1
|
Wang N, Zhang N, Sun ML, Sun Y, Dong QY, Wang Y, Gu ZT, Ding HT, Qin QL, Jiang Y, Chen XL, Zhang YZ, Gao C, Li CY. Molecular insights into the catalytic mechanism of a phthalate ester hydrolase. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135191. [PMID: 39013318 DOI: 10.1016/j.jhazmat.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.
Collapse
Affiliation(s)
- Ning Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Nan Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mei-Ling Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yan Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Qing-Yu Dong
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yu Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Zeng-Tian Gu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Hai-Tao Ding
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yong Jiang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Althaher AR. An Overview of Hormone-Sensitive Lipase (HSL). ScientificWorldJournal 2022; 2022:1964684. [PMID: 36530555 PMCID: PMC9754850 DOI: 10.1155/2022/1964684] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023] Open
Abstract
Hormone-sensitive lipase (HSL) is a pivotal enzyme that mediates triglyceride hydrolysis to provide free fatty acids and glycerol in adipocytes in a hormonally controlled lipolysis process. Elevated plasma-free fatty acids were accompanied by insulin resistance, type-2 diabetes, and obesity. Inhibition of lipolysis through HSL inhibition may provide a mechanism to prevent the accumulation of free fatty acids and to improve the affectability of insulin and blood glucose handling in type II diabetes. The published studies that examine the structure, regulation, and function of HSL and major inhibitors were reviewed in this paper.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Dietary fatty acids applied to pig production and their relation to the biological processes: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Nagaroor V, Gummadi SN. An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): biochemical properties and industrial applications. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36154870 DOI: 10.1080/02648725.2022.2127071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
In mammals, hormone-sensitive lipase (EC 3.1.1.79) is an intracellular lipase that significantly regulates lipid metabolism. Mammalian HSL is more active towards diacylglycerol but lacks a lid covering the active site. Dyslipidemia, hepatic steatosis, cancer, and cancer-associated cachexia are symptoms of HSL pathophysiology. Certain microbial proteins show a sequence homologous to the catalytic domain of mammalian HSL, hence called microbial HSL. They possess a funnel-shaped substrate-binding pocket and restricted length of acyl chain esters, thus known as esterases. These enzymes have broad substrate specificities and are capable of stereo, regio, and enantioselective, making them attractive biocatalysts in a wide range of industrial applications in the production of flavors, pharmaceuticals, biosensors, and fine chemicals. This review will provide insight into mammalian and microbial HSLs, their sources, structural features related to substrate specificity, thermal stability, and their applications.
Collapse
Affiliation(s)
- Vijayalakshmi Nagaroor
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Kumar NG, Contaifer D, Wijesinghe DS, Jefferson KK. Staphylococcus aureus Lipase 3 (SAL3) is a surface-associated lipase that hydrolyzes short chain fatty acids. PLoS One 2021; 16:e0258106. [PMID: 34618844 PMCID: PMC8496776 DOI: 10.1371/journal.pone.0258106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial lipases play important roles during infection. The Staphylococcus aureus genome contains several genes that encode well-characterized lipases and several genes predicted to encode lipases or esterases for which the function has not yet been established. In this study, we sought to define the function of an uncharacterized S. aureus protein, and we propose the annotation S. aureus lipase 3 (SAL3) (SAUSA300_0641). We confirmed that SAL3 is a lipase and that it is surface associated and secreted through an unknown mechanism. We determined that SAL3 specifically hydrolyzes short chain (4-carbon and fewer) fatty acids and specifically binds negatively charged lipids including phosphatidic acid, phosphatidylinositol phosphate, and phosphatidylglycerol, which is the most abundant lipid in the staphylococcal cell membrane. Mutating the catalytic triad S66-A, D167-A, S168-A, and H301-A in the recombinant protein abolished lipase activity without altering binding to host lipid substrates. Taken together we report the discovery of a novel lipase from S. aureus specific to short chain fatty acids with yet to be determined roles in host pathogen interactions.
Collapse
Affiliation(s)
- Naren Gajenthra Kumar
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dayanjan S. Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kimberly K. Jefferson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dou Z, Xu G, Ni Y. A novel carboxylesterase from Acinetobacter sp. JNU9335 for efficient biosynthesis of Edoxaban precursor with high substrate to catalyst ratio. BIORESOURCE TECHNOLOGY 2020; 317:123984. [PMID: 32827974 DOI: 10.1016/j.biortech.2020.123984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
A novel carboxylesterase AcEst1 was identified from Acinetobacter sp. JNU9335 with high efficiency in the biosynthesis of chiral precursor of Edoxaban through kinetic resolution of methyl 3-cyclohexene-1-carboxylate (CHCM). Sequence analysis revealed AcEst1 belongs to family IV of esterolytic enzymes and exhibits <40% identities with known carboxylesterases. The optimum pH and temperature of recombinant AcEst1 are 8.0 and 40 °C. Substrate spectrum analysis indicated that AcEst1 prefers substrates with short acyl and alcohol groups. AcEst1 was highly active in the hydrolysis of CHCM with kcat of 1153 s-1 and displayed high substrate tolerance. As much as 2.0 M (280 g·L-1) CHCM could be enantioselectively hydrolyzed into (S)-CHCM by merely 0.08 g·L-1AcEst1 with ees of >99% (S) and substrate to catalyst ratio (S/C) of 3500 g·g-1. These results indicate that the novel AcEst1 is a promising biocatalyst in the synthesis of chiral carboxylic acids.
Collapse
Affiliation(s)
- Zhe Dou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain. J Ind Microbiol Biotechnol 2019; 47:169-181. [PMID: 31807968 DOI: 10.1007/s10295-019-02253-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Gene CA_C0816 codes for a serine hydrolase protein from Clostridium acetobutylicum (ATCC 824) a member of hormone-sensitive lipase of lipolytic family IV. This gene was overexpressed in E. coli strain BL21and purified using Ni2+-NTA affinity chromatography. Size exclusion chromatography revealed that the protein is a dimer in solution. Optimum pH and temperature for recombinant Clostridium acetobutylicum esterase (Ca-Est) were found to be 7.0 and 60 °C, respectively. This enzyme exhibited high preference for p-nitrophenyl butyrate. KM and kcat/KM of the enzyme were 24.90 µM and 25.13 s-1 µM-1, respectively. Sequence analysis of Ca-Est predicts the presence of catalytic amino acids Ser 89, His 224, and Glu 196, presence of novel GYSMG conserved sequence (instead of GDSAG and GTSAG motif), and undescribed variation of HGSG motif. Site-directed mutagenesis confirmed that Ser 89 and His 224 play a major role in catalysis. This study reports that Ca-Est is hormone-sensitive lipase with novel GYSMG pentapeptide motif at a catalytic domain.
