcher
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | - Thomas Antony
- Aurigene Discovery Technologies Ltd., Bangalore, India
| | | | - Zhihua Sui
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lenny Dang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Josh Murtie
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Kevin M Marks
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
14
|
Investigating the amino acid sequences of membrane bound dihydroorotate:quinone oxidoreductases (DHOQOs): Structural and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148321. [PMID: 32991846 DOI: 10.1016/j.bbabio.2020.148321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Dihydroorotate:quinone oxidoreductases (DHOQOs) are membrane bound enzymes responsible for oxidizing dihydroorotate (DHO) to orotate with concomitant reduction of quinone to quinol. They have FMN as prosthetic group and are part of the monotopic quinone reductase superfamily. These enzymes are also members of the dihydroorotate dehydrogenases (DHODHs) family, which besides membrane bound DHOQOs, class 2, includes soluble enzymes which reduce either NAD+ or fumarate, class 1. As key enzymes in both the de novo pyrimidine biosynthetic pathway as well as in the energetic metabolism, inhibitors of DHOQOs have been investigated as leads for therapeutics in cancer, immunological disorders and bacterial/viral infections. This work is a thorough bioinformatic approach on the structural conservation and taxonomic distribution of DHOQOs. We explored previously established structural/functional hallmarks of these enzymes, while searching for uncharacterized common elements. We also discuss the cellular role of DHOQOs and organize the identified protein sequences within six sub-classes 2A to 2F, according to their taxonomic origin and sequence traits. We concluded that DHOQOs are present in Archaea, Eukarya and Bacteria, including the first recognition in Gram-positive organisms. DHOQOs can be the single dihydroorotate dehydrogenase encoded in the genome of a species, or they can coexist with other DHODHs, as the NAD+ or fumarate reducing enzymes. Furthermore, we show that the type of catalytic base present in the active site is not an absolute criterium to distinguish between class 1 and class 2 enzymes. We propose the existence of a quinone binding motif ("ExAH") adjacent to a hydrophobic cavity present in the membrane interacting N-terminal domain.
Collapse
|
15
|
Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase. Cell Chem Biol 2018; 25:309-317.e4. [PMID: 29358052 PMCID: PMC5856493 DOI: 10.1016/j.chembiol.2017.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
Abstract
The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins. Mass spectrometry captures intact complexes of the peripheral membrane protein DHODH Detergent removal in the gas phase reveals lipid and co-factor binding DHODH attaches to the membrane by binding charged phospholipids Lipids stabilize the flexible substrate- and drug-binding site
Collapse
|
16
|
Miller AE. Oral teriflunomide in the treatment of relapsing forms of multiple sclerosis: clinical evidence and long-term experience. Ther Adv Neurol Disord 2017; 10:381-396. [PMID: 29204190 PMCID: PMC5703103 DOI: 10.1177/1756285617722500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/01/2017] [Indexed: 01/19/2023] Open
Abstract
Key objectives in the treatment of multiple sclerosis (MS) include prevention of relapses, a reduction in the accumulation of disability and slowing of the brain volume loss that occurs from the earliest stages of the disease. Teriflunomide, a once-daily, oral immunomodulatory therapy, has demonstrated efficacy across multiple measures of disease activity and worsening in patients with relapsing forms of MS and in those with a first clinical episode suggestive of MS. In this review, the latest evidence relating to the proposed mechanism of action of teriflunomide in MS is explored, including novel insights provided from the recently completed Teri-DYNAMIC study. Key clinical and magnetic resonance imaging data from the completed long-term extensions of the phase II and III (TEMSO, TOWER and TOPIC) studies are highlighted, and the long-term safety profile of teriflunomide, as evidenced by data from these extension studies, is presented. Although randomized clinical trials represent the highest level of evidence to support the use of therapeutic interventions, it is also important to understand the performance of a particular treatment in the real-world setting. In this regard, the results of the recently completed, global, phase IV Teri-PRO study are of particular interest and provide further insights into the benefits of teriflunomide treatment from the patient perspective. Collectively, the data presented in this review demonstrate a favorable benefit-risk profile for teriflunomide, thereby supporting its long-term use for the treatment of patients with relapsing forms of MS.
