1
|
Khanppnavar B, Roy A, Chandra K, Uversky VN, Maiti NC, Datta S. Deciphering the structural intricacy in virulence effectors for proton-motive force mediated unfolding in type-III protein secretion. Int J Biol Macromol 2020; 159:18-33. [DOI: 10.1016/j.ijbiomac.2020.04.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
2
|
Ravishankar H, Barth A, Andersson M. Probing the activity of a recombinant Zn 2+ -transporting P-type ATPase. Biopolymers 2017; 109. [PMID: 29168553 DOI: 10.1002/bip.23087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023]
Abstract
P-type ATPase proteins maintain cellular homeostasis and uphold critical concentration gradients by ATP-driven ion transport across biological membranes. Characterization of single-cycle dynamics by time-resolved X-ray scattering techniques in solution could resolve structural intermediates not amendable to for example crystallization or cryo-electron microscopy sample preparation. To pave way for such time-resolved experiments, we used biochemical activity measurements, Attenuated Total Reflectance (ATR) and time-dependent Fourier-Transform Infra-Red (FTIR) spectroscopy to identify optimal conditions for activating a Zn2+ -transporting Type-I ATPase from Shigella sonnei (ssZntA) at high protein concentration using caged ATP. The highest total activity was observed at a protein concentration of 25 mg/mL, at 310 K, pH 7, and required the presence of 20% (v/v) glycerol as stabilizing agent. Neither the presence of caged ATP nor increasing lipid-to-protein ratio affected the hydrolysis activity significantly. This work also paves way for characterization of recombinant metal-transporting (Type-I) ATPase mutants with medical relevance.
Collapse
Affiliation(s)
- H Ravishankar
- Science for Life Laboratory, Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, SE-171 21, Sweden
| | - A Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - M Andersson
- Science for Life Laboratory, Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, SE-171 21, Sweden
| |
Collapse
|
3
|
Vemula S, Vemula S, Dedaniya A, Kante RK, Ronda SR. Characterization of recombinant human granulocyte colony-stimulating factor expression by FT-IR spectroscopy: Studies on thermal induction and media formulation on the stability of the protein secondary structure. Prep Biochem Biotechnol 2016; 46:586-95. [PMID: 26528735 DOI: 10.1080/10826068.2015.1084933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Fourier-transform infrared (FT-IR) spectroscopic approach has been employed to understand the recombinant human G-CSF (rhG-CSF) protein accumulation, secondary structure, and thermal stability in Escherichia coli grown under a temperature shift strategy (37 and 28°C) in various media formulations. The choline + sodium pyruvate (37°C) and sodium pyruvate (28°C) formulations have shown the highest inclusion body (IB) accumulation of 0.41 and 0.46 mg/mL, respectively. Furthermore, insights on the structure of the rhG-CSF within IBs and intact cells have been investigated through secondary structure analysis. Thermal stability experiments were also carried out to explain the pattern of the second derivative structure of rhG-CSF. The studies showed that choline + sodium pyruvate formulation has preserved the protein secondary structure even at 82°C. Overall, the FT-IR spectroscopic technique can also be adopted to accelerate the characterization of other recombinant therapeutic proteins of E. coli origin.
