1
|
Zhang K, Huang X, Wang C, Xu X, Xu X, Dong X, Xiao Q, Bai J, Zhou Y, Liu Z, Deng X, Tang Y, Li S, Hu E, Peng W, Xiong L, Qin Q, Liu S. Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2444-2458. [PMID: 39136860 DOI: 10.1007/s11427-023-2694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 10/22/2024]
Abstract
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jinhai Bai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengkun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yan Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Siyang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Enkui Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wanjing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ling Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Oberska P, Grabowska M, Marynowska M, Murawski M, Gączarzewicz D, Syczewski A, Michałek K. Cellular Distribution of Aquaporin 3, 7 and 9 in the Male Reproductive System: A Lesson from Bovine Study ( Bos taurus). Int J Mol Sci 2024; 25:1567. [PMID: 38338845 PMCID: PMC10855163 DOI: 10.3390/ijms25031567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Maciej Murawski
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture in Krakow, 24/28 Mickiewicza Avenue, 30-059 Cracow, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| |
Collapse
|
3
|
Zhang H, Yang B. Aquaporins in Reproductive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:179-194. [PMID: 36717494 DOI: 10.1007/978-981-19-7415-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AQP0-12, a total of 13 aquaporins are expressed in the mammalian reproductive system. These aquaporins mediate the transport of water and small solutes across biofilms for maintaining reproductive tract water balance and germ cell water homeostasis. These aquaporins play important roles in the regulation of sperm and egg cell production, maturation, and fertilization processes. Impaired AQP function may lead to diminished male and female fertility. This review focuses on the distribution, function, and regulation of AQPs throughout the male and female reproductive organs and tracts. Their correlation with reproductive success, revealing recent advances in the physiological and pathophysiological roles of aquaporins in the reproductive system.
Collapse
Affiliation(s)
- Hang Zhang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
HARTATI, PUTRA WIDYAPINTAKABAYU. Polymorphisms of aquaporin 7 (AQP7) gene in Madura bulls (Bos indicus). THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i10.125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, a PCR-RFLP method was employed to investigate the evidence of two mutation sites in exon 2 (c.N8S) and exon 3 (c.E36Q) regions of AQP7/TaaI gene in Madura bulls. Both mutation sites were polymorphic with presence of three genotypes. However, a mutation of c.N8S had the moderate PIC value (>0.30). Hence, it can be suggested that the mutation of c.N8S can be used for the genetic marker of sperm quality traits in Madura bulls. However, the association study with 15 selected Madura bulls revealed that there are no significant association between c.N8S and sperm quality traits. However, the mutation of c.N8S in animal studies was not associated with sperm quality traits of sperm volume, progressive motility sperm concentration and daily sperm viability. In future, a further research with large number of animal samples and records data are important to obtain the genetic markers for productivity traits accurately.
Collapse
|
5
|
Mohamed EA, Im JW, Kim DH, Bae HR. Differential Expressions of Aquaporin Subtypes in the Adult Mouse
Testis. Dev Reprod 2022; 26:59-69. [PMID: 35950167 PMCID: PMC9336216 DOI: 10.12717/dr.2022.26.2.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Many efforts have been made to study the expression of aquaporins (AQP) in the
mammalian reproductive system, but there are not enough data available regarding
their localized expression to fully understand their specific roles in male
reproduction. The present study investigated the expression and localization
patterns of different AQP subtypes in the adult mouse testes and testicular
spermatozoa using an immunofluorescence assay. All the studied AQPs were
expressed in the testes and revealed subtype-specific patterns in the intensity
and localization depending on the cell types of the testes. AQP7 was the most
abundant and intensive AQP subtype in the seminiferous tubules, expressing in
Leydig cells and Sertoli cells as well as all stages of germ cells, especially
the spermatids and testicular spermatozoa. The expression pattern of AQP3 was
similar to that of AQP7, but with higher expression in the basal and lower
adluminal compartments rather than the upper adluminalcompartment. AQP8
expression was limited to the spermatogonia and Leydig cells whereas AQP9
expression was exclusive to tails of the testicular spermatozoa and elongated
spermatids. Taken together, the abundance and distribution of the AQPs across
the different cell types in the testes indicating to their relavance in
spermatogenesis, as well as in sperm maturation, transition, and function.
Collapse
Affiliation(s)
- Elsayed A. Mohamed
- Dept. of Physiology, College of Medicine,
Dong-A University, Busan 49201,
Korea
- Dept. of Genetics, Assiut
University, Assiut 71526, Egypt
| | - Ji Woo Im
- Dept. of Physiology, College of Medicine,
Dong-A University, Busan 49201,
Korea
| | - Dong-Hwan Kim
- Human Life Research Center, Dong-A
University, Busan 49315, Korea
| | - Hae-Rahn Bae
- Dept. of Physiology, College of Medicine,
Dong-A University, Busan 49201,
Korea
- Corresponding author Hae-Rahn Bae, Dept. of
Physiology, Dong-A University, College of Medicine, Busan 49201, Korea. Tel:
+82-51-240-2924, Fax:
+82-51-245-3872, E-mail:
| |
Collapse
|
6
|
Changes in Expression of Specific mRNA Transcripts after Single- or Re-Irradiation in Mouse Testes. Genes (Basel) 2022; 13:genes13010151. [PMID: 35052491 PMCID: PMC8775240 DOI: 10.3390/genes13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11,Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin,ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.