Collapse
Affiliation(s)
- Aaron E. Miller
- Icahn School of Medicine at Mount Sinai, The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, 5 East 98th Street, Box 1138, New York, NY 10029, USA
| |
Collapse
|
17
|
Mohamad Fairus AK, Choudhary B, Hosahalli S, Kavitha N, Shatrah O. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. Biochimie 2017; 135:154-163. [PMID: 28196676 DOI: 10.1016/j.biochi.2017.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion which subsequently leads to cell cycle arrest at S-phase.
Collapse
Affiliation(s)
- A K Mohamad Fairus
- Aurigene Discovery Technologies (M) Sdn. Bhd., Level 2, Research Management and Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - B Choudhary
- Aurigene Discovery Technologies (M) Sdn. Bhd., Level 2, Research Management and Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Hosahalli
- Institute of Transdisciplinary Health Sciences and Technology (TDU) #74/2, Jarakabande Kaval, Post Attur via Yelahanka, Bangalore, 560 064 Karnataka, India.
| | - N Kavitha
- Aurigene Discovery Technologies Limited, 39-40, KIADB Industrial Area, Electronic City Phase II, Hosur Road, Bangalore, 560100 Karnataka, India.
| | - O Shatrah
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Deans RM, Morgens DW, Ökesli A, Pillay S, Horlbeck MA, Kampmann M, Gilbert LA, Li A, Mateo R, Smith M, Glenn JS, Carette JE, Khosla C, Bassik MC. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nat Chem Biol 2016; 12:361-6. [PMID: 27018887 PMCID: PMC4836973 DOI: 10.1038/nchembio.2050] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
Abstract
Broad spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we use parallel genome-wide high-coverage shRNA and CRISPR-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad spectrum antiviral with unexplained cytotoxicity1–3. We show that GSK983 blocks cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduces GSK983 cytotoxicity but not antiviral activity, providing an attractive novel approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Together, our results highlight the distinct advantages and limitations of each screening method for identifying drug targets and demonstrate the utility of parallel knockdown and knockout screens for comprehensively probing drug activity.
Collapse
Affiliation(s)
- Richard M Deans
- Department of Chemistry, Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Ayşe Ökesli
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Roberto Mateo
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Mark Smith
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| | - Jeffrey S Glenn
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.,Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.,Department of Chemical Engineering, Stanford University, Stanford, California, USA.,Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| |
Collapse
|
19
|
Zhu J, Han L, Diao Y, Ren X, Xu M, Xu L, Li S, Li Q, Dong D, Huang J, Liu X, Zhao Z, Wang R, Zhu L, Xu Y, Qian X, Li H. Design, Synthesis, X-ray Crystallographic Analysis, and Biological Evaluation of Thiazole Derivatives as Potent and Selective Inhibitors of Human Dihydroorotate Dehydrogenase. J Med Chem 2015; 58:1123-39. [DOI: 10.1021/jm501127s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Junsheng Zhu
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Le Han
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyan Diao
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoli Ren
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minghao Xu
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liuxin Xu
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shiliang Li
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qiang Li
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dong Dong
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Huang
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofeng Liu
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lili Zhu
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- State Key Laboratory
of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, and ‡Shanghai Key Laboratory of Chemical Biology, School
of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Munier-Lehmann H, Vidalain PO, Tangy F, Janin YL. On dihydroorotate dehydrogenases and their inhibitors and uses. J Med Chem 2013; 56:3148-67. [PMID: 23452331 DOI: 10.1021/jm301848w] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper nucleosides availability is crucial for the proliferation of living entities (eukaryotic cells, parasites, bacteria, and virus). Accordingly, the uses of inhibitors of the de novo nucleosides biosynthetic pathways have been investigated in the past. In the following we have focused on dihydroorotate dehydrogenase (DHODH), the fourth enzyme in the de novo pyrimidine nucleosides biosynthetic pathway. We first described the different types of enzyme in terms of sequence, structure, and biochemistry, including the reported bioassays. In a second part, the series of inhibitors of this enzyme along with a description of their potential or actual uses were reviewed. These inhibitors are indeed used in medicine to treat autoimmune diseases such as rheumatoid arthritis or multiple sclerosis (leflunomide and teriflunomide) and have been investigated in treatments of cancer, virus, and parasite infections (i.e., malaria) as well as in crop science.