Collapse
Affiliation(s)
- Sandeep Vemula
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| | - Sushma Vemula
- b Department of Pharmacology, Kakatiya University , Warangal , Andhra Pradesh , India
| | - Akshay Dedaniya
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| | - Rajesh Kumar Kante
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| | - Srinivasa Reddy Ronda
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| |
Collapse
|
4
|
Biomimetic synthesis and assembly of HgS nanocrystals via a protein inducing process. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-1947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Wang SC, Mirarefi P, Faraone A, Lee CT. Light-controlled protein dynamics observed with neutron spin echo measurements. Biochemistry 2011; 50:8150-62. [PMID: 21809812 DOI: 10.1021/bi200206z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A photoresponsive surfactant has been used as a means to control protein structure and dynamics with light illumination. This cationic azobenzene surfactant, azoTAB, which undergoes a reversible photoisomerization upon exposure to the appropriate wavelength of light, adopts a relatively hydrophobic, trans structure under visible light illumination and a relatively hydrophilic cis structure under UV light illumination. Small-angle neutron scattering (SANS) and neutron spin echo (NSE) spectroscopy were used to measure the tertiary structure and internal dynamics of lysozyme in the presence of the photosurfactant, respectively. The SANS-based in vitro structures indicate that under visible light the photosurfactant induces partial unfolding that principally occurs away from the active site near the hinge region connecting the α and β domains. Upon UV exposure, however, the protein refolds to a nativelike structure. At the same time, enhanced internal dynamics of lysozyme were detected with the surfactant in the trans form through NSE measurements of the Q-dependent effective diffusion coefficient (D(eff)) of the protein. In contrast, the D(eff) values of lysozyme in the presence of cis azoTAB largely agree with the rigid-body calculation as well as those measured for pure lysozyme, suggesting that the native protein is dormant on the nanosecond time and nanometer length scales. Lysozyme internal motions were modeled by assuming a protein of two (α and β domains) or three (α and β domains and the hinge region) domains connects by either soft linkers or rigid, freely rotating bonds. Protein dynamics were also tracked with Fourier transform infrared spectroscopy through hydrogen-deuterium exchange kinetics, which further demonstrated enhanced protein flexibility induced by the trans form of the surfactant relative to the native protein. Ensemble-averaged intramolecular fluorescent resonance energy transfer measurements similarly demonstrated the enhanced dynamics of lysozyme with the trans form of the photosurfactant. Previous results have shown a significant increase in protein activity in the presence of azoTAB in the trans conformation. Combined, these results provide insight into a unique light-based method of controlling protein structure, dynamics, and function and strongly support the relevance of large domain motions for the activity of proteins.
Collapse
Affiliation(s)
- Shao-Chun Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | | | | | | |
Collapse
|
6
|
Structural changes in the catalytic cycle of the Na+,K+-ATPase studied by infrared spectroscopy. Biophys J 2009; 96:3433-42. [PMID: 19383486 DOI: 10.1016/j.bpj.2009.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/20/2008] [Accepted: 01/02/2009] [Indexed: 11/23/2022] Open
Abstract
Pig kidney Na(+),K(+)-ATPase was studied by means of reaction-induced infrared difference spectroscopy. The reaction from E1Na(3)(+) to an E2P state was initiated by photolysis of P(3)-1-(2-nitrophenyl)ethyl ATP (NPE caged ATP) in samples that contained 3 mM free Mg(2+) and 130 mM NaCl at pH 7.5. Release of ATP from caged ATP produced highly detailed infrared difference spectra indicating structural changes of the Na(+),K(+)-ATPase. The observed transient state of the enzyme accumulated within seconds after ATP release and decayed on a timescale of minutes at 15 degrees C. Several controls ensured that the observed difference signals were due to structural changes of the Na(+),K(+)-ATPase. Samples that additionally contained 20 mM KCl showed similar spectra but less intense difference bands. The absorbance changes observed in the amide I region, reflecting conformational changes of the protein backbone, corresponded to only 0.3% of the maximum absorbance. Thus the net change of secondary structure was concluded to be very small, which is in line with movement of rigid protein segments during the catalytic cycle. Despite their small amplitude, the amide I signals unambiguously reveal the involvement of several secondary structure elements in the conformational change. Similarities and dissimilarities to corresponding spectra of the Ca(2+)-ATPase and H(+),K(+)-ATPase are discussed, and suggest characteristic bands for the E1 and E2 conformations at 1641 and 1661 cm(-1), respectively, for alphabeta heterodimeric ATPases. The spectra further indicate the participation of protonated carboxyl groups or lipid carbonyl groups in the reaction from E1Na(3)(+) to an E2P state. A negative band at 1730 cm(-1) is in line with the presence of a protonated Asp or Glu residue that coordinates Na(+) in E1Na(3)(+). Infrared signals were also detected in the absorption regions of ionized carboxyl groups.