Collapse
|
7
|
Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P. Fate of arsenic in living systems: Implications for sustainable and safe food chains. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126050. [PMID: 34229383 DOI: 10.1016/j.jhazmat.2021.126050] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic, a group 1 carcinogen for humans, is abundant as compared to other trace elements in the environment and is present mainly in the Earth's crust and soil. The arsenic distributions in different geographical regions are dependent on their geological histories. Anthropogenic activities also contribute significantly to arsenic release into the environment. Arsenic presents several complications to humans, animals, and plants. The physiology of plants and their growth and development are affected by arsenic. Arsenic is known to cause cancer and several types of organ toxicity, such as cardiotoxicity, nephrotoxicity, and hepatotoxicity. In the environment, arsenic exists in variable forms both as inorganic and organic species. From arsenic containing compartments, plants can absorb and accumulate arsenic. Crops grown on these contaminated soils pose several-fold higher toxicity to humans compared with drinking water if arsenic enters the food chain. Information regarding arsenic transfer at different trophic levels in food chains has not been summarized until now. The present review focuses on the food chain perspective of arsenic, which affects all components of the food chain during its course. The circumstances that facilitate arsenic accumulation in flora and fauna, as components of the food chain, are outlined in this review.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rukhsana Akhter
- Department of Clinical Biochemistry, Govt. Degree College (Baramulla), Khawaja Bagh, Baramulla, Jammu and Kashmir, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Pellavio G, Laforenza U. Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie 2021; 188:45-51. [PMID: 34087390 DOI: 10.1016/j.biochi.2021.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Aquaporins (AQPs) are transmembrane water channels and some of them are permeable in addition to water to other small solutes including hydrogen peroxide. The sperm cells of mammals and fishes express different AQPs, although there is no agreement in the literature on their localization. In humans, AQP3 and AQP11 are expressed mainly in the tail, AQP7 in the head and AQP8 in the midpiece. Thanks to the results of experiments with KO mice and to data obtained by comparing sub-fertile patients with normospermic subjects, the importance of AQPs for the normal functioning of sperms to ensure normal fertility emerged. AQP3, AQP7 and AQP11 appeared involved in the sperm volume regulation, a key role for fertility because osmoadaptation protect the sperm against a swelling and tail bending that could affect sperm motility. AQP8 seems to have a fundamental role in regulating the elimination of hydrogen peroxide, the most abundant reactive oxygen species (ROS), and therefore in the response to oxidative stress. In this review, the human AQPs expression, their localization and functions, as well as their relevance in normal fertility are discussed. To understand better the AQPs role in human sperm functionality, the results of studies obtained in other animal species were also considered.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy.
| |
Collapse
|
9
|
Ribeiro JC, Alves MG, Yeste M, Cho YS, Calamita G, Oliveira PF. Aquaporins and (in)fertility: More than just water transport. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166039. [PMID: 33338597 DOI: 10.1016/j.bbadis.2020.166039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Aquaporins (AQPs) are a family of channel proteins that facilitate the transport of water and small solutes across biological membranes. They are widely distributed throughout the organism, having a number of key functions, some of them unexpected, both in health and disease. Among the various diseases in which AQPs are involved, infertility has been overlooked. According to the World Health Organization (WHO) infertility is a global public health problem with one third of the couples suffering from subfertility or even infertility due to male or female factors alone or combined. Thus, there is an urgent need to unveil the molecular mechanisms that control gametes production, maturation and fertilization-related events, to more specifically determine infertility causes. In addition, as more couples seek for fertility treatment through assisted reproductive technologies (ART), it is pivotal to understand how these techniques can be improved. AQPs are heterogeneously expressed throughout the male and female reproductive tracts, highlighting a possible regulatory role for these proteins in conception. In fact, their function, far beyond water transport, highlights potential intervention points to enhance ART. In this review we discuss AQPs distribution and structural organization, functions, and modulation throughout the male and female reproductive tracts and their relevance to the reproductive success. We also highlight the most recent advances and research trends regarding how the different AQPs are involved and regulated in specific mechanisms underlying (in)fertility. Finally, we discuss the involvement of AQPs in ART-related processes and how their handling can lead to improvement of infertility treatment.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; QOPNA & LAQV, Department of Chemistry, University of Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Yoon S Cho
- Centro di Procreazione Medicalmente Assistita, Ospedale Santa Maria, Bari, Italy
| | - Giuseppe Calamita
- Dept. of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Portugal.
| |
Collapse
|
10
|
Cellular distribution of aquaporins in testes of normal and cryptorchid dogs: A preliminary study on dynamic roles. Anim Reprod Sci 2019; 204:22-30. [PMID: 30862405 DOI: 10.1016/j.anireprosci.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
Fluid regulation within the male gonad is an important process for promoting sperm differentiation and maturation. Aquaporins (AQPs) are a family of thirteen integral membrane proteins involved in these processes. The expression of several genes of AQPs occurs in the male reproductive tract of humans and other animal species, although there are few studies on domestic animals. In this study, the localization of AQP7, AQP8, and AQP9 as well as the abundances of protein and mRNA transcripts were examined in normal and cryptorchid dog testes. There was immunohistochemical localization of AQP7, AQP8, and AQP9 in both the tubular and interstitial compartments of the normal and retained testes and crytorchid dogs, albeit there was an obvious difference in cellular localization with the testes from the cryptorchid dogs. These results were supported by western blotting and real-time RT-PCR analyses, there was a lesser AQP7 and greater AQP9 abundance of protein and mRNA transcripts in the cryptorchid testis. These findings indicate combined testicular functions of AQPs in cell volume regulation. In addition, with the cryptorchid condition characterized there was a different cellular distribution of AQPs supporting the thought that early detection is important for controlling possible side effects of cyptorchidism, such as pre-neoplastic and carcinogenic outcomes.
Collapse
|
11
|
Boj M, Chauvigné F, Cerdà J. Aquaporin biology of spermatogenesis and sperm physiology in mammals and teleosts. THE BIOLOGICAL BULLETIN 2015; 229:93-108. [PMID: 26338872 DOI: 10.1086/bblv229n1p93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluid homeostasis is recognized as a critical factor during the development, maturation, and function of vertebrate male germ cells. These processes have been associated with the presence of multiple members of the aquaporin superfamily of water and solute channels in different cell types along the reproductive tract as well as in spermatozoa. We present a comparative analysis of the existing knowledge of aquaporin biology in the male reproductive tissues of mammals and teleosts. Current data suggest that in both vertebrate groups, aquaporins may have similar functions during differentiation of spermatozoa in the germinal epithelium, in the concentration and maturation of sperm in the testicular ducts, and in the regulation of osmotically induced volume changes in ejaculated spermatozoa. Recent studies have also provided insight into the possible function of aquaporins beyond water transport, such as in signaling pathways during spermatogenesis or the sensing of cell swelling and mitochondrial peroxide transport in activated sperm. However, an understanding of the specific physiological functions of the various aquaporins during germ cell development and sperm motility, as well as the molecular mechanisms involved, remains elusive. Novel experimental approaches need to be developed to elucidate these processes and to dissect the regulatory intracellular pathways implicated, which will greatly help to uncover the molecular basis of sperm physiology and male fertility in vertebrates.