Collapse
Affiliation(s)
- Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
21
|
Hortua Triana MA, Huynh MH, Garavito MF, Fox BA, Bzik DJ, Carruthers VB, Löffler M, Zimmermann BH. Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from Toxoplasma gondii. Mol Biochem Parasitol 2012; 184:71-81. [PMID: 22580100 DOI: 10.1016/j.molbiopara.2012.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
The pyrimidine biosynthesis pathway in the protozoan pathogen Toxoplasma gondii is essential for parasite growth during infection. To investigate the properties of dihydroorotate dehydrogenase (TgDHOD), the fourth enzyme in the T. gondii pyrimidine pathway, we expressed and purified recombinant TgDHOD. TgDHOD exhibited a specific activity of 84U/mg, a k(cat) of 89s(-1), a K(m)=60μM for l-dihydroorotate, and a K(m)=29μM for decylubiquinone (Q(D)). Quinones lacking or having short isoprenoid side chains yielded lower k(cat)s than Q(D). As expected, fumarate was a poor electron acceptor for this family 2 DHOD. The IC(50)s determined for A77-1726, the active derivative of the human DHOD inhibitor leflunomide, and related compounds MD249 and MD209 were, 91μM, 96μM, and 60μM, respectively. The enzyme was not significantly affected by brequinar or TTFA, known inhibitors of human DHOD, or by atovaquone. DSM190, a known inhibitor of Plasmodium falciparum DHOD, was a poor inhibitor of TgDHOD. TgDHOD exhibits a lengthy 157-residue N-terminal extension, consistent with a potential organellar targeting signal. We constructed C-terminally c-myc tagged TgDHODs to examine subcellular localization of TgDHOD in transgenic parasites expressing the tagged protein. Using both exogenous and endogenous expression strategies, anti-myc fluorescence signal colocalized with antibodies against the mitochondrial marker ATPase. These findings demonstrate that TgDHOD is associated with the parasite's mitochondrion, revealing this organelle as the site of orotate production in T. gondii. The TgDHOD gene appears to be essential because while gene tagging was successful at the TgDHOD gene locus, attempts to delete the TgDHOD gene were not successful in the KU80 background. Collectively, our study suggests that TgDHOD is an excellent target for the development of anti-Toxoplasma drugs.
Collapse
|
22
|
Swerdlow RH. Does mitochondrial DNA play a role in Parkinson's disease? A review of cybrid and other supportive evidence. Antioxid Redox Signal 2012; 16:950-64. [PMID: 21338319 PMCID: PMC3643260 DOI: 10.1089/ars.2011.3948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Mitochondria are currently believed to play an important role in the neurodysfunction and neurodegeneration that underlie Parkinson's disease (PD). RECENT ADVANCES While it increasingly appears that mitochondrial dysfunction in PD can have different causes, it has been proposed that mitochondrial DNA (mtDNA) may account for or drive mitochondrial dysfunction in the majority of the cases. If correct, the responsible mtDNA signatures could represent acquired mutations, inherited mutations, or population-distributed polymorphisms. CRITICAL ISSUES AND FUTURE DIRECTIONS This review discusses the case for mtDNA as a key mediator of PD, and especially focuses on data from studies of PD cytoplasmic hybrid (cybrid) cell lines.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Departments of Neurology, Biochemistry and Molecular Biology, and Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
23
|
Lolli ML, Giorgis M, Tosco P, Foti A, Fruttero R, Gasco A. New inhibitors of dihydroorotate dehydrogenase (DHODH) based on the 4-hydroxy-1,2,5-oxadiazol-3-yl (hydroxyfurazanyl) scaffold. Eur J Med Chem 2012; 49:102-9. [DOI: 10.1016/j.ejmech.2011.12.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/27/2011] [Indexed: 11/28/2022]
|
24
|
Abstract
Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus. Along similar lines, inhibitors of the pyrimidine biosynthesis pathway could be targeted for potential antiviral development. Here we report on a novel antiviral compound (NITD-982) that inhibits host dihydroorotate dehydrogenase (DHODH), an enzyme required for pyrimidine biosynthesis. The inhibitor was identified through screening 1.8 million compounds using a dengue virus (DENV) infection assay. The compound contains an isoxazole-pyrazole core structure, and it inhibited DENV with a 50% effective concentration (EC(50)) of 2.4 nM and a 50% cytotoxic concentration (CC(50)) of >5 μM. NITD-982 has a broad antiviral spectrum, inhibiting both flaviviruses and nonflaviviruses with nanomolar EC(90)s. We also show that (i) the compound inhibited the enzymatic activity of recombinant DHODH, (ii) an NITD-982 analogue directly bound to the DHODH protein, (iii) supplementing the culture medium with uridine reversed the compound-mediated antiviral activity, and (iv) DENV type 2 (DENV-2) variants resistant to brequinar (a known DHODH inhibitor) were cross resistant to NITD-982. Collectively, the results demonstrate that the compound inhibits DENV through depleting the intracellular pyrimidine pool. In contrast to the in vitro potency, the compound did not show any efficacy in the DENV-AG129 mouse model. The lack of in vivo efficacy is likely due to the exogenous uptake of pyrimidine from the diet or to a high plasma protein-binding activity of the current compound.
Collapse
|
25
|
Giorgis M, Lolli ML, Rolando B, Rao A, Tosco P, Chaurasia S, Marabello D, Fruttero R, Gasco A. 1,2,5-Oxadiazole analogues of leflunomide and related compounds. Eur J Med Chem 2011; 46:383-92. [DOI: 10.1016/j.ejmech.2010.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
26
|
Fritzson I, Svensson B, Al-Karadaghi S, Walse B, Wellmar U, Nilsson UJ, da Graça Thrige D, Jönsson S. Inhibition of human DHODH by 4-hydroxycoumarins, fenamic acids, and N-(alkylcarbonyl)anthranilic acids identified by structure-guided fragment selection. ChemMedChem 2010; 5:608-17. [PMID: 20183850 DOI: 10.1002/cmdc.200900454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A strategy that combines virtual screening and structure-guided selection of fragments was used to identify three unexplored classes of human DHODH inhibitor compounds: 4-hydroxycoumarins, fenamic acids, and N-(alkylcarbonyl)anthranilic acids. Structure-guided selection of fragments targeting the inner subsite of the DHODH ubiquinone binding site made these findings possible with screening of fewer than 300 fragments in a DHODH assay. Fragments from the three inhibitor classes identified were subsequently chemically expanded to target an additional subsite of hydrophobic character. All three classes were found to exhibit distinct structure-activity relationships upon expansion. The novel N-(alkylcarbonyl)anthranilic acid class shows the most promising potency against human DHODH, with IC(50) values in the low nanomolar range. The structure of human DHODH in complex with an inhibitor of this class is presented.
Collapse
|
27
|
Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 2010; 31:29-59. [DOI: 10.1016/j.mam.2009.12.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/11/2009] [Indexed: 12/22/2022]
|
28
|
Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS. The OsDHODH1 gene is involved in salt and drought tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:825-833. [PMID: 19723241 DOI: 10.1111/j.1744-7909.2009.00853.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the present paper, we identified and cloned OsDHODH1 encoding a putative cytosolic dihydroorotate dehydrogenase (DHODH) in rice. Expression analysis indicated that OsDHODH1 is upregulated by salt, drought and exogenous abscisic acid (ABA), but not by cold. By prokaryotic expression, we determined the enzymatic activity of OsDHODH1 and found that overproduction of OsDHODH1 significantly improved the tolerance of Escherichia coli cells to salt and osmotic stresses. Overexpression of the OsDHODH1 gene in rice increased the DHODH activity and enhanced plant tolerance to salt and drought stresses as compared with wild type and OsDHODH1-antisense transgenic plants. Our findings reveal, for the first time, that cytosolic dihydroorotate dehydrogenase is involved in plant stress response and that OsDHODH1 could be used in engineering crop plants with enhanced tolerance to salt and drought.