Collapse
|
8
|
Characterization and mutation anaylsis of a cold-active bacterial hormone-sensitive lipase from Salinisphaera sp. P7-4. Arch Biochem Biophys 2019; 663:132-142. [DOI: 10.1016/j.abb.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022]
|
9
|
Ferreira LG, de Alencar Dusi DM, Irsigler AST, Gomes ACMM, Mendes MA, Colombo L, de Campos Carneiro VT. GID1 expression is associated with ovule development of sexual and apomictic plants. PLANT CELL REPORTS 2018; 37:293-306. [PMID: 29080908 DOI: 10.1007/s00299-017-2230-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.
Collapse
Affiliation(s)
- Luciana Gomes Ferreira
- Department of Biology, University of Brasília-UnB, Campus Darcy Ribeiro S/N-Asa Norte, Brasília, DF, 70910-900, Brazil
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB Av. W5 Norte, Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Diva Maria de Alencar Dusi
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB Av. W5 Norte, Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - André Southernman Teixeira Irsigler
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB Av. W5 Norte, Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Ana Cristina Meneses Mendes Gomes
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB Av. W5 Norte, Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Marta Adelina Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Vera Tavares de Campos Carneiro
- Department of Biology, University of Brasília-UnB, Campus Darcy Ribeiro S/N-Asa Norte, Brasília, DF, 70910-900, Brazil.
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB Av. W5 Norte, Caixa Postal 02372, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
10
|
A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol Lett 2017; 39:577-587. [DOI: 10.1007/s10529-016-2282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
11
|
Manna PR, Stetson CL, Slominski AT, Pruitt K. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine 2016; 51:7-21. [PMID: 26271515 PMCID: PMC4707056 DOI: 10.1007/s12020-015-0715-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/03/2015] [Indexed: 01/10/2023]
Abstract
Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Cloyce L Stetson
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrzej T Slominski
- Department of Dermatology, VA Medical Center, University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
12
|
Yang S, Qin Z, Duan X, Yan Q, Jiang Z. Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei. J Lipid Res 2015; 56:1616-24. [PMID: 26108223 PMCID: PMC4514002 DOI: 10.1194/jlr.m060673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/19/2023] Open
Abstract
Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2–C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi.jlr The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases.
Collapse
Affiliation(s)
- Shaoqing Yang
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Zhen Qin
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Xiaojie Duan
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, The Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Vasilieva E, Dutta S, Malla RK, Martin BP, Spilling CD, Dupureur CM. Rat hormone sensitive lipase inhibition by cyclipostins and their analogs. Bioorg Med Chem 2015; 23:944-52. [PMID: 25678014 DOI: 10.1016/j.bmc.2015.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 11/15/2022]
Abstract
Cyclipostins are bicyclic lipophilic phosphate natural products. We report here that synthesized individual diastereomers of cyclipostins P and R have nanomolar IC50s toward hormone sensitive lipase (HSL). The less potent diastereomers of these compounds have 10-fold weaker IC50s. The monocyclic phosphate analog of cyclipostin P is nearly as potent as the bicyclic natural product. Bicyclic phosphonate analogs of both cyclipostins exhibit IC50s similar to those of the weaker diastereomer phosphates (about 400nM). The monocyclic phosphonate analog of cyclipostin P has similar potency. A series of monocyclic phosphonate analogs in which a hydrophobic tail extends from the lactone side of the ring are considerably poorer inhibitors, with IC50s around 50μM. Finally cyclophostin, a related natural product inhibitor of acetylcholinesterase (AChE) that lacks the hydrocarbon tail of cyclipostins, is not active against HSL. These results indicate a critical SAR for these compounds, the hydrophobic tail. The smaller lactone ring is not critical to activity, a similarity shared with cyclophostin and AChE. The HSL kinetics of inhibition for the cyclipostin P trans diastereomer were examined in detail. The reaction is irreversible with a KI of 40nM and a rate constant for inactivation of 0.2min(-1). These results are similar to those observed for cyclophostin and AChE.
Collapse
Affiliation(s)
- Elena Vasilieva
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Supratik Dutta
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Raj K Malla
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Benjamin P Martin
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Christopher D Spilling
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Cynthia M Dupureur
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States.
| |
Collapse
|
14
|
Ma BD, Kong XD, Yu HL, Zhang ZJ, Dou S, Xu YP, Ni Y, Xu JH. Increased Catalyst Productivity in α-Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification. ACS Catal 2014. [DOI: 10.1021/cs401183e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bao-Di Ma
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xu-Dong Kong
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi-Jun Zhang
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuai Dou
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan-Peng Xu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Ni
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, Kim TD. Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1726-37. [PMID: 23999296 DOI: 10.1107/s0907444913013425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Abstract
Intracellular mobilization of fatty acids from triacylglycerols in mammalian adipose tissues proceeds through a series of lipolytic reactions. Among the enzymes involved, hormone-sensitive lipase (HSL) is noteworthy for its central role in energy homeostasis and the pathogenic role played by its dysregulation. By virtue of its broad substrate specificity, HSL may also serve as an industrial biocatalyst. In a previous report, Est25, a bacterial homologue of HSL, was identified from a metagenomic library by functional screening. Here, the crystal structure of Est25 is reported at 1.49 Å resolution; it exhibits an α/β-hydrolase fold consisting of a central β-sheet enclosed by α-helices on both sides. The structural features of the cap domain, the substrate-binding pocket and the dimeric interface of Est25, together with biochemical and biophysical studies including native PAGE, mass spectrometry, dynamic light scattering, gel filtration and enzyme assays, could provide a basis for understanding the properties and regulation of hormone-sensitive lipase (HSL). The increased stability of cross-linked Est25 aggregates (CLEA-Est25) and their potential for extensive reuse support the application of this preparation as a biocatalyst in biotransformation processes.