Collapse
Affiliation(s)
- Mónica Boj
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; and
| | - François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; and Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; and
| |
Collapse
|
12
|
Puggioni E, Governini L, Gori M, Belmonte G, Piomboni P, Costantino-Ceccarini E, Luddi A. Morphological and molecular characterisation of Twitcher mouse spermatogenesis: an update. Reprod Fertil Dev 2015; 28:RD14279. [PMID: 25664578 DOI: 10.1071/rd14279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/27/2014] [Indexed: 01/18/2023] Open
Abstract
Spermatogenesis is a complex developmental program in which interactions between different cell types are finely regulated. Mouse models in which any of the sperm maturation steps are perturbed provide major insights into the molecular control of spermatogenesis. The Twitcher mouse is a model of Krabbe disease, characterised by the deficiency of galactosylceramidase, the enzyme that hydrolyses galactosylceramide and galactosylsphingosine. Galactosyl-alkyl-acyl-glycerol, a precursor of seminolipid, the most abundant glycolipid in spermatozoa, is also a substrate for galactosylceramidase. Altered sphingolipid metabolism has been suggested to be the cause of the morphological abnormalities reported previously in the spermatogenesis of Twitcher. However, given the frequency of infertility associated with neurological impairment, we hypothesised that an unbalanced hormonal profile could contribute to male infertility in this mutant. In order to clarify this issue, we investigated potential variations in the expression of hormones and hormone receptors involved in the regulation of spermatogenesis. Our data show that, in the brain of Twitcher mouse, gonadotrophin-releasing hormone (GnRH), LH and FSH gene expression is decreased, whereas expression of androgen receptor (AR) and inhibin ?A (INH?A) is increased. The changes in gene expression for the LH and FSH receptors and AR in the testes support the hypothesis that altered sphingolipid metabolism is not the only cause of Twitcher infertility.
Collapse
|
13
|
SNPs at exonic region of aquaporin-7 (AQP7) gene may affect semen quality parameters among crossbred bulls. J Genet 2014. [DOI: 10.1007/s12041-014-0436-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Chang IY, Ohn T, Jeon YJ, Lee KH, Kim JW, Kim IY, Yoon SP. A comparison of the steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing 6 on the brain and testes between young and aged rats. Acta Histochem 2014; 116:551-8. [PMID: 24360190 DOI: 10.1016/j.acthis.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/24/2022]
Abstract
The START domain-containing 6 (StarD6) was originally reported to play a role during male germ cell maturation. We have since reported on StarD6 in the developing hypothyroid rat brain. Therefore, we investigated qualitative and quantitative changes of StarD6 in the aging rat brain and testes of male Sprague-Dawley rats. Serum testosterone levels decreased with aging and total protein levels of StarD6 in the testes decreased. While the immunolocalization of StarD6 in the spermatocytes decreased, cytoplasmic localization appeared in the aged testes. Compared with young rats, aged rats showed decreased StarD6 in the cerebrum and cerebellum without changes in immunolocalization in the cortical neurons of the cerebral cortex and Purkinje cells of the cerebellar cortex. Aged rats also showed increases in StarD6 in the hippocampus with changes in its immunolocalization from the Stratum pyramidale to the Stratum radiatum and Stratum lacunosum-moleculare. Taken together, StarD6 decreased with aging in the testes, which implies that StarD6 might play a role in impaired spermatogenesis in the aged rat. StarD6 decreased in the cerebrum and the cerebellum, but slightly increased in the hippocampus, which suggests that StarD6 might also play a role for neurosteroidogenesis in the hippocampus of aged rats.
Collapse
|
15
|
Hahnel S, Lu Z, Wilson RA, Grevelding CG, Quack T. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2336. [PMID: 23936567 PMCID: PMC3723596 DOI: 10.1371/journal.pntd.0002336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. Methodology/Principal Findings To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM) and bright-field microscopy (BF). We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP) as well as for post-transcriptional regulation (SmAQP). Conclusions/Significance The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved molecules that may represent potential targets for novel intervention strategies. Furthermore, gonads and other tissues are a basis for cell isolation, opening new perspectives for establishing cell lines, one of the tools desperately needed in the post-genomic era. As a neglected disease, schistosomiasis is still an enormous problem in the tropics and subtropics. Since the 1980s, Praziquantel (PZQ) has been the drug of choice but can be anticipated to lose efficacy in the future due to emerging resistance. Alternative drugs or efficient vaccines are still lacking, strengthening the need for the discovery of novel strategies and targets for combating schistosomiasis. One avenue is to understand the unique reproductive biology of this trematode in more detail. Sexual maturation of the adult female depends on a constant pairing with the male. This is a crucial prerequisite for the differentiation of the female reproductive organs such as the vitellarium and ovary, and consequently for the production of mature eggs. These are needed for life-cycle maintenance, but they also cause pathogenesis. With respect to adult males, the production of mature sperm is essential for fertilisation and life-cycle progression. In our study we present a convenient and inexpensive method to isolate reproductive tissues from adult schistosomes in high amounts and purity, representing a source for gonad-specific RNA and protein, which will serve for future sub-transcriptome and -proteome studies helping to characterise genes, or to unravel differentiation programs in schistosome gonads. Beyond that, isolated organs may be useful for approaches to establish cell cultures, desperately needed in the post-genomic era.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
16
|
Klein C, Troedsson M, Rutllant J. Region-Specific Expression of Aquaporin Subtypes in Equine Testis, Epididymis, and Ductus Deferens. Anat Rec (Hoboken) 2013; 296:1115-26. [DOI: 10.1002/ar.22709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/25/2013] [Indexed: 11/12/2022]
Affiliation(s)
- C. Klein
- College of Veterinary Medicine; University of Calgary; Calgary Alberta T2N 4Z6 Canada
| | - M.H.T. Troedsson
- Department of Veterinary Science, MH Gluck Equine Research Center; 108 Gluck Equine Research Center Lexington Kentucky
| | - J. Rutllant
- College of Veterinary Medicine; Western University of Health Sciences; 309 East Second Street Pomona California
| |
Collapse
|
17
|
Functions of water channels in male and female reproductive systems. Mol Aspects Med 2012; 33:676-90. [DOI: 10.1016/j.mam.2012.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
18
|
Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M. Cellular transport and homeostasis of essential and nonessential metals. Metallomics 2012; 4:593-605. [PMID: 22337135 DOI: 10.1039/c2mt00185c] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metals can have a number of detrimental or beneficial effects in the cell, but first they must get in. Organisms have evolved transport mechanisms to get metals that are required, or essential into the cell. Nonessential metals often enter the cell through use of the machinery provided for essential metals. Much work has been done to advance our understanding of how these metals are transported across plasma and organelle membranes. This review provides an overview of essential and nonessential metal transport and homeostatic processes.