Collapse
Affiliation(s)
- Wen-Ying Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
29
|
Deng X, Gujjar R, El Mazouni F, Kaminsky W, Malmquist NA, Goldsmith EJ, Rathod PK, Phillips MA. Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J Biol Chem 2009; 284:26999-7009. [PMID: 19640844 DOI: 10.1074/jbc.m109.028589] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes and to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Neurol 2009; 256:89-103. [PMID: 19169851 DOI: 10.1007/s00415-009-0075-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/21/2008] [Accepted: 07/25/2008] [Indexed: 12/24/2022]
Abstract
Teriflunomide is an orally available anti-inflammatory drug that prevents T and B cell proliferation and function by inhibition of dihydroorotate dehydrogenase. It is currently being developed for the treatment of multiple sclerosis (MS). We report here for the first time the anti-inflammatory effects of teriflunomide in the Dark Agouti rat model of experimental autoimmune encephalomyelitis (EAE). Neurological evaluation demonstrated that prophylactic dosing of teriflunomide at 3 and 10 mg/kg delayed disease onset and reduced maximal and cumulative scores. Therapeutic administration of teriflunomide at doses of 3 or 10 mg/kg at disease onset significantly reduced maximal and cumulative disease scores as compared to vehicle treated rats. Dosing teriflunomide at disease remission, at 3 and 10 mg/kg, reduced the cumulative scores for the remaining course of the disease. Teriflunomide at 10 mg/kg significantly reduced inflammation, demyelination, and axonal loss when dosed prophylactically or therapeutically. In electrophysiological somatosensory evoked potential studies, therapeutic administration of teriflunomide, at the onset of disease, prevented both a decrease in waveform amplitude and an increase in the latency to waveform initiation in EAE animals compared to vehicle. Therapeutic dosing with teriflunomide at disease remission prevented a decrease in evoked potential amplitude, prevented an increase in latency, and enhanced recovery time within the CNS.
Collapse
|
31
|
McPhail D, Cheung MK, Brown J, Shepherdson M. Factors accelerating pyrimidine production in Deinococcus radiophilus. Arch Microbiol 2008; 191:73-82. [DOI: 10.1007/s00203-008-0430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|
32
|
Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, Al-Karadaghi S. The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites. Biochemistry 2008; 47:8929-36. [PMID: 18672895 DOI: 10.1021/bi8003318] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitors of dihydroorotate dehydrogenase (DHODH) have been suggested for the treatment of rheumatoid arthritis, psoriasis, autoimmune diseases, Plasmodium, and bacterial and fungal infections. Here we present the structures of N-terminally truncated (residues Met30-Arg396) DHODH in complex with two inhibitors: a brequinar analogue (6) and a novel inhibitor (a fenamic acid derivative) (7), as well as the first structure of the enzyme to be characterized without any bound inhibitor. It is shown that 7 uses the "standard" brequinar binding mode and, in addition, interacts with Tyr356, a residue conserved in most class 2 DHODH proteins. Compared to the inhibitor-free structure, some of the amino acid side chains in the tunnel in which brequinar binds and which was suggested to be the binding site of ubiquinone undergo changes in conformation upon inhibitor binding. Using our data, the loop regions of residues Leu68-Arg72 and Asn212-Leu224, which were disordered in previously studied human DHODH structures, could be built into the electron density. The first of these loops, which is located at the entrance to the inhibitor-binding pocket, shows different conformations in the three structures, suggesting that it may interfere with inhibitor/cofactor binding. The second loop has been suggested to control the access of dihydroorotate to the active site of the enzyme and may be an important player in the enzymatic reaction. These observations provide new insights into the dynamic features of the DHODH reaction and suggest new approaches to the design of inhibitors against DHODH.