Collapse
Affiliation(s)
- Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Insight into substrate preference of two chimeric esterases by combining experiment and molecular simulation. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB, Stocco DM. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J Biol Chem 2013; 288:8505-8518. [PMID: 23362264 DOI: 10.1074/jbc.m112.417873] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of cholesteryl esters in steroidogenic tissues and, thus, facilitates cholesterol availability for steroidogenesis. The steroidogenic acute regulatory protein (StAR) controls the rate-limiting step in steroid biosynthesis. However, the modes of action of HSL in the regulation of StAR expression remain obscure. We demonstrate in MA-10 mouse Leydig cells that activation of the protein kinase A (PKA) pathway, by a cAMP analog Bt2cAMP, enhanced expression of HSL and its phosphorylation (P) at Ser-660 and Ser-563, but not at Ser-565, concomitant with increased HSL activity. Phosphorylation and activation of HSL coincided with increases in StAR, P-StAR (Ser-194), and progesterone levels. Inhibition of HSL activity by CAY10499 effectively suppressed Bt2cAMP-induced StAR expression and progesterone synthesis. Targeted silencing of endogenous HSL, with siRNAs, resulted in increased cholesteryl ester levels and decreased cholesterol content in MA-10 cells. Depletion of HSL affected lipoprotein-derived cellular cholesterol influx, diminished the supply of cholesterol to the mitochondria, and resulted in the repression of StAR and P-StAR levels. Cells overexpressing HSL increased the efficacy of liver X receptor (LXR) ligands on StAR expression and steroid synthesis, suggesting HSL-mediated steroidogenesis entails enhanced oxysterol production. Conversely, cells deficient in LXRs exhibited decreased HSL responsiveness. Furthermore, an increase in HSL was correlated with the LXR target genes, steroid receptor element-binding protein 1c and ATP binding cassette transporter A1, demonstrating HSL-dependent regulation of steroidogenesis predominantly involves LXR signaling. LXRs interact/cooperate with RXRs and result in the activation of StAR gene transcription. These findings provide novel insight and demonstrate the molecular events by which HSL acts to drive cAMP/PKA-mediated regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Joëlle Cohen-Tannoudji
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Raymond Counis
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Charles W Garner
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Fredric B Kraemer
- Department of Medicine, Veterans Affairs Palo Alto Heath Care System, Palo Alto, California 94304
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430.
| |
Collapse
|
18
|
Link between intraphagosomal biotin and rapid phagosomal escape in Francisella. Proc Natl Acad Sci U S A 2012; 109:18084-9. [PMID: 23071317 DOI: 10.1073/pnas.1206411109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytosolic bacterial pathogens require extensive metabolic adaptations within the host to replicate intracellularly and cause disease. In phagocytic cells such as macrophages, these pathogens must respond rapidly to nutrient limitation within the harsh environment of the phagosome. Many cytosolic pathogens escape the phagosome quickly (15-60 min) and thereby subvert this host defense, reaching the cytosol where they can replicate. Although a great deal of research has focused on strategies used by bacteria to resist antimicrobial phagosomal defenses and transiently pass through this compartment, the metabolic requirements of bacteria in the phagosome are largely uncharacterized. We previously identified a Francisella protein, FTN_0818, as being essential for intracellular replication and involved in virulence in vivo. We now show that FTN_0818 is involved in biotin biosynthesis and required for rapid escape from the Francisella-containing phagosome (FCP). Addition of biotin complemented the phagosomal escape defect of the FTN_0818 mutant, demonstrating that biotin is critical for promoting rapid escape during the short time that the bacteria are in the phagosome. Biotin also rescued the attenuation of the FTN_0818 mutant during infection in vitro and in vivo, highlighting the importance of this process. The key role of biotin in phagosomal escape implies biotin may be a limiting factor during infection. We demonstrate that a bacterial metabolite is required for phagosomal escape of an intracellular pathogen, providing insight into the link between bacterial metabolism and virulence, likely serving as a paradigm for other cytosolic pathogens.
Collapse
|
19
|
Voegele A, Linkies A, Müller K, Leubner-Metzger G. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5131-47. [PMID: 21778177 PMCID: PMC3193015 DOI: 10.1093/jxb/err214] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/22/2011] [Accepted: 06/13/2011] [Indexed: 05/18/2023]
Abstract
Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly.
Collapse
Affiliation(s)
- Antje Voegele
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, Albert-Ludwigs-University, Biology II, Schänzlestr.1, D-79104 Freiburg, Germany
| | - Ada Linkies
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, Albert-Ludwigs-University, Biology II, Schänzlestr.1, D-79104 Freiburg, Germany
| | - Kerstin Müller
- Department of Biological Sciences, Simon Fraser University, 8888, University Drive, Burnaby BC, V5A 1S6, Canada
| | - Gerhard Leubner-Metzger
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, Albert-Ludwigs-University, Biology II, Schänzlestr.1, D-79104 Freiburg, Germany
- To whom correspondence should be addressed. E-mail: ; ‘The Seed Biology Place’ - www.seedbiology.de
| |
Collapse
|
20
|
Nam KH, Park SH, Lee WH, Hwang KY. Biochemical and Structural Analysis of Hormone-sensitive Lipase Homolog EstE7: Insight into the Stabilized Dimerization of HSL-Homolog Proteins. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.9.2627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
De Santi C, Tutino ML, Mandrich L, Giuliani M, Parrilli E, Del Vecchio P, de Pascale D. The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie 2010; 92:949-57. [PMID: 20382198 DOI: 10.1016/j.biochi.2010.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/02/2010] [Indexed: 11/24/2022]
Abstract
Cold-adapted esterases and lipases have been found to be dominant activities throughout the cold marine environment, indicating their importance in bacterial degradation of the organic matter. lip2 Gene from Psychrobacter sp. TA144, a micro-organism isolated from the Antarctic sea water, was cloned and over-expressed in Escherichia coli. The recombinant protein (PsyHSL) accumulated in the insoluble fraction from which it was recovered in active form, purified to homogeneity and deeply characterised. Temperature dependence of PsyHSL activity was typical of psychrophilic enzymes, with an optimal temperature of 35 degrees C at pH 8.0. The enzyme resulted to be active on pNP-esters of fatty acids with acyl chain length from C(2) to C(12) and the preferred substrate was pNP-pentanoate showing a k(cat) = 26.2 +/- 0.1 s(-1), K(M) = 0.122 +/- 0.006 mM and a k(cat)/K(M) = 215 +/- 11 mM(-1) s(-1). The enzyme was strongly inhibited by Hg(2+), Zn(2+), Cu(2+), Fe(3+), Mn(2+) ions and it resulted to be activated in presence of methanol and acetonitrile, with calculated C(50) values of 1.98 M and 0.92 M, respectively. The region surrounding PsyHSL catalytic site showed an unexpected homology with the human HSL. Further, both enzymes are characterised by the presence of an extra N-terminal domain, which role in the human protein has been related to regulative function. To clarify the function of PsyHSL N-terminal domain, a 97 amino acids deleted version of the enzyme was produced in E. coli in soluble form, purified and characterised. This mutant was inactive towards all tested substrates, indicating the involvement of this region in the catalytic process.