Collapse
Affiliation(s)
- Ebany J Martinez-Finley
- Department of Pediatrics, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
19
|
Moretti E, Terzuoli G, Mazzi L, Iacoponi F, Collodel G. Immunolocalization of aquaporin 7 in human sperm and its relationship with semen parameters. Syst Biol Reprod Med 2011; 58:129-35. [DOI: 10.3109/19396368.2011.644385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Yeung CH. Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J Androl 2010; 12:490-9. [PMID: 20562895 PMCID: PMC3739372 DOI: 10.1038/aja.2010.40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 01/03/2023] Open
Abstract
Mammalian spermatozoa have relatively high water permeability and swell readily, as in the hypo-osmotic swelling test used in the andrology clinic. Physiologically, spermatozoa experience changes in the osmolality of the surrounding fluids in both the male and the female tracts on their journey from the testis to the ovum. Sperm volume regulation in response to such osmotic challenges is important to maintain a stable cell size for the normal shape and function of the sperm tail. Alongside ion channels for the fluxes of osmolytes, water channels would be crucial for sperm volume regulation. In contrast to the deep knowledge and numerous studies on somatic cell aquaporins (AQPs), the understanding of sperm AQPs is limited. Among the 13 AQPs, convincing evidence for their presence in spermatozoa has been confined to AQP7, AQP8 and AQP11. Overall, current findings indicate a major role of AQP8 in water influx and efflux for sperm volume regulation, which is required for natural fertilization. The preliminary data suggestive of a role for AQP7 in sperm glycerol metabolism needs further substantiation. The association of AQP11 with the residual cytoplasm of elongated spermatids and the distal tail of spermatozoa supports the hypothesis of more than just a role in conferring water permeability and also in the turnover and recycling of surplus cellular components made redundant during spermiogenesis and spermiation. This would be crucial for the maintenance of a germinal epithelium functioning efficiently in the production of spermatozoa.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Centre of Reproductive Medicine and Andrology, University Clinic, Muenster, Germany.
| |
Collapse
|
21
|
Yeung CH, Cooper TG. Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 2010; 139:209-16. [PMID: 19812234 DOI: 10.1530/rep-09-0298] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AQP11 is one of the latest aquaporin (AQP) family members found, which differs from the other AQPs by its intracellular localisation and unusual water pore nucleotides with unclear function. Despite the highest mRNA expression among organs having been reported in the testis, the testicular molecule has not been studied in detail. Immunohistochemistry of rat adult testis localised AQP11 to the elongated spermatids (ES) and no other cell types except residual bodies inside Sertoli cells. It was absent from early ES at least until stage 13, and after a first diffuse appearance in the caudal cytoplasm became concentrated in intracellular organelles by stage 17, was strongest in vesicles in the anterior cytoplasm at the final ES stages and appeared in residual bodies. Staining was detected on the distal quarter of the sperm tail only immediately before spermiation. A similar localisation was found in the mouse and developmental profiles for both the open reading frame mRNA and protein expression in 8-50 dpp testis pinpointed its first appearance coinciding with late stage ES. Sequencing of PCR products of testicular Aqp11 containing the open reading frames confirmed a full match with GenBank databases for rat, mouse and human. Western blotting revealed two or more molecular forms with the 26/27 kDa species dominating in the rat/mouse testis and the 33/34 kDa form selectively allocated to the spermatozoa. In view of intracellular vacuolation leading to polycystic kidney in Aqp11-null mice, a possible role of testicular AQP11 in the recycling of surplus cytoplasmic components of the ES and sustaining Sertoli cell capacity in the support of spermatogenesis was discussed.
Collapse
Affiliation(s)
- C H Yeung
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, D48149 Münster, Germany.
| | | |
Collapse
|
22
|
Yeung CH, Callies C, Tüttelmann F, Kliesch S, Cooper TG. Aquaporins in the human testis and spermatozoa - identification, involvement in sperm volume regulation and clinical relevance. ACTA ACUST UNITED AC 2009; 33:629-41. [DOI: 10.1111/j.1365-2605.2009.00998.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Sohara E, Uchida S, Sasaki S. Function of aquaporin-7 in the kidney and the male reproductive system. Handb Exp Pharmacol 2008:219-31. [PMID: 19096780 DOI: 10.1007/978-3-540-79885-9_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The aquaporin-7 (AQP7) water channel is known to be a member of the aquaglyceroporins, which allow the rapid transport of glycerol and water. In this chapter, we review the physiological functions of AQP7 in the kidney and the male reproductive system.In the kidney, AQP7 is abundantly present at the apical membrane of the proximal straight tubules. Although the contribution of AQP7 to the water permeability of proximal straight tubules was found to be minimal compared with that of AQP1, we identified a novel glycerol reabsorption pathway that may be important for preventing glycerol from being excreted into urine.In the male reproductive system, AQP7 is present particularly in the spermatids, as well as in the testicular and epididymal spermatozoa, suggesting that AQP7 has some role in late spermatogenesis. However, male AQP7 knockout mice were not sterile, and their sperm did not show any morphological or functional abnormalities.