Collapse
Affiliation(s)
- Björn Walse
- SARomics AB, P.O. Box 724, SE-220 07 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zameitat E, Freymark G, Dietz CD, Löffler M, Bölker M. Functional expression of human dihydroorotate dehydrogenase (DHODH) in pyr4 mutants of ustilago maydis allows target validation of DHODH inhibitors in vivo. Appl Environ Microbiol 2007; 73:3371-9. [PMID: 17369345 PMCID: PMC1907109 DOI: 10.1128/aem.02569-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) is a central enzyme of pyrimidine biosynthesis and catalyzes the oxidation of dihydroorotate to orotate. DHODH is an important target for antiparasitic and cytostatic drugs since rapid cell proliferation often depends on the de novo synthesis of pyrimidine nucleotides. We have cloned the pyr4 gene encoding mitochondrial DHODH from the basidiomycetous plant pathogen Ustilago maydis. We were able to show that pyr4 contains a functional mitochondrial targeting signal. The deletion of pyr4 resulted in uracil auxotrophy, enhanced sensitivity to UV irradiation, and a loss of pathogenicity on corn plants. The biochemical characterization of purified U. maydis DHODH overproduced in Escherichia coli revealed that the U. maydis enzyme uses quinone electron acceptor Q6 and is resistant to several commonly used DHODH inhibitors. Here we show that the expression of the human DHODH gene fused to the U. maydis mitochondrial targeting signal is able to complement the auxotrophic phenotype of pyr4 mutants. While U. maydis wild-type cells were resistant to the DHODH inhibitor brequinar, strains expressing the human DHODH gene became sensitive to this cytostatic drug. Such engineered U. maydis strains can be used in sensitive in vivo assays for the development of novel drugs specifically targeted at either human or fungal DHODH.
Collapse
Affiliation(s)
- Elke Zameitat
- Faculty of Medicine, Department of Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Malmquist NA, Baldwin J, Phillips MA. Detergent-dependent kinetics of truncated Plasmodium falciparum dihydroorotate dehydrogenase. J Biol Chem 2007; 282:12678-86. [PMID: 17329250 DOI: 10.1074/jbc.m609893200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The survival of the malaria parasite Plasmodium falciparum is dependent upon the de novo biosynthesis of pyrimidines. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in this pathway in an FMN-dependent reaction. The full-length enzyme is associated with the inner mitochondrial membrane, where ubiquinone (CoQ) serves as the terminal electron acceptor. The lipophilic nature of the co-substrate suggests that electron transfer to CoQ occurs at the two-dimensional lipid-solution interface. Here we show that PfDHODH associates with liposomes even in the absence of the N-terminal transmembrane-spanning domain. The association of a series of ubiquinone substrates with detergent micelles was studied by isothermal titration calorimetry, and the data reveal that CoQ analogs with long decyl (CoQ(D)) or geranyl (CoQ(2)) tails partition into detergent micelles, whereas that with a short prenyl tail (CoQ(1)) remains in solution. PfDHODH-catalyzed reduction of CoQ(D) and CoQ(2), but not CoQ(1), is stimulated as detergent concentrations (Tween 80 or Triton X-100) are increased up to their critical micelle concentrations, beyond which activity declines. Steady-state kinetic data acquired for the reaction with CoQ(D) and CoQ(2) in substrate-detergent mixed micelles fit well to a surface dilution kinetic model. In contrast, the data for CoQ(1) as a substrate were well described by solution steady-state kinetics. Our results suggest that the partitioning of lipophilic ubiquinone analogues into detergent micelles needs to be an important consideration in the kinetic analysis of enzymes that utilize these substrates.
Collapse
Affiliation(s)
- Nicholas A Malmquist
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
35
|
Zameitat E, Gojković Z, Knecht W, Piskur J, Löffler M. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans. FEBS J 2006; 273:3183-91. [PMID: 16774642 DOI: 10.1111/j.1742-4658.2006.05327.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), which catalyzes the fourth step of de novo pyrimidine synthesis, as a new target for controlling infection. We propose that the enzyme is a member of the DHODH family 2, which comprises mitochondrially bound enzymes, with quinone as the direct electron acceptor and oxygen as the final electron acceptor. Full-length DHODH and N-terminally truncated DHODH, which lacks the targeting sequence and the transmembrane domain, were subcloned from C. albicans, recombinantly expressed in Escherichia coli, purified, and characterized for their kinetics and substrate specificity. An inhibitor screening with 28 selected compounds was performed. Only the dianisidine derivative, redoxal, and the biphenyl quinoline-carboxylic acid derivative, brequinar sodium, which are known to be potent inhibitors of mammalian DHODH, markedly reduced C. albicans DHODH activity. This study provides a background for the development of antipyrimidines with high efficacy for decreasing in situ pyrimidine nucleotide pools in C. albicans.