Collapse
|
7
|
Goormaghtigh E, Gasper R, Bénard A, Goldsztein A, Raussens V. Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1332-43. [PMID: 19540367 DOI: 10.1016/j.bbapap.2009.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/27/2022]
Abstract
The paper presents a simple and robust method to determine protein secondary structure from circular dichroism, transmission and attenuated total reflection (ATR) Fourier transform infrared spectra. It is found that the different spectroscopic methods bring valuable but roughly identical information on the secondary structure of proteins. ATR and transmission FTIR spectra display distinct differences, yet the secondary structure can be predicted from their spectra with roughly the same success. It is also found that one wavenumber or wavelength includes the large majority of the information correlated with secondary structure content and no more than 3 significant independent wavenumbers/wavelengths could be found for any of the spectroscopic data. This finding indicates that more complex linear combinations of the absorbance or ellipticities will not further improve secondary structure predictions. Furthermore, the information content in CD, transmission and ATR FTIR spectra is largely redundant. If combining CD and FTIR results in some improvement of structure prediction quality, the improvement is too modest to prompt spectroscopists to collect different spectroscopic data for structure prediction purposes. On the other hand, the data collected show that the quality of the FTIR spectrometers is such that biosensors or imaging methods sampling from 10(-9) to 10(-15) g yield spectra of sufficient quality to analyze protein secondary structure. These new techniques open the way to a new area of research, both in protein conformational response to ligand and imaging at sub-cellular scales.
Collapse
Affiliation(s)
- Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine CP206/02; Université Libre de Bruxelles, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
8
|
Barth A. Infrared spectroscopy of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1073-101. [PMID: 17692815 DOI: 10.1016/j.bbabio.2007.06.004] [Citation(s) in RCA: 2885] [Impact Index Per Article: 169.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 12/12/2022]
Abstract
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
9
|
Alegre-Cebollada J, Martínez del Pozo A, Gavilanes JG, Goormaghtigh E. Infrared spectroscopy study on the conformational changes leading to pore formation of the toxin sticholysin II. Biophys J 2007; 93:3191-201. [PMID: 17573423 PMCID: PMC2025675 DOI: 10.1529/biophysj.106.102566] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the actinoporin sticholysin II (StnII) in the pore state was investigated by Fourier transform infrared spectroscopy in the attenuated total reflection configuration. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol unilamellar vesicles were employed. The alpha-helix content increases in approximately 30% upon lipid binding, which agrees with an extension of eight or nine residues at the N-terminal helix. Furthermore, analyses of dichroic spectra show that the extended N-terminal helix would have a 31 degrees tilt with respect to the membrane normal. The orientation of the central beta-sandwich was also estimated. In addition, it was detected that StnII alters the orientation of the lipid acyl chains. (1)H/(2)H exchange experiments sustain a mainly superficial interaction between StnII and the membrane, with no protection of the beta-sandwich. The implications of the results in the mechanism of pore formation are discussed.
Collapse
Affiliation(s)
- Jorge Alegre-Cebollada
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
10
|
Goormaghtigh E, Ruysschaert JM, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 2006; 90:2946-57. [PMID: 16428280 PMCID: PMC1414549 DOI: 10.1529/biophysj.105.072017] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/22/2005] [Indexed: 11/18/2022] Open
Abstract
Fourier-transform infrared spectroscopy is a method of choice for the experimental determination of protein secondary structure. Numerous approaches have been developed during the past 15 years. A critical parameter that has not been taken into account systematically is the selection of the wavenumbers used for building the mathematical models used for structure prediction. The high quality of the current Fourier-transform infrared spectrometers makes the absorbance at every single wavenumber a valid and almost noiseless type of information. We address here the question of the amount of independent information present in the infrared spectra of proteins for the prediction of the different secondary structure contents. It appears that, at most, the absorbance at three distinct frequencies of the spectra contain all the nonredundant information that can be related to one secondary structure content. The ascending stepwise method proposed here identifies the relevance of each wavenumber of the infrared spectrum for the prediction of a given secondary structure and yields a particularly simple method for computing the secondary structure content. Using the 50-protein database built beforehand to contain as little fold redundancy as possible, the standard error of prediction in cross-validation is 5.5% for the alpha-helix, 6.6% for the beta-sheet, and 3.4% for the beta-turn.