Collapse
Affiliation(s)
- Eisei Sohara
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Wakayama T, Nakata H, Kurobo M, Sai Y, Iseki S. Expression, localization, and binding activity of the ezrin/radixin/moesin proteins in the mouse testis. J Histochem Cytochem 2008; 57:351-62. [PMID: 19064715 DOI: 10.1369/jhc.2008.952440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ezrin, radixin, and moesin (ERM) proteins represent a family of adaptor proteins linking transmembrane proteins to the cytoskeleton. The seminiferous epithelium undergoes extensive changes in cellular composition, location, and shape, implicating roles of the membrane-cytoskeleton interaction. It remains unknown, however, whether the ERM proteins are expressed and play significant roles in the testis. In the present study, we examined the spatiotemporal expression of ERM proteins in the mouse testis by Western blotting and immunohistochemistry. Ezrin immunoreactivity was demonstrated in the cytoplasm of steps 15 and 16 spermatids from 5 weeks postpartum through adulthood, whereas radixin immunoreactivity was in the apical cytoplasm of Sertoli cells from 1 week through 2 weeks postpartum. No immunoreactivity for moesin was detected at any age. Immunoprecipitation demonstrated that ezrin was bound to the cytoskeletal component actin, whereas radixin was bound to both actin and tubulin. Of the transmembrane proteins known to interact with ERM proteins, only cystic fibrosis transmembrane conductance regulator, a chloride transporter, was bound to ezrin in elongated spermatids. These results suggest that ezrin is involved in spermiogenesis whereas radixin is involved in the maturation of Sertoli cells, through interaction with different sets of membrane proteins and cytoskeletal components.
Collapse
Affiliation(s)
- Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | | | | | | | | |
Collapse
|
25
|
Yeung CH, Callies C, Rojek A, Nielsen S, Cooper TG. Aquaporin isoforms involved in physiological volume regulation of murine spermatozoa. Biol Reprod 2008; 80:350-7. [PMID: 18829704 DOI: 10.1095/biolreprod.108.071928] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Murine epididymal spermatozoa were dispersed in a medium of native osmolality and then transferred to a hypo-osmotic medium to mimic the physiological osmotic challenge, as encountered upon ejaculation into the female tract. The addition of quinine to block sperm K(+)-channels for volume regulation resulted in a size increase of viable cells. Preincubation in 0.1 mM HgCl(2), a standard aquaporin inhibitor, prevented such cell swelling. Addition of the K(+)-ionophore valinomycin to quinine-swollen sperm reversed the swelling, but not after pretreatment of the swollen sperm by HgCl(2). Aqp7, Aqp8, and Aqp9 mRNAs were identified in spermatozoa by RT-PCR, and the entire open reading frames were sequenced and compared with the GenBank database. Western blotting demonstrated specific protein signals for sperm AQP7 and AQP8 expression but probably not AQP9. The role of Hg(2+)-insensitive AQP7, if any, in sperm volume regulation was studied in transgenic mice. Spermatozoa from Aqp7(-/-) mice were the same size as wild-type sperm in basal conditions. Quinine-swollen volume, swelling reversal by valinomycin, and inhibition by Hg(2+) were also similar, indicating efficient water transport in the absence of AQP7. However, both water influx and efflux occurred faster in Aqp7(-/-) sperm than wild-type. This faster water movement in the knockout mouse spermatozoa was explainable by an upregulation of Aqp8 expression as revealed by quantitative PCR. Therefore, the Hg(2+)-sensitive AQP8, which was localized in elongated spermatids and spermatozoa, is a likely candidate for a water channel responsible for physiological sperm volume regulation crucial to in vivo fertilization.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Centre of Reproductive Medicine and Andrology, University of Münster, D-48129 Münster, Germany.
| | | | | | | | | |
Collapse
|
26
|
Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, de Gendt K, Guillou F, O'Shaughnessy PJ. Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 2008; 149:3279-85. [PMID: 18403489 PMCID: PMC2592075 DOI: 10.1210/en.2008-0086] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spermatogenesis in the adult male depends on the action of FSH and androgen. Ablation of either hormone has deleterious effects on Sertoli cell function and the progression of germ cells through spermatogenesis. In this study we generated mice lacking both FSH receptors (FSHRKO) and androgen receptors on the Sertoli cell (SCARKO) to examine how FSH and androgen combine to regulate Sertoli cell function and spermatogenesis. Sertoli cell number in FSHRKO-SCARKO mice was reduced by about 50% but was not significantly different from FSHRKO mice. In contrast, total germ cell number in FSHRKO-SCARKO mice was reduced to 2% of control mice (and 20% of SCARKO mice) due to a failure to progress beyond early meiosis. Measurement of Sertoli cell-specific transcript levels showed that about a third were independent of hormonal action on the Sertoli cell, whereas others were predominantly androgen dependent or showed redundant control by FSH and androgen. Results show that FSH and androgen act through redundant, additive, and synergistic regulation of spermatogenesis and Sertoli cell activity. In addition, the Sertoli cell retains a significant capacity for activity, which is independent of direct hormonal regulation.
Collapse
Affiliation(s)
- MH Abel
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Rd, Oxford OX1 3QX, UK
| | - PJ Baker
- Division of Cell Sciences, University of Glasgow Veterinary School, Bearsden Rd, Glasgow G61 1QH, UK
| | - HM Charlton
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Rd, Oxford OX1 3QX, UK
| | - A Monteiro
- Division of Cell Sciences, University of Glasgow Veterinary School, Bearsden Rd, Glasgow G61 1QH, UK
| | - G Verhoeven
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, B-3000 Leuven, Belgium
| | - K de Gendt
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, B-3000 Leuven, Belgium
| | - F Guillou
- UMR 6175 Institut National de la Recherche Agronomique, Centre National de Recherche Scientifique, Université de Tours, 37380 Nouzilly, France
| | - PJ O'Shaughnessy
- Division of Cell Sciences, University of Glasgow Veterinary School, Bearsden Rd, Glasgow G61 1QH, UK
- Correspondence e-mail , Telephone ++44 141 330 5793, Fax ++44 141 330 5797
| |
Collapse
|
27
|
Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA. A Current View of the Mammalian Aquaglyceroporins. Annu Rev Physiol 2008; 70:301-27. [DOI: 10.1146/annurev.physiol.70.113006.100452] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Rojek
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jeppe Praetorius
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jørgen Frøkiaer
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Robert A. Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| |
Collapse
|
28
|
Chang IY, Shin SY, Kim JW, Yu JM, Kim JS, Song PI, Yoon SP. The changed immunolocalization of START-domain-containing 6 (StarD6) during the development of testes in rat perinatal hypothyroidism. Acta Histochem 2007; 109:315-21. [PMID: 17462719 DOI: 10.1016/j.acthis.2007.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/26/2007] [Accepted: 03/01/2007] [Indexed: 11/23/2022]
Abstract
Thyroid hormones have an essential role in maintaining the normal developmental structure of testes during the neonatal stage. START-domain-containing 6 (StarD6) is exclusively expressed in germ cells during spermatogenesis; however, its biological role in rat perinatal hypothyroidism is not clear. After hypothyroidism was induced by daily administration of 0.05% 6-propyl-2-thiouracil (PTU), the pattern of StarD6 immunolocalization was examined from gestation day 15 to postnatal day 49. In normal rats, the labelling of StarD6 was confined to the germ cells from the third-week postpartum. In contrast, its immunoreactivity in hypothyroidal rats was not detected until the fourth-week postpartum. The immunolocalization pattern of StarD6 differed from that of normal adult rats during the seventh-week postpartum. StarD6 was clearly detected in the Leydig cells of the perinatal hypothyroid rats from the fifth-week postpartum. Therefore, StarD6 may play a pivotal role, not only in the spermatogenesis of normal rats, but also in the steroidogenesis of Leydig cells under perinatal hypothyroidism.