Collapse
Affiliation(s)
- Elke Zameitat
- Institute for Physiological Chemistry, Philipps-University, Marburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Zameitat E, Knecht W, Piskur J, Löffler M. Two different dihydroorotate dehydrogenases from yeast Saccharomyces kluyveri. FEBS Lett 2004; 568:129-34. [PMID: 15196933 DOI: 10.1016/j.febslet.2004.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/30/2004] [Accepted: 05/13/2004] [Indexed: 11/29/2022]
Abstract
Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces kluyveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family 2 enzymes, which use quinones as direct and oxygen as the final electron acceptor. The other one resembles the Saccharomyces cerevisiae cytosolic family 1A fumarate-utilizing DHODH. The DHODHs from S. kluyveri, Sch. pombe and S. cerevisiae, were expressed in Escherichia coli and compared for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to be selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics.
Collapse
Affiliation(s)
- Elke Zameitat
- Institute for Physiological Chemistry, Philipps-University, Karl-von-Frisch-Strasse 1, D-35033 Marburg, Germany.
| | | | | | | |
Collapse
|
37
|
Gojković Z, Knecht W, Zameitat E, Warneboldt J, Coutelis JB, Pynyaha Y, Neuveglise C, Møller K, Löffler M, Piskur J. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genomics 2004; 271:387-93. [PMID: 15014982 DOI: 10.1007/s00438-004-0995-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast ( Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From the phylogenetic point of view, this enzyme is closely related to a bacterial DHODase from Lactococcus lactis. Here we show that S. kluyveri, which separated from the S. cerevisiae lineage more than 100 million years ago, represents an evolutionary intermediate, having both cytoplasmic and mitochondrial DHODases. We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen.
Collapse
Affiliation(s)
- Z Gojković
- BioCentrum-DTU, Building 301, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Leban J, Saeb W, Garcia G, Baumgartner R, Kramer B. Discovery of a novel series of DHODH inhibitors by a docking procedure and QSAR refinement. Bioorg Med Chem Lett 2004; 14:55-8. [PMID: 14684297 DOI: 10.1016/j.bmcl.2003.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel series of DHODH inhibitors was developed based on a lead which was obtained by a docking procedure and a medicinal chemistry exploration. The activity of the initial lead was improved by a QSAR method to yield low nanomolar inhibitors.
Collapse
Affiliation(s)
- Johann Leban
- 4SC AG, Am Klopferspitz 19a, 82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
39
|
Baldwin J, Farajallah AM, Malmquist NA, Rathod PK, Phillips MA. Malarial dihydroorotate dehydrogenase. Substrate and inhibitor specificity. J Biol Chem 2002; 277:41827-34. [PMID: 12189151 DOI: 10.1074/jbc.m206854200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The malarial parasite relies on de novo pyrimidine biosynthesis to maintain its pyrimidine pools, and unlike the human host cell it is unable to scavenge preformed pyrimidines. Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate (DHO) to produce orotate, a key step in pyrimidine biosynthesis. The enzyme is located in the outer membrane of the mitochondria of the malarial parasite. To characterize the biochemical properties of the malarial enzyme, an N-terminally truncated version of P. falciparum DHODH has been expressed as a soluble, active enzyme in E. coli. The recombinant enzyme binds 0.9 molar equivalents of the cofactor FMN and it has a pH maximum of 8.0 (k(cat) 8 s(-1), K(m)(app) DHO (40-80 microm)). The substrate specificity of the ubiquinone cofactor (CoQ(n)) that is required for the oxidation of FMN in the second step of the reaction was also determined. The isoprenoid (n) length of CoQ(n) was a determinant of reaction efficiency; CoQ(4), CoQ(6) and decylubiquinone (CoQ(D)) were efficiently utilized in the reaction, however cofactors lacking an isoprenoid tail (CoQ(0) and vitamin K(3)) showed decreased catalytic efficiency resulting from a 4 to 7-fold increase in K(m)(app). Five potent inhibitors of mammalian DHODH, Redoxal, dichloroallyl lawsone (DCL), and three analogs of A77 1726 were tested as inhibitors of the malarial enzyme. All five compounds were poor inhibitors of the malarial enzyme, with IC(50)'s ranging from 0.1-1.0 mm. The IC(50) values for inhibition of the malarial enzyme are 10(2)-10(4)-fold higher than the values reported for the mammalian enzyme, demonstrating that inhibitor binding to DHODH is species specific. These studies provide direct evidence that the malarial DHODH active site is different from the host enzyme, and that it is an attractive target for the development of new anti-malarial agents.