Collapse
Affiliation(s)
- Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | |
Collapse
|
11
|
Gorbikova EA, Vuorilehto K, Wikström M, Verkhovsky MI. Redox Titration of All Electron Carriers of Cytochrome c Oxidase by Fourier Transform Infrared Spectroscopy. Biochemistry 2006; 45:5641-9. [PMID: 16634645 DOI: 10.1021/bi060257v] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical redox titrations of cytochrome c oxidase from Paraccocus denitrificans were performed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The majority of the differential infrared absorption features may be divided into four groups, which correlate with the redox transitions of the four redox centers of the enzyme. Infrared spectroscopy has the advantage of allowing one to measure independent alterations in redox centers, which are not well separated, or even observed, by other spectroscopic techniques. We found 12 infrared bands that titrated with the highest observed midpoint redox potential (E(m) = 412 mV at pH 6.5) and which had a pH dependence of 52 mV per pH unit in the alkaline region. These bands were assigned to be linked to the Cu(B) center. We assigned bands to the Cu(A) center that showed a pH-independent E(m) of 250 mV. Two other groups of infrared differential bands reflected redox transitions of the two heme groups and showed a more complex behavior. Each of them included two parts, corresponding to high- and low-potential redox transitions. For the bands representing heme a, the ratio of high- to low-potential components was ca. 3:2; for heme a(3) this ratio was ca. 2:3. Taking into account the redox interactions between the hemes, these ratios yielded a difference in E(m) of 9 mV between the hemes (359 mV for heme a; 350 mV for heme a(3) at pH 8.0). The extent of the redox interaction between the hemes (-115 mV at pH 8.0) was found to be pH-dependent. The pH dependence of the E(m) values for the two hemes was the same and about two times smaller than the theoretical one, suggesting that an acid/base group binds a proton upon reduction of either heme. The applied approach allowed assignment of infrared bands in each of the four groups to vibrations of the hemes, ligands of the redox centers, amino acid residues, and/or protein backbone. For example, the well-known band shift at 1737/1746 cm(-)(1) corresponding to the protonated glutamic acid E278 correlated with oxidoreduction of heme a.
Collapse
Affiliation(s)
- Elena A Gorbikova
- Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
Rodríguez-Casado A, Molina M, Carmona P. New accessory for studies of isotopic 1H/2H exchange and biomolecular interactions using transmission infrared spectroscopy. Anal Bioanal Chem 2006; 385:134-8. [PMID: 16572345 DOI: 10.1007/s00216-006-0381-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/06/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
We present here a new accessory for IR transmission measurements of 1H/2H exchange, as an ancillary tool for monitoring structural features of biomolecules in aqueous solution. This new accessory results from the combination of two dialysis membranes and a conventional liquid cell having two cylinders containing 2H2O buffer. When compared with conventional transmission measurements, carried out either after dissolving lyophilized biomolecules in 2H2O or after dialyzing the aqueous solution considered against 2H2O buffer, this accessory shows the following advantages: (1) controlled measurements over the initial steps of this isotopic exchange and absence of molecular aggregation, and (2) smaller sample amounts. This new Fourier transform IR cell can also be used to analyze ligand-biomolecule and drug-cell interactions.
Collapse
|
13
|
Zhang L, Buchet R, Azzar G. Interactions of caged-ATP and photoreleased ATP with alkaline phosphatase. Biochem Biophys Res Commun 2005; 328:591-4. [PMID: 15694389 DOI: 10.1016/j.bbrc.2005.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Indexed: 11/20/2022]
Abstract
Photolytic release of ATP from inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP (NPE-caged ATP) provides a means to reveal molecular interactions between nucleotide and enzyme by using infrared spectroscopy. Reaction-induced infrared difference spectra of bovine intestinal alkaline phosphatase (BIAP) and of NPE-caged ATP revealed small structural alterations on the peptide backbone affecting one or two amino-acid residues. After photorelease of ATP, the substrate could be hydrolyzed sequentially by the enzyme producing three Pi, adenosine, and the photoproduct nitrosoacetophenone. It was concluded that NPE-caged ATP could bind to BIAP prior to the photolytic cleavage of ATP and that Pi could interact with BIAP after photolysis of NPE-caged ATP and hydrolysis, yielding infrared spectra with distinct structure changes of BIAP. This suggests that the molecular mechanism of ATP hydrolysis by BIAP involved small structural adjustments of the peptide backbone in the vicinity of the active site during ATP hydrolysis which continued during Pi binding.