Collapse
Affiliation(s)
- In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Sohara E, Ueda O, Tachibe T, Hani T, Jishage KI, Rai T, Sasaki S, Uchida S. Morphologic and functional analysis of sperm and testes in Aquaporin 7 knockout mice. Fertil Steril 2007; 87:671-6. [PMID: 17123523 DOI: 10.1016/j.fertnstert.2006.07.1522] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To investigate the functional and morphologic role of Aquaporin 7 (AQP7) in testis and sperm. DESIGN Experimental laboratory study. SETTING University and research institute units. ANIMAL(S) AQP7 knockout mice (C57BL/6J background). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Morphologic analysis of testis and epididymis, daily sperm production, sperm motility, in vitro fertilization. RESULT(S) There was no difference in the morphology of the testes and epididymis between AQP7 knockout and wild-type mice. The AQP7 knockout male mice and wild-type male mice had similar numbers of offspring. Analysis of the daily sperm production and motility of AQP7 knockout mice did not show any abnormalities. Similarly, the rate of in vitro fertilization using sperm from AQP7 knockout mice was not different from wild-type mice. CONCLUSION(S) Male AQP7 knockout mice were not sterile, and their sperm did not show any morphologic and functional abnormalities.
Collapse
Affiliation(s)
- Eisei Sohara
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Skowronski MT, Lebeck J, Rojek A, Praetorius J, Füchtbauer EM, Frøkiaer J, Nielsen S. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol 2007; 292:F956-65. [PMID: 17077387 DOI: 10.1152/ajprenal.00314.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aquaporin (AQP7) is expressed in proximal tubules and is involved in glycerol uptake. The cellular expression and physiological function in other organs remain largely undefined. AQP7 knockout (KO) mice were generated and used for immunohistochemical analyses to define the organ and cellular expression of AQP7. AQP7 labeling was found in kidney proximal tubule, heart, skeletal muscle, testis, epididymis, as well as in white and brown adipose tissue (WAT and BAT) of wild-type mice. Importantly, immunoreactivity was completely absent from these tissues in AQP7 KO mice. At the cellular level, the capillary endothelium WAT and BAT displayed prominent staining, whereas AQP7 labeling in adipocyte membranes was undetectable. Double-labeling confocal microscopy revealed coexpression of AQP7 with capillary AQP1 but not with adipocyte GLUT4. Moreover, immunoelectron microscopy and RT-PCR of isolated microvessels confirmed the vascular AQP7 expression. Distinct immunolabeling of the capillary endothelium was also observed in both skeletal and heart muscle with no apparent staining of skeletal or cardiac myocytes. As previously reported, specific immunolabeling was confined to brush border in segment 3 renal proximal tubules and to spermatids and spermatozoa in male reproductive tract. The expression of AQP7 was induced up to 2.2-fold in WAT of mice with streptozotocin-induced diabetes mellitus (S-DM) compared with controls and fasting for 72 h (but not 24 h) induced significant increase in AQP7 expression. In conclusion, AQP7 is expressed in capillary endothelia of adipose tissue (and cardiac and striated muscle) and is upregulated in WAT in response to S-DM supporting its role in glycerol metabolism.
Collapse
MESH Headings
- Adipose Tissue/chemistry
- Adipose Tissue/metabolism
- Adipose Tissue, Brown/chemistry
- Adipose Tissue, White/chemistry
- Adipose Tissue, White/metabolism
- Animals
- Aquaporins/analysis
- Aquaporins/genetics
- Aquaporins/metabolism
- Blood Glucose/metabolism
- Capillaries/chemistry
- Capillaries/ultrastructure
- Diabetes Mellitus, Experimental/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Fatty Acids, Nonesterified/blood
- Female
- Gene Expression
- Glucose Transporter Type 4/analysis
- Glycerol/blood
- Glycerol/metabolism
- Glycerol/urine
- Kidney/chemistry
- Kidney/metabolism
- Kidney Tubules, Proximal/chemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron
- Muscle, Skeletal/chemistry
- Myocardium/chemistry
- Sperm Tail/chemistry
- Testis/chemistry
Collapse
Affiliation(s)
- Mariusz T Skowronski
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 2006; 351:424-30. [PMID: 17064664 PMCID: PMC1764621 DOI: 10.1016/j.bbrc.2006.10.054] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 10/06/2006] [Indexed: 11/30/2022]
Abstract
Arsenic exposure is associated with hypertension, diabetes, and cancer. Some mammals methylate arsenic. Saccharomyces cerevisiae hexose permeases catalyze As(OH)(3) uptake. Here, we report that mammalian glucose transporter GLUT1 catalyzes As(OH)(3) and CH(3)As(OH)(2) uptake in yeast or in Xenopus laevis oocytes. Expression of GLUT1 in a yeast lacking other glucose transporters allows for growth on glucose. Yeast expressing yeast HXT1 or rat GLUT1 transport As(OH)(3) and CH(3)As(OH)(2). The K(m) of GLUT1 is to 1.2mM for CH(3)As(OH)(2), compared to a K(m) of 3mM for glucose. Inhibition between glucose and CH(3)As(OH)(2) is noncompetitive, suggesting differences between the translocation pathways of hexoses and arsenicals. Both human and rat GLUT1 catalyze uptake of both As(OH)(3) and CH(3)As(OH)(2) in oocytes. Thus GLUT1 may be a major pathway uptake of both inorganic and methylated arsenicals in erythrocytes or the epithelial cells of the blood-brain barrier, contributing to arsenic-related cardiovascular problems and neurotoxicity.