Collapse
Affiliation(s)
- Concetta De Santi
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nam KH, Kim SJ, Priyadarshi A, Kim HS, Hwang KY. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads. Biochem Biophys Res Commun 2009; 389:247-50. [DOI: 10.1016/j.bbrc.2009.08.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/24/2009] [Indexed: 11/25/2022]
|
23
|
Abstract
Human obesity and its complications are an increasing burden in developed and underdeveloped countries. Adipose tissue mass and the mechanisms that control it are central to elucidating the aetiology of obesity and insulin resistance. Over the past 15 years tremendous progress has been made in several avenues relating to adipose tissue. Knowledge of the lipolytic machinery has grown with the identification of new lipases, cofactors and interactions between proteins and lipids that are central to the regulation of basal and stimulated lipolysis. The dated idea of an inert lipid droplet has been appropriately revamped to that of a dynamic and highly-structured organelle that in itself offers regulatory control over lipolysis. The present review provides an overview of the numerous partners and pathways involved in adipose tissue lipolysis and their interaction under various metabolic states. Integration of these findings into whole adipose tissue metabolism and its systemic effects is also presented in the context of inflammation and insulin resistance.
Collapse
|
24
|
Abstract
BACKGROUND Cellulite describes the cutaneous dimpling of the thighs, buttocks, and hips that is seen predominately in women. Current evidence suggests that structural differences in fat architecture between the sexes account for its appearance. Mesotherapy, a method of delivering medication locally with the use of numerous cutaneous injections, has recently become a popular method to purportedly treat the condition. METHODS An overview of cellulite and adipocyte physiology, with a literature review and appraisal of compounds commonly used in mesotherapy. RESULTS Experimental studies using individual mesotherapy ingredients for other conditions suggest a number of mechanisms, including lipolysis, disrupting connective tissue and augmenting circulation, which may theoretically improve cellulite. Peer-reviewed studies have not evaluated whether these effects translate clinically. CONCLUSIONS Until further studies are performed, patients considering mesotherapy for cellulite must be aware that the substances currently being injected to treat this cosmetically disturbing, but medically benign, condition have not been thoroughly evaluated for safety or efficacy.
Collapse
Affiliation(s)
- Adam M Rotunda
- Department of Dermatology, University of Southern California Keck School of Medicine, Bennett Surgery Center, Santa Monica, CA 90404, USA.
| | | | | |
Collapse
|
25
|
Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 2009; 15:321-33. [PMID: 19321517 DOI: 10.1093/molehr/gap025] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are synthesized in the adrenal gland, gonads, placenta and brain and are critical for normal reproductive function and bodily homeostasis. The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroid biosynthesis, i.e. the delivery of cholesterol from the outer to the inner mitochondrial membrane. The expression of the StAR protein is predominantly regulated by cAMP-dependent mechanisms in the adrenal and gonads. Whereas StAR plays an indispensable role in the regulation of steroid biosynthesis, a complete understanding of the regulation of its expression and function in steroidogenesis is not available. It has become clear that the regulation of StAR gene expression is a complex process that involves the interaction of a diversity of hormones and multiple signaling pathways that coordinate the cooperation and interaction of transcriptional machinery, as well as a number of post-transcriptional mechanisms that govern mRNA and protein expression. However, information is lacking on how the StAR gene is regulated in vivo such that it is expressed at appropriate times during development and is confined to the steroidogenic cells. Thus, it is not surprising that the precise mechanism involved in the regulation of StAR gene has not yet been established, which is the key to understanding the regulation of steroidogenesis in the context of both male and female development and function.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
26
|
Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S, Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki T, Osuga JI, Ishibashi S. Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem 2008; 283:33357-64. [PMID: 18782767 DOI: 10.1074/jbc.m802686200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unstable lipid-rich plaques in atherosclerosis are characterized by the accumulation of macrophage foam cells loaded with cholesterol ester (CE). Although hormone-sensitive lipase and cholesteryl ester hydrolase (CEH) have been proposed to mediate the hydrolysis of CE in macrophages, circumstantial evidence suggests the presence of other enzymes with neutral cholesterol ester hydrolase (nCEH) activity. Here we show that the murine orthologue of KIAA1363, designated as neutral cholesterol ester hydrolase (NCEH), is a microsomal nCEH with high expression in murine and human macrophages. The effect of various concentrations of NaCl on its nCEH activity resembles that on endogenous nCEH activity of macrophages. RNA silencing of NCEH decreases nCEH activity at least by 50%; conversely, its overexpression inhibits the CE formation in macrophages. Immunohistochemistry reveals that NCEH is expressed in macrophage foam cells in atherosclerotic lesions. These data indicate that NCEH is responsible for a major part of nCEH activity in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Hiroaki Okazaki
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mandrich L, Menchise V, Alterio V, De Simone G, Pedone C, Rossi M, Manco G. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Proteins 2008; 71:1721-31. [PMID: 18076040 DOI: 10.1002/prot.21877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent mutagenic and molecular modelling studies suggested a role for glycine 84 in the putative oxyanion loop of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. A 114 times decrease of the esterase catalytic activity of the G84S mutant was observed, without changes in the thermal stability. The recently solved three-dimensional (3D) structure of EST2 in complex with a HEPES molecule permitted to demonstrate that G84 (together with G83 and A156) is involved in the stabilization of the oxyanion through a hydrogen bond from its main chain NH group. The structural data in this case did not allowed us to rationalize the effect of the mutation, since this hydrogen bond was predicted to be unaltered in the mutant. Since the mutation could shed light on the role of the oxyanion loop in the HSL family, experiments to elucidate at the mechanistic level the reasons of the observed drop in k (cat) were devised. In this work, the kinetic and structural features of the G84S mutant were investigated in more detail. The optimal temperature and pH for the activity of the mutated enzyme were found significantly changed (T = 65 degrees C and pH = 5.75). The catalytic constants K (M) and V(max) were found considerably altered in the mutant, with ninefold increased K (M) and 14-fold decreased V(max), at pH 5.75. At pH 7.1, the decrease in k (cat) was much more dramatic. The measurement of kinetic constants for some steps of the reaction mechanism and the resolution of the mutant 3D structure provided evidences that the observed effects were partly due to the steric hindrance of the S84-OH group towards the ester substrate and partly to its interference with the nucleophilic attack of a water molecule on the second tetrahedral intermediate.