Collapse
Affiliation(s)
- Le Zhang
- Université Claude Bernard Lyon 1, UFR Chimie-Biochimie UMR CNRS 5013, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
14
|
Scheirlinckx F, Raussens V, Ruysschaert JM, Goormaghtigh E. Conformational changes in gastric H+/K+-ATPase monitored by difference Fourier-transform infrared spectroscopy and hydrogen/deuterium exchange. Biochem J 2005; 382:121-9. [PMID: 15096097 PMCID: PMC1133922 DOI: 10.1042/bj20040277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/13/2004] [Accepted: 04/20/2004] [Indexed: 11/17/2022]
Abstract
Gastric H+/K+-ATPase is a P-type ATPase responsible for acid secretion in the stomach. This protein adopts mainly two conformations called E1 and E2. Even though two high-resolution structures for a P-ATPase in these conformations are available, little structural information is available about the transition between these two conformations. In the present study, we used two experimental approaches to investigate the structural differences that occur when gastric ATPase is placed in the presence of various ligands and ligand combinations. We used attenuated total reflection-Fourier-transform IR experiments under a flowing buffer to modify the environment of the protein inside the measurement cell. The high accuracy of the results allowed us to demonstrate that the E1-E2 transition induces a net change in the secondary structure that concerns 10-15 amino acid residues of a total of 1324 in the proteins. The E2.K+ structure is characterized by a decreased beta-sheet content and an increase in the disordered structure content with respect to the E1 form of the enzyme. Modifications in the absorption of the side chain of amino acids are also suggested. By using hydrogen/deuterium-exchange kinetics, we show that tertiary-structure modifications occurred in the presence of the same ligands, but these changes involved several hundreds of residues. The present study suggests that conformational changes in the catalytic cycle imply secondary-structure rearrangements of small hinge regions that have an impact on large domain re-organizations.
Collapse
Affiliation(s)
- Frantz Scheirlinckx
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Free University of Brussels, CP206/2, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Vincent Raussens
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Free University of Brussels, CP206/2, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Jean-Marie Ruysschaert
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Free University of Brussels, CP206/2, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Free University of Brussels, CP206/2, Boulevard du Triomphe, B-1050 Brussels, Belgium
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Zhang L, Buchet R, Azzar G. Phosphate binding in the active site of alkaline phosphatase and the interactions of 2-nitrosoacetophenone with alkaline phosphatase-induced small structural changes. Biophys J 2005; 86:3873-81. [PMID: 15189884 PMCID: PMC1304289 DOI: 10.1529/biophysj.103.034116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To monitor structural changes during the binding of Pi to the active site of mammalian alkaline phosphatase in water medium, reaction-induced infrared spectroscopy was used. The interaction of Pi with alkaline phosphatase was triggered by a photorelease of ATP from the inactive P(3)-[1-(2-nitrophenyl)]ethyl ester of ATP. After photorelease, ATP was sequentially hydrolyzed by alkaline phosphatase giving rise to adenosine and three Pi. Although a phosphodiesterase activity was detected prior the photorelease of ATP, it was possible to monitor the structural effects induced by Pi binding to alkaline phosphatase. Interactions of Pi with alkaline phosphatase were evidenced by weak infrared changes around 1631 and at 1639 cm(-1), suggesting a small distortion of peptide carbonyl backbone. This result indicates that the motion required for the formation of the enzyme-phosphate complex is minimal on the part of alkaline phosphatase, consistent with alkaline phosphatase being an almost perfect enzyme. Photoproduct 2-nitrosoacetophenone may bind to alkaline phosphatase in a site other than the active site of bovine intestinal alkaline phosphatase and than the uncompetitive binding site of L-Phe in bovine intestinal alkaline phosphatase, affecting one-two amino acid residues.