Collapse
Affiliation(s)
- Zijuan Liu
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yang B, Zhao D, Solenov E, Verkman AS. Evidence from knockout mice against physiologically significant aquaporin 8-facilitated ammonia transport. Am J Physiol Cell Physiol 2006; 291:C417-23. [PMID: 16624991 DOI: 10.1152/ajpcell.00057.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquaporin (AQP)8-facilitated transport of NH3has been suggested recently by increased NH3permeability in Xenopus oocytes and yeast expressing human or rat AQP8. We tested the proposed roles of AQP8-facilitated NH3transport in mammalian physiology by comparative phenotype studies in wild-type vs. AQP8-null mice. AQP8-facilitated NH3transport was confirmed in mammalian cell cultures expressing rat or mouse AQP8, in which the fluorescence of a pH-sensing yellow fluorescent protein was measured in response to ammonia (NH3/NH4+) gradients. Relative AQP8 single-channel NH3-to-water permeability was ∼0.03. AQP8-facilitated NH3and water permeability in a native tissue was confirmed in membrane vesicles isolated from testes of wild-type vs. AQP8-null mice, in which BCECF was used as an intravesicular pH indicator. A series of in vivo studies were done in mice, including 1) serum ammonia measurements before and after ammonia infusion, 2) renal ammonia clearance, 3) colonic ammonia absorption, and 4) liver ammonia accumulation and renal ammonia excretion after acute and chronic ammonia loading. Except for a small reduction in hepatic ammonia accumulation and increase in ammonia excretion in AQP8-null mice loaded with large amounts of ammonia, there were no significant differences in wild-type vs. AQP8-null mice. Our results support the conclusion that AQP8 can facilitate NH3transport but provide evidence against physiologically significant AQP8-facilitated NH3transport in mice.
Collapse
Affiliation(s)
- Baoxue Yang
- 1246 Health Sciences East Tower, Box 0521, University of California-San Francisco, San Francisco, CA 94143-0521, USA.
| | | | | | | |
Collapse
|
33
|
Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY. Function of aquaporins in female and male reproductive systems. Hum Reprod Update 2006; 12:785-95. [PMID: 16840793 DOI: 10.1093/humupd/dml035] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flow of water and some other small molecules across cell membranes is important in many of the processes underlying reproduction. The fluid movement is strongly associated with the presence of aquaporins (AQPs) in the female and male reproductive systems. It has been suggested that AQPs mediate water movement into the antral follicle and play important roles in follicle development. AQPs are known to be involved in the early stage of spermatogenesis, in the secretion of tubule liquid and in the concentration and storage of spermatozoa. Fluid reabsorption in some regions of the male reproductive tract is under steroid hormone control and could be mediated by various AQPs. Also AQPs take part in the processes of fertilization, blastocyst formation (as the pathway for transtrophoectodermal water movement during cavitation) and implantation. Alterations in the expression and function or regulation of AQPs have already been demonstrated in disorders of the male reproductive system, such as abnormal sperm motility, the abnormal epididymis and infertility seen in cystic fibrosis, and varicocele. This article extensively reviews the distribution of AQPs in mammalian reproductive tissues and discusses their possible physiological and pathophysiological roles.
Collapse
Affiliation(s)
- He-Feng Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Aquaporin-8 (AQP8) is a water-transporting protein expressed in organs of the mammalian gastrointestinal tract (salivary gland, liver, pancreas, small intestine, and colon) and in the testes, heart, kidney, and airways. We studied the phenotype of AQP8-null mice, and mice lacking AQP8, together with AQP1 or AQP5. AQP8-knockout mice lacked detectable AQP8 transcript and protein, and had reduced water permeability in plasma membranes from testes. Breeding of AQP8 heterozygous mice yielded AQP8-null mice, whose number, survival, and growth were not different from those of wild-type mice. Organ weight and serum/urine chemistries were similar in wild-type and AQP8-null mice, except for increased testicular weight in the null mice (4.8 ± 0.7 vs. 7.3 ± 0.3 mg/g body wt). Urinary concentrating ability in AQP8-null mice was unimpaired as assessed by urine osmolality (3,590 ± 360 mosmol/kgH2O) and weight loss (22 ± 2%) after 36-h water deprivation; urinary concentrating ability was similarly impaired in AQP1-null mice vs. AQP8/AQP1 double-knockout mice. Agonist-driven fluid secretion in salivary gland was not different in AQP8 vs. wild-type mice (∼1 μl·min−1·g body wt−1) or in AQP5-null mice vs. AQP8/AQP5 double-knockout mice. Closed intestinal loop measurements in vivo indicated unimpaired osmotically driven water transport, active fluid absorption, and cholera toxin-driven fluid secretion in AQP8-null mice. After 21 days on a 50% fat diet, wild-type and AQP8-null mice had similar weight gain (∼15 g), with no evidence of steatorrhea or abnormalities in blood chemistries, except for mild hypertriglyceridemia in the null mice. The mild phenotype of AQP8-null mice was surprising in view of the multiple phenotype abnormalities found in mouse models of AQP1–5 deficiency.