Collapse
Affiliation(s)
- Luigi Mandrich
- Istituto di Biochimica delle Proteine, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Molecular biology of gibberellins signaling in higher plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:191-221. [PMID: 18703407 DOI: 10.1016/s1937-6448(08)00806-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gibberellins (GAs), a large family of tetracyclic, diterpenoid plant hormones, play an important role in regulating diverse processes throughout plant development. In recent years, significant advances have been made in the isolation of GA signaling components and GA-responsive genes. All available data have indicated that DELLA proteins are an essential negative regulator in the GA signaling pathway and GA derepresses DELLA-mediated growth suppression by inducing degradation of DELLA proteins through the ubiquitin-26S proteasome proteolytic pathway. Identification of GID1, a gene encoding an unknown protein with similarity to hormone-sensitive lipases, has revealed that GID1 acts as a functional GA receptor with a reasonable binding affinity to biologically active GAs. Furthermore, the GID1 receptor interacts with DELLA proteins in a GA-dependent manner. These results suggest that formation of a GID1-GA-DELLA protein complex targets DELLA protein into the ubiquitin-26S proteasome pathway for degradation.
Collapse
|
29
|
Köhler J, Wünsch B. The allosteric modulation of lipases and its possible biological relevance. Theor Biol Med Model 2007; 4:34. [PMID: 17825093 PMCID: PMC2020465 DOI: 10.1186/1742-4682-4-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/07/2007] [Indexed: 11/12/2022] Open
Abstract
Background During the development of an enantioselective synthesis using the lipase from Mucor miehei an unusual reaction course was observed, which was analyzed precisely. For the first time an allosteric modulation of a lipase changing its selectivity was shown. Theory Considering the biological relevance of the discovered regulation mechanism we developed a theory that describes the regulation of energy homeostasis and fat metabolism. Conclusion This theory represents a new approach to explain the cause of the metabolic syndrome and provides an innovative basis for further research activity.
Collapse
Affiliation(s)
- Jens Köhler
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Hittorfstraße 58-62, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Hittorfstraße 58-62, D-48149 Münster, Germany
| |
Collapse
|
30
|
Kim S, Joo S, Yoon HC, Ryu Y, Kim KK, Kim TD. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:579-81. [PMID: 17620715 PMCID: PMC2335126 DOI: 10.1107/s1744309107026152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/29/2007] [Indexed: 11/10/2022]
Abstract
Ketoprofen, a nonsteroidal anti-inflammatory drug, inhibits the synthesis of prostaglandin. A novel hydrolase (Est25) with high ketoprofen specificity has previously been identified using a metagenomic library from environmental samples. Recombinant Est25 protein with a histidine tag at the N-terminus was expressed in Escherichia coli and purified in a homogenous form. Est25 was crystallized from 2.4 M sodium malonate pH 7.0 and X-ray diffraction data were collected to 1.49 A using synchrotron radiation. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 197.8, b = 95.2, c = 99.4 A, beta = 97.1 degrees.
Collapse
Affiliation(s)
- SeungBum Kim
- Department of Biological and Molecular Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Sangbum Joo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyun C. Yoon
- Department of Biological and Molecular Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yeonwoo Ryu
- Department of Biological and Molecular Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Correspondence e-mail: ,
| | - T. Doohun Kim
- Department of Biological and Molecular Engineering, College of Engineering, Ajou University, Suwon, South Korea
- Correspondence e-mail: ,
| |
Collapse
|
31
|
Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:183-98. [PMID: 17472566 DOI: 10.1146/annurev.arplant.58.032806.103830] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gibberellins (GAs) are a large family of tetracyclic, diterpenoid plant hormones that induce a wide range of plant growth responses. It has been postulated that plants have two types of GA receptors, including soluble and membrane-bound forms. Recently, it was determined that the rice GIBBERELLIN INSENSITIVE DWARF1 (GID1) gene encodes an unknown protein with similarity to the hormone-sensitive lipases that has high affinity only for biologically active GAs. Moreover, GID1 binds to SLR1, a repressor of GA signaling, in a GA-dependent manner in yeast cells. Based on these observations, it has been concluded that GID1 is a soluble receptor mediating GA signaling in rice. More recently, Arabidopsis thaliana was found to have three GID1 homologs, AtGID1a, b, and c, all of which bind GA and interact with the five Arabidopsis DELLA proteins.
Collapse
Affiliation(s)
- Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | | | | | | |
Collapse
|
32
|
Kershaw EE, Hamm JK, Verhagen LAW, Peroni O, Katic M, Flier JS. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006; 55. [PMID: 16380488 PMCID: PMC2819178 DOI: 10.2337/diabetes.55.01.06.db05-0982] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipose triglyceride lipase (ATGL) is a recently described adipose-enriched protein with triglyceride-specific lipase activity. ATGL shares the greatest sequence homology with adiponutrin, a nutritionally regulated protein of unclear biological function. Here we present a functional analysis of ATGL and adiponutrin and describe their regulation by insulin. Retroviral-mediated overexpression of ATGL in 3T3-L1 adipocytes increased basal and isoproterenol-stimulated glycerol and nonesterified fatty acid (NEFA) release, whereas siRNA-mediated knockdown of ATGL had the opposite effect. In contrast, siRNA-mediated knockdown of adiponutrin in 3T3-L1 adipocytes had no effect on glycerol or NEFA release. In mice, both ATGL and adiponutrin are nutritionally regulated in adipose tissue, with ATGL being upregulated and adiponutrin being downregulated by fasting. In 3T3-L1 adipocytes, insulin decreased ATGL and increased adiponutrin expression in a dose- and time-dependent manner, suggesting that insulin directly mediates this nutritional regulation. In addition, adipose expression of ATGL was increased by insulin deficiency and decreased by insulin replacement in streptozotocin-induced diabetic mice and was increased in fat-specific insulin receptor knockout mice, whereas adiponutrin showed the opposite pattern. These data suggest that murine ATGL but not adiponutrin contributes to net adipocyte lipolysis and that ATGL and adiponutrin are oppositely regulated by insulin both in vitro and in vivo.