Collapse
Affiliation(s)
- Le Zhang
- Universite Claude Bernard Lyon I, UFR Chimie-Biochimie UMR CNRS 5013, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
16
|
Vigano C, Smeyers M, Raussens V, Scheirlinckx F, Ruysschaert JM, Goormaghtigh E. Hydrogen-deuterium exchange in membrane proteins monitored by IR spectroscopy: a new tool to resolve protein structure and dynamics. Biopolymers 2004; 74:19-26. [PMID: 15137087 DOI: 10.1002/bip.20035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As more and more high-resolution structures of proteins become available, the new challenge is the understanding of these small conformational changes that are responsible for protein activity. Specialized difference Fourier transform infrared (FTIR) techniques allow the recording of side-chain modifications or minute secondary structure changes. Yet, large domain movements remain usually unnoticed. FTIR spectroscopy provides a unique opportunity to record (1)H/(2)H exchange kinetics at the level of the amide proton. This approach is extremely sensitive to tertiary structure changes and yields quantitative data on domain/domain interactions. An experimental setup designed for attenuated total reflection and a specific approach for the analysis of the results is described. The study of one membrane protein, the gastric H(+),K(+)-ATPase, demonstrates the usefulness of (1)H/(2)H exchange kinetics for the understanding of the molecular movement related to the catalytic activity.
Collapse
Affiliation(s)
- C Vigano
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Free University of Brussels, CP 206/2, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Pratap PR, Dediu O, Nienhaus GU. FTIR study of ATP-induced changes in Na+/K+-ATPase from duck supraorbital glands. Biophys J 2004; 85:3707-17. [PMID: 14645062 PMCID: PMC1303674 DOI: 10.1016/s0006-3495(03)74787-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The Na+/K+-ATPase uses energy from the hydrolysis of ATP to pump Na+ ions out of and K+ ions into the cell. ATP-induced conformational changes in the protein have been examined in the Na+/K+-ATPase isolated from duck supraorbital salt glands using Fourier transform infrared spectroscopy. Both standard transmission and attenuated total internal reflection sample geometries have been employed. Under transmission conditions, enzyme at 75 mg/ml was incubated with dimethoxybenzoin-caged ATP. ATP was released by flashing with a UV laser pulse at 355 nm, which resulted in a large change in the amide I band. The absorbance at 1659 cm(-1) decreased with a concomitant increase in the absorbance at 1620 cm(-1). These changes are consistent with a partial conversion of protein secondary structure from alpha-helix to beta-sheet. The changes were approximately 8% of the total absorbance, much larger than those seen with other P-type ATPases. Using attenuated total internal reflection Fourier transform infrared spectroscopy, the decrease in absorbance at approximately 1650 cm(-1) was titrated with ATP, and the titration midpoint K0.5 was determined under different ionic conditions. In the presence of metal ions (Na+, Na+ and K+, or Mg2+), K0.5 was on the order of a few microM. In the absence of these ions, K0.5 was an order of magnitude lower (0.1 microM), indicating a higher apparent affinity. This effect suggests that the equilibrium for the ATP-induced conformational changes is dependent on the presence of metal ions.
Collapse
Affiliation(s)
- Promod R Pratap
- Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, North Carolina 27402-6710, USA.
| | | | | |
Collapse
|
18
|
Raussens V, Ruysschaert JM, Goormaghtigh E. Analysis of 1H/2H exchange kinetics using model infrared spectra. APPLIED SPECTROSCOPY 2004; 58:68-82. [PMID: 14727723 DOI: 10.1366/000370204322729496] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper investigates the different approaches that best retrieve band shape parameters and kinetic time constants from series of protein Fourier transform infrared (FT-IR) spectra recorded in the course of 1H/2H exchange. In this first approach, synthetic spectra were used. It is shown that 1H/2H exchange kinetic measurements can help resolve spectral features otherwise hidden because of the overlap of various spectral contributions. We evaluated the efficiency of Fourier self-deconvolution, synchronous/asynchronous correlation, difference spectroscopy, principal component analysis, inverse Laplace transform, and determination of the underlying spectra by global analysis assuming first-order kinetics with either known or unknown time constants. It is demonstrated that some strategies allow the extraction of both the time dependence and the spectral shape of the underlying contributions.