Collapse
Affiliation(s)
- Jeffrey Baldwin
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, 75390-9041, USA
| | | | | | | | | |
Collapse
|
40
|
Ullrich A, Knecht W, Piskur J, Löffler M. Plant dihydroorotate dehydrogenase differs significantly in substrate specificity and inhibition from the animal enzymes. FEBS Lett 2002; 529:346-50. [PMID: 12372626 DOI: 10.1016/s0014-5793(02)03425-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mitochondrial membrane bound dihydroorotate dehydrogenase (DHODH; EC 1.3.99.11) catalyzes the fourth step of pyrimidine biosynthesis. By the present correction of a known cDNA sequence for Arabidopsis thaliana DHODH we revealed the importance of the very C-terminal part for its catalytic activity and the reason why--in contrast to mammalian and insect species--the recombinant plant flavoenzyme was unaccessible to date for in vitro characterization. Structure-activity relationship studies explained that potent inhibitors of animal DHODH do not significantly affect the plant enzyme. These difference could be exploited for a novel approach to herb or pest growth control by limitation of pyrimidine nucleotide pools.
Collapse
Affiliation(s)
- Alexandra Ullrich
- Institute for Physiological Chemistry, Philipps-University, Karl-von-Frisch-Strasse 1, D-35033 Marburg, Germany.
| | | | | | | |
Collapse
|
41
|
Löffler M, Knecht W, Rawls J, Ullrich A, Dietz C. Drosophila melanogaster dihydroorotate dehydrogenase: the N-terminus is important for biological function in vivo but not for catalytic properties in vitro. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1159-1169. [PMID: 12213251 DOI: 10.1016/s0965-1748(02)00052-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11), the fourth enzyme of pyrimidine de novo synthesis, is an integral flavoprotein of the inner mitchondrial membrane and is functionally connected to the respiratory chain. Here, experiments have been directed toward determining the roles of the N-terminal sequence motifs both in enzymatic properties of insect DHODH produced in vitro and the in vivo function of the protein. Full-length and three N-terminal truncated derivatives of the Drosophila melanogaster enzyme were expressed in Escherichia coli and purified. For identification on Western blots of recombinant DHODH as well as the native enzyme from flies polyclonal anti-DHODH immunoglobulins were generated and affinity-purified. The enzymatic characteristics of the four versions of DHODH were very similar, indicating that the N-terminus of the enzyme does not influence its catalytic function or its susceptibility to prominent DHODH inhibitors: A77-1726, brequinar, dichloroallyl-lawsone and redoxal. Whereas the efficacy of A77-1726 and dichloroallyl-lawsone were similar with Drosophila and human DHODH, that of brequinar and redoxal differed significantly. The differences in responses of insect DHODH and the enzyme from other species may allow the design of new agents that will selectively control insect growth, due to pyrimidine nucleotide limitation. In vivo expression of the full-length and N-truncated DHODHs from engineered transgenes revealed that the truncated proteins could not support normal de novo pyrimidine biosynthesis during development of the fly (i.e., failure to complement dhod-null mutations), apparently due to instability of the truncated proteins. It is concluded that the proper intracellular localization, directed by the N-terminal targeting and transmembrane motifs, is required for stability and subsequent proper biological function in vivo.
Collapse
Affiliation(s)
- Monika Löffler
- Institute for Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Str. 1, D-35033 Marburg, Germany.
| | | | | | | | | |
Collapse
|