Collapse
Affiliation(s)
- Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YIC, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 2005; 437:693-8. [PMID: 16193045 DOI: 10.1038/nature04028] [Citation(s) in RCA: 802] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 07/12/2005] [Indexed: 11/08/2022]
Abstract
Gibberellins (GAs) are phytohormones that are essential for many developmental processes in plants. It has been postulated that plants have both membrane-bound and soluble GA receptors; however, no GA receptors have yet been identified. Here we report the isolation and characterization of a new GA-insensitive dwarf mutant of rice, gid1. The GID1 gene encodes an unknown protein with similarity to the hormone-sensitive lipases, and we observed preferential localization of a GID1-green fluorescent protein (GFP) signal in nuclei. Recombinant glutathione S-transferase (GST)-GID1 had a high affinity only for biologically active GAs, whereas mutated GST-GID1 corresponding to three gid1 alleles had no GA-binding affinity. The dissociation constant for GA4 was estimated to be around 10(-7) M, enough to account for the GA dependency of shoot elongation. Moreover, GID1 bound to SLR1, a rice DELLA protein, in a GA-dependent manner in yeast cells. GID1 overexpression resulted in a GA-hypersensitive phenotype. Together, our results indicate that GID1 is a soluble receptor mediating GA signalling in rice.
Collapse
|
34
|
Gao J, Simon M. Identification of a Novel Keratinocyte Retinyl Ester Hydrolase as a Transacylase and Lipase. J Invest Dermatol 2005; 124:1259-66. [PMID: 15955102 DOI: 10.1111/j.0022-202x.2005.23761.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinoic acid influences epidermal morphology and function through its ability to control transcription. Because the circulation presents the epidermis with micromolar amounts of retinol that can be converted to retinoic acid, regulating retinol access is imperative. In keratinocytes the majority of retinol is sequestered as long chain fatty acid esters. Although much has been learned about the major esterifying enzyme, little is known about the hydrolase that accesses retinol from its storage depot. Murine carboxylesterases and hormone sensitive lipase have been shown to have this activity. We found that their in vitro sensitivity to bis-p-nitrophenyl phosphate (BNPP), however, was not shared by the epidermal hydrolase activity. We therefore produced and screened two keratinocyte cDNA expression libraries and identified a previously sequenced gene (GS2) as a keratinocyte retinyl ester (RE) hydrolase insensitive to BNPP. The enzyme also catalyzes fattyacyl CoA-dependent and -independent retinol esterification. The hydrolysis reaction is greater at neutral pH, whereas the esterification reaction is greater at acidic pH. These activities are consistent with the increased RE content that accompanies epidermal maturation. In addition, this enzyme utilizes triolein as substrate and generates diacylglyceride and free fatty acid.
Collapse
Affiliation(s)
- Jay Gao
- Department of Oral Biology & Pathology, State University of New York at Stony Brook, Stony Brook, New York 11974, USA.
| | | |
Collapse
|
35
|
Lee HC, Lee SW, Lee KW, Lee SW, Cha KY, Kim KH, Lee S. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis. J Korean Med Sci 2005; 20:456-60. [PMID: 15953869 PMCID: PMC2782203 DOI: 10.3346/jkms.2005.20.3.456] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human follicular fluid (HFF) includes various biologically active proteins which can affect follicle growth and oocyte fertilization. Thus far, these proteins from mature follicles in human follicular fluid have been poorly characterized. Here, two-dimensional polyacrylamide gel electrophoresis (2-DE) with matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to identify new proteins in HFF. Mature follicular fluids were obtained from five females after oocyte collection during in vitro fertilization (IVF). We directly rehydrated HFF samples, obtained high-resolution 2-DE maps, and processed them for 2-DE and MALDI-MS. One hundred eighty spots were detected and 10 of these spots were identified. By the 2-DE database, six of them had been reported, as proteins already existing in HFF. Hormone sensitive lipase (HSL), Unnamed protein product 1 (UPP1), Unnamed protein product 2 (UPP2), and apolipoprotein A-IV precursor were newly detected. HSL and apolipoprotein A-IV participate in lipid metabolism. UPP1 has a homology with selenocysteine lyase. We found by RT-PCR that these genes are expressed from human primary granulosa cells. The proteins identified here may emerge as potential candidates for specific functions during folliculogenesis, hormone secretion regulation, or oocyte maturation. Further functional analysis of these proteins is necessitated to determine their biological implications.
Collapse
Affiliation(s)
- Han-Chul Lee
- Functional Genomics Lab, CHA Research Institute, Bundang Campus, College of Medicine, Pochon CHA University, Sungnam, Korea
| | - Sang-Wha Lee
- Genome Research Center for Reproductive Medicine and Infertility, CHA General Hospital, Seoul, Korea
| | - Kyo Won Lee
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sook-Whan Lee
- Genome Research Center for Reproductive Medicine and Infertility, CHA General Hospital, Seoul, Korea
| | - Kwang-Yul Cha
- Genome Research Center for Reproductive Medicine and Infertility, CHA General Hospital, Seoul, Korea
| | - Kye Hyun Kim
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suman Lee
- Functional Genomics Lab, CHA Research Institute, Bundang Campus, College of Medicine, Pochon CHA University, Sungnam, Korea
| |
Collapse
|
36
|
Wang J, Shen WJ, Patel S, Harada K, Kraemer FB. Mutational analysis of the "regulatory module" of hormone-sensitive lipase. Biochemistry 2005; 44:1953-9. [PMID: 15697220 DOI: 10.1021/bi049206t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hormone-sensitive lipase (HSL) is a rate-limiting enzyme in lipolysis that displays broad substrate specificity. HSL function is regulated by reversible phosphorylation that occurs within a 150 aa "regulatory module" of the protein. The current studies used mutational analysis to dissect the contribution of the "regulatory module" in HSL activity and substrate specificity. Deletion of the entire "regulatory module" or replacement of the "regulatory module" with the "lid" of lipoprotein lipase resulted in enzymatically inactive proteins. Deletion of sequentially longer stretches of the "regulatory module" resulted in a stepwise reduction in hydrolytic activity. Analysis of 7-19 amino acid deletional mutants that spanned the "regulatory module" showed that the N-terminal partial deletion mutants retained normal hydrolytic activity and activation by PKA. In contrast, the C-terminal partial deletion mutants displayed reduced hydrolytic activities, with preferential loss of activity against lipid-, as opposed to water-soluble, substrates. Single amino acid mutations of F650C, P651A, and F654D reduced activity against lipid-, but not water-soluble, substrates. The current results suggest that the length of the "regulatory module" and specific sequences within the C-terminal portion of the "regulatory module" of HSL (amino acids 644-683) are crucial for activity and appear to be responsible for determining lipase activity.