Collapse
Affiliation(s)
- Vincent Raussens
- Laboratory for the Structure and Function of Biological Membranes, Structural Biology and Bioinformatics Center, Free University of Brussels, CP 206/2, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
19
|
Masuch R, Moss DA. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O. APPLIED SPECTROSCOPY 2003; 57:1407-1418. [PMID: 14658156 DOI: 10.1366/000370203322554581] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stopped flow spectroscopy is an established technique for acquiring kinetic data on dynamic processes in chemical and biochemical reactions, and Fourier transform infrared (FT-IR) techniques can provide particularly rich structural information on biological macromolecules. However, it is a considerable challenge to design an FT-IR stopped flow system with an optical path length low enough for work with aqueous (1H2O) solutions. The system presented here is designed for minimal sample volumes (approximately 5 microL) and allows simultaneous FT-IR rapid-scan and VIS measurements. The system employs a micro-structured diffusional mixer to achieve effective mixing on the millisecond time scale under moderate flow and pressure conditions, allowing measurements in a cell path length of less than 10 microns. This makes it possible to record spectra in 1H2O solutions over a wide spectral range. The system layout is also designed for a combination of kinetic and static measurements, in particular to obtain detailed information on the faster spectral changes occurring during the system dead time. A detailed characterization of the FT-IR stopped flow system is presented, including a demonstration of the alkaline conformational transition of cytochrome c as an example.
Collapse
Affiliation(s)
- Ralf Masuch
- Micro-biolytics GmbH, Georges Koehler Allee 102, D-79110 Freiburg, Germany
| | | |
Collapse
|
20
|
Bandorowicz-Pikula J, Kirilenko A, van Deursen R, Golczak M, Kühnel M, Lancelin JM, Pikula S, Buchet R. A putative consensus sequence for the nucleotide-binding site of annexin A6. Biochemistry 2003; 42:9137-46. [PMID: 12885247 DOI: 10.1021/bi034359m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction-induced infrared difference spectroscopy (RIDS) has been used to investigate the nature of interactions of human annexin A6 (ANXA6) with nucleotides. RIDS results for ANXA6, obtained after the photorelease of GTP-gamma-S, ATP, or P(i) from the respective caged compounds, were identical, suggesting that the interactions between the nucleotide and ANXA6 were dominated by the phosphate groups. Phosphate-induced structural changes in ANXA6 were small and affected only seven or eight amino acid residues. The GTP fluorescent analogue, 2'(3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP), quenched tryptophan fluorescence of ANXA6 when bound to the protein. A binding stoichiometry of 1 mol of nucleotide/mol ANXA6 was established with a K(D) value of 2.8 microM for TNP-GTP. The bands observed on RIDS of ANXA6 halves (e.g., N-terminal half, ANXA6a, and C-terminal half, ANXA6b) were similar to those of the whole molecule. However, their amplitudes were smaller by a factor of 2 compared to those of whole ANXA6. TNP-GTP bound to both fragments of ANXA6 with a stoichiometry of 0.5 mol/mol. However, the binding affinities of ANXA6a and ANXA6b differed from that of ANXA6. Simulated molecular modeling revealed a nucleotide-binding site which was distributed in two distinct domains. Residues K296, Y297, K598, and K644 of ANXA6 were less than 3 A from the bound phosphate groups of either GTP or ATP. The presence of two identical sequences in ANXA6 with the F-X-X-K-Y-D/E-K-S-L motif, located in the middle of ANXA6, at residues 293-301 (within ANXA6a) and at 641-649 (within ANXA6b), suggested that the F-X-X-K-Y-D/E-K-S-L motif was the putative sequence in ANXA6 for nucleotide binding.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pratap PR, Olden-Stahl N, Dediu O, Nienhaus GU. Interaction between ATP and the Na/K-ATPase from duck supraorbital salt glands. Ann N Y Acad Sci 2003; 986:293-5. [PMID: 12763826 DOI: 10.1111/j.1749-6632.2003.tb07190.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Promod R Pratap
- Department of Physics and Astronomy, University of North Carolina at Greensboro, 27402-6170, USA.
| | | | | | | |
Collapse
|