Collapse
Affiliation(s)
- Jining Wang
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
37
|
Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, Manco G. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J Mol Biol 2005; 345:501-12. [PMID: 15581894 DOI: 10.1016/j.jmb.2004.10.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/08/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
A superposition between the structures of Alicyclobacillus acidocaldarius esterase 2 (EST2) and Burkholderia cepacia lipase, the latter complexed with a phosphonate inhibitor, allowed us to hypothesize for the EST2 N terminus a role in restricting the access to the active site and therefore in modulating substrate specificity. In order to test this hypothesis we generated by site-directed mutagenesis some truncated versions of EST2 and its double mutant M211S/R215L (S/L) at the N terminus. In parallel, an analysis of the Sulfolobus solfataricus P2 genome allowed us to identify a gene coding for a putative esterase of the HSL family having a natural deletion of the corresponding region. The product of this gene and the above-mentioned EST2 mutants were expressed in Escherichia coli, purified and characterised. These studies support the notion that the N terminus affects substrate specificity other than several other enzyme parameters. Although the deletions afforded a tenfold and 550-fold decrease in catalytic efficiency towards the best substrate pNP-hexanoate at 50 degrees C for EST2 and S/L, respectively, the analysis of the specific activities with different triacylglycerols with respect to pNP-hexanoate showed that their ratios were higher for deleted versus non-deleted enzymes, on all tested substrates. In particular, the above ratios for glyceryl tridecanoate were 30-fold and 14-fold higher in S/L and EST2 deleted forms, respectively, compared with their full-length versions. This behaviour was confirmed by the analysis of the S.solfataricus esterase, which showed similar specific activities on pNP-hexanoate and triacylglycerols; in addition, higher activities on the latter substrates were observed in comparison with EST2, S/L and their deleted forms. Finally, a dramatic effect on thermophilicity and thermostability in the EST2 deleted forms was observed. This is the first report highlighting the importance of the "cap" domain in the HSL family, since the N terminus partly contributes to the building up of this structure.
Collapse
Affiliation(s)
- Luigi Mandrich
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Elevated plasma free fatty acid (FFA) concentrations as seen in obesity, insulin resistance, and type 2 diabetes are partly caused by impaired inhibition of intracellular lipolysis in adipose tissue, and this is considered to be part of the insulin resistance syndrome (IRS). Based on predicted insulin resistance at the level of intracellular lipolysis, patients with the IRS would loose weight by disinhibited lipolysis. Since this is not the case in clinical practice, impaired stimulation of intracellular lipolysis must also play a role. We studied acute plasma FFA changes, representing stimulation and inhibition of intracellular adipose tissue lipolysis, in obese patients with IRS and in healthy controls. Thirteen insulin-resistant (IR) subjects (7 men and 6 women) and 10 controls (6 men and 4 women) underwent a mental stress test (20 minutes) preceded by 60 minutes of rest. After mental stress, an oral glucose tolerance test (OGTT) was performed. Baseline FFA levels were higher in IR patients compared to controls (0.59 +/- 0.06 and 0.31 +/- 0.06 mmol/L, respectively; P =.004). During the 20 minutes of mental stress, FFAs increased significantly in IR subjects from 0.55 +/- 0.07 to 0.67 +/- 0.07 mmol/L (P <.001) and from 0.21 +/- 0.04 to 0.36 +/- 0.07 mmol/L in controls (P =.001). Although the absolute change of plasma FFA was not different, the relative increase was lower in IR subjects (28% +/- 7%) compared to controls (89 +/- 24%; P =.02). Despite the more pronounced mean maximal insulin concentration during the OGTT in IR subjects compared to controls (600.0 +/- 126.6 pmol/L and 208.1 +/- 30.0 pmol/L, respectively), the relative decrease of FFAs was lower in IR subjects (11% +/- 5% v 36% +/- 11% in controls after 30 minutes; P =.04). In conclusion, our study shows impaired acute responses of plasma FFAs upon stimulation by mental stress and inhibition by endogenous insulin in insulin resistance in vivo. The presence of both defects helps to understand weight maintenance in insulin resistance.
Collapse
Affiliation(s)
- S Mook
- Department of Internal Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Lowe DB, Magnuson S, Qi N, Campbell AM, Cook J, Hong Z, Wang M, Rodriguez M, Achebe F, Kluender H, Wong WC, Bullock WH, Salhanick AI, Witman-Jones T, Bowling ME, Keiper C, Clairmont KB. In vitro SAR of (5-(2H)-isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase. Bioorg Med Chem Lett 2004; 14:3155-9. [PMID: 15149665 DOI: 10.1016/j.bmcl.2004.04.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/02/2004] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
A series of (5-(2H)-isoxazolonyl) ureas were developed as nanomolar inhibitors of hormone-sensitive lipase, an enzyme of potential importance in the treatment of diabetes.
Collapse
Affiliation(s)
- Derek B Lowe
- Department of Chemistry Research, Bayer Research Center, 400 Morgan Lane, West Haven, CT 06516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hazel JR, Sidell BD. The substrate specificity of hormone-sensitive lipase from adipose tissue of the Antarctic fish Trematomus newnesi. J Exp Biol 2004; 207:897-903. [PMID: 14766948 DOI: 10.1242/jeb.00823] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Antarctic fishes of the suborder Notothenioidei characteristically possess large stores of neutral lipids that have been shown to be important both in conferring buoyant lift and as a caloric resource for energy metabolism. Previous work has established that the aerobic energy metabolism of Antarctic fish is fueled predominantly by the catabolism of fatty acids, with the catabolic machinery displaying a preference for the oxidation of unsaturated fatty acids. The composition of the fatty acids released from adipose tissue of Antarctic fish during lipolysis, however, has not previously been demonstrated. Employing a substrate competition assay, we have characterized the substrate specificity of hormone-sensitive lipase (HSL) from adipose tissue of the Antarctic fish Trematomus newnesi. Rates of oleic acid release from radiolabeled triolein were quantified in the presence and absence of a nonradiolabeled cosubstrate. Polyunsaturated species of triacylglycerols(TAGs) containing 18:2 or 20:4 depressed rates of oleate release by 70–75% below control values. Most of the molecular species of TAG containing monoenoic fatty acids (i.e. those containing 14:1, 16:1 or 20:1)had no significant effect on rates of oleate release. By contrast, oleate release from triolein was actually stimulated (by 2–4-fold) by both saturated species of TAG (i.e. those containing 14:0, 16:0 and 18:0) and those possessing long-chain (22:1 and 24:1) monoenes (by 1.2–1.5-fold). Thus,the rank order of substrate preference for adipose tissue HSL was:polyunsaturates > monoenes > saturates. Degree of fatty acid unsaturation had a more marked effect on rates of hydrolysis than did fatty acid chain length. In addition, the enzyme displayed a preference for the hydrolysis of sn-1,2 rather than sn-1,3 diacylglycerols. These data indicate that the substrate specificity of adipose tissue HSL may be an important factor in determining which fatty acids are mobilized during stimulated lipolysis and which are made available for catabolism by other tissues of Antarctic fishes. Our data further suggest that TAGs containing some saturated fatty acids may be sufficiently poor substrates for catabolism by HSL to explain their disproportionate accumulation in adipose tissue. Such a mechanism could also contribute to the ontogenetic accumulation of fats that has been reported as an underlying basis for the positive correlation of buoyancy with increasing body mass in this group.
Collapse
Affiliation(s)
- J R Hazel
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | |
Collapse
|
41
|
De Simone G, Mandrich L, Menchise V, Giordano V, Febbraio F, Rossi M, Pedone C, Manco G. A substrate-induced switch in the reaction mechanism of a thermophilic esterase: kinetic evidences and structural basis. J Biol Chem 2003; 279:6815-23. [PMID: 14617621 DOI: 10.1074/jbc.m307738200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reaction mechanism of the esterase 2 (EST2) from Alicyclobacillus acidocaldarius was studied at the kinetic and structural level to shed light on the mechanism of activity and substrate specificity increase previously observed in its double mutant M211S/R215L. In particular, the values of kinetic constants (k1, k(-1), k2, and k3) along with activation energies (E1, E(-1), E2, and E3) were measured for wild type and mutant enzyme. The previously suggested substrate-induced switch in the reaction mechanism from kcat=k3 with a short acyl chain substrate (p-nitrophenyl hexanoate) to kcat=k2 with a long acyl chain substrate (p-nitrophenyl dodecanoate) was validated. The inhibition afforded by an irreversible inhibitor (1-hexadecanesulfonyl chloride), structurally related to p-nitrophenyl dodecanoate, was studied by kinetic analysis. Moreover the three-dimensional structure of the double mutant bound to this inhibitor was determined, providing essential information on the enzyme mechanism. In fact, structural analysis explained the observed substrate-induced switch because of an inversion in the binding mode of the long acyl chain derivatives with respect to the acyl- and alcohol-binding sites.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, via Mezzocannone 6, 80134 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shen WJ, Patel S, Natu V, Hong R, Wang J, Azhar S, Kraemer FB. Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal. J Biol Chem 2003; 278:43870-6. [PMID: 12925534 DOI: 10.1074/jbc.m303934200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is responsible for the neutral cholesteryl ester hydrolase activity in steroidogenic tissues. Through its action, HSL is involved in regulating intracellular cholesterol metabolism and making unesterified cholesterol available for steroid hormone production. Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane and is a critical regulatory step in steroidogenesis. In the current studies we demonstrate a direct interaction of HSL with StAR using in vitro glutathione S-transferase pull-down experiments. The 37-kDa StAR is coimmunoprecipitated with HSL from adrenals of animals treated with ACTH. Deletional mutations show that HSL interacts with the N-terminal as well as a central region of StAR. Coexpression of HSL and StAR in Chinese hamster ovary cells results in higher cholesteryl ester hydrolytic activity of HSL. Transient overexpression of HSL in Y1 adrenocortical cells increases mitochondrial cholesterol content under conditions in which StAR is induced. It is proposed that the interaction of HSL with StAR in cytosol increases the hydrolytic activity of HSL and that together HSL and StAR facilitate cholesterol movement from lipid droplets to mitochondria for steroidogenesis.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304-1290, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Athenstaedt K, Daum G. YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 2003; 278:23317-23. [PMID: 12682047 DOI: 10.1074/jbc.m302577200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory (Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441-6448) showed that the gene product of YMR313c (named Tgl3p) is a component of yeast lipid particles, and deletion of this gene led to an increase in the cellular level of triacylglycerols (TAG). These observations suggested that TGL3 may encode a TAG lipase of Saccharomyces cerevisiae. Here we demonstrate by cell fractionation and by microscopic inspection of a strain bearing a Tgl3p-GFP hybrid that this polypeptide is highly enriched in the lipid particle fraction but virtually absent from other organelles. The entire TAG lipase activity of lipid particles is attributed to Tgl3p, because the activity in this organelle is completely absent in a Deltatgl3 deletion mutant, whereas it is significantly enhanced in a strain overexpressing Tgl3p. A His6-tagged Tgl3p hybrid purified close to homogeneity from a yeast strain overexpressing this fusion protein exhibited high TAG lipase activity. Most importantly, experiments in vivo using the fatty acid synthesis inhibitor cerulenin demonstrated that deletion of TGL3 resulted in a decreased mobilization of TAG from lipid particles. The amino acid sequence deduced from the open reading frame YMR313c contains the consensus sequence motif GXSXG typical for lipolytic enzymes. Otherwise, Tgl3p has no significant sequence homology to other lipases identified so far. In summary, our data identified Tgl3p as a novel yeast TAG lipase at the molecular level and by function in vivo and in vitro.
Collapse
Affiliation(s)
- Karin Athenstaedt
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
44
|
Slee DH, Bhat AS, Nguyen TN, Kish M, Lundeen K, Newman MJ, McConnell SJ. Pyrrolopyrazinedione-based inhibitors of human hormone-sensitive lipase. J Med Chem 2003; 46:1120-2. [PMID: 12646020 DOI: 10.1021/jm020460y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The regulation of lipid metabolism and it's effect on glucose control and diabetes has received intense interest. Hormone-sensitive lipase (HSL) is a vital enzyme in lipid metabolism. A series of novel pyrrolopyrazinediones has been discovered that demonstrate submicromolar activity both in the enzyme assay and in a (14)C-emulsion assay employing cholesteryl oleate as a substrate as a secondary measure of HSL activity. These compounds represent novel inhibitors of the human HSL enzyme.
Collapse
Affiliation(s)
- Deborah H Slee
- Ontogen Corporation, 6451 El Camino Real, Carlsbad, California 92009, USA.
| | | | | | | | | | | | | |
Collapse
|