Collapse
Affiliation(s)
- Baoxue Yang
- Cardiovascular Research Institute, Univ. of California, San Francisco, CA 94143-0521, USA
| | | | | | | |
Collapse
|
35
|
Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S, Uchida S, Verkman AS. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 2005; 280:15493-6. [PMID: 15746100 DOI: 10.1074/jbc.c500028200] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquaporin-7 (AQP7) is a water/glycerol transporting protein expressed in adipocyte plasma membranes. We report here remarkable age-dependent hypertrophy in adipocytes in AQP7-deficient mice. Wild type and AQP7 null mice had similar growth at 0-16 weeks as assessed by body weight; however, by 16 weeks AQP7 null mice had 3.7-fold increased body fat mass. Adipocytes from AQP7 null mice of age 16 weeks were greatly enlarged (diameter 118 mum) compared with wild type mice (39 mum). Adipocytes from AQP7 null mice also accumulated excess glycerol (251 versus 86 nmol/mg of protein) and triglycerides (3.4 versus 1.7 mumol/mg of protein). In contrast, at age 4 weeks, adipocyte volume and body fat mass were comparable in wild type and AQP7 null mice. To investigate the mechanism(s) responsible for the progressive adipocyte hypertrophy, glycerol permeability and fat metabolism were studied in adipocytes isolated from the younger mice. Plasma membrane glycerol permeability measured by [(14)C]glycerol uptake was 3-fold reduced in AQP7-deficient adipocytes. However, adipocyte lipolysis, measured by free fatty acid release and hormone-sensitive lipase activity, and lipogenesis, measured by [(14)C]glucose incorporation into triglycerides, were not affected by AQP7 deletion. These data suggest that adipocyte hypertrophy in AQP7 deficiency results from defective glycerol exit and consequent accumulation of glycerol and triglycerides. Increasing AQP7 expression/function in adipocytes may reduce adipocyte volume and fat mass in obesity.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsevi I, Vicente R, Grande M, López-Iglesias C, Figueras A, Capellà G, Condom E, Felipe A. KCNQ1/KCNE1 channels during germ-cell differentiation in the rat: expression associated with testis pathologies. J Cell Physiol 2005; 202:400-10. [PMID: 15389592 DOI: 10.1002/jcp.20132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
KCNQ1/KCNE1 channels are responsible for the Jervell-Lange-Nielsen cardiac syndrome, which is also characterized by congenital deafness. KCNQ1/KCNE1 is crucial for K+ transport in the inner ear. We show that KCNQ1 and KCNE1 are associated in testis and that their expression is closely regulated during development. Both genes were expressed in undifferentiated germ cells in 21-day-old rats and mostly confined to basal immature germ cells in adulthood. Leydig and Sertoli cells were negative. KCNQ1 and KCNE1 were also studied in various germ-cell pathologies. First, in spontaneous unilateral rat testis atrophy, hematoxylin-eosin analysis revealed massive germ-cell aplasia with only Sertoli cells and groups of interstitial Leydig cells. In these samples, KCNQ1 and KCNE1 were not expressed. In human seminoma samples characterized by a proliferation of undifferentiated germ cells, KCNQ1/KCNE1 protein levels were higher than in healthy samples. Our results demonstrate that the expression of KCNQ1 and KCNE1 is associated with early stages of spermatogenesis and with the presence of undifferentiated healthy or neoplastic germ cells. The presence of a K+ rich-fluid in the seminiferous tubule suggests that KCNQ1/KCNE1 is involved in K+ transport, probably during germ-cell development.
Collapse
Affiliation(s)
- Irini Tsevi
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Darszon A, Nishigaki T, Wood C, Treviño CL, Felix R, Beltrán C. Calcium Channels and Ca2+ Fluctuations in Sperm Physiology. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 243:79-172. [PMID: 15797459 DOI: 10.1016/s0074-7696(05)43002-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generating new life in animals by sexual reproduction depends on adequate communication between mature and competent male and female gametes. Ion channels are instrumental in the dialogue between sperm, its environment, and the egg. The ability of sperm to swim to the egg and fertilize it is modulated by ion permeability changes induced by environmental cues and components of the egg outer layer. Ca(2+) is probably the key messenger in this information exchange. It is therefore not surprising that different Ca(2+)-permeable channels are distinctly localized in these tiny specialized cells. New approaches to measure sperm currents, intracellular Ca(2+), membrane potential, and intracellular pH with fluorescent probes, patch-clamp recordings, sequence information, and heterologous expression are revealing how sperm channels participate in fertilization. Certain sperm ion channels are turning out to be unique, making them attractive targets for contraception and for the discovery of novel signaling complexes.
Collapse
Affiliation(s)
- Alberto Darszon
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico 62210
| | | | | | | | | | | |
Collapse
|
38
|
Saito K, Kageyama Y, Okada Y, Kawakami S, Kihara K, Ishibashi K, Sasaki S. LOCALIZATION OF AQUAPORIN-7 IN HUMAN TESTIS AND EJACULATED SPERM: POSSIBLE INVOLVEMENT IN MAINTENANCE OF SPERM QUALITY. J Urol 2004; 172:2073-6. [PMID: 15540792 DOI: 10.1097/01.ju.0000141499.08650.ab] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We have previously reported the expression of aquaporin-7 (AQP7) in the rat testis and cloned human AQP7 from the testicular cDNA library. However, to our knowledge the spatial expression pattern and biological roles of AQP7 remain to be elucidated in humans. MATERIALS AND METHODS We investigated AQP7 expression in the human testis and ejaculated sperm from fertile men and from infertile patients. RESULTS AQP7 was expressed at the tail of spermatids and spermatozoa in the human testis. AQP7 protein was also detected at the middle piece and the anterior tale portion of ejaculated sperm. However, some infertile patients lacked AQP7 expression in ejaculated sperm, although all fertile men expressed AQP7 protein. The motility rate of AQP7 negative sperm was significantly lower than that of AQP7 positive sperm, while the sperm concentration was not different between AQP7 positive and negative subjects. CONCLUSIONS AQP7 shows a spatial expression pattern in the human testis. AQP7 may be involved in the maintenance of sperm motility. Furthermore, a lack of AQP7 expression in sperm may be an underlying mechanism of male infertility.
Collapse
Affiliation(s)
- Kazutaka Saito
- Department of Urology and Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Jablonski EM, McConnell NA, Hughes FM, Huet-Hudson YM. Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod 2003; 69:1481-7. [PMID: 12855592 DOI: 10.1095/biolreprod.103.019927] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Estrogen stimulates water imbibition in the uterine endometrium. This water then crosses the epithelial cells into the lumen, leading to a decrease in viscosity of uterine luminal fluid. To gain insight into the mechanisms underlying this estrogen-stimulated water transport, we have explored the expression profile and functionality of water channels termed aquaporins (AQPs) in the ovariectomized mouse uterus treated with ovarian steroid hormones. Using immunocytochemical analysis and immunoprecipitation techniques, we have found that AQP-1, -3, and -8 were constitutively expressed. AQP-1 expression was restricted to the myometrium and may be slightly regulated by ovarian steroid hormones. AQP-3 was expressed at low levels in the epithelial cells and myometrium, whereas AQP-8 was found in both the stromal cells and myometrium. AQP-2 was absent in vehicle controls but strongly up-regulated by estrogen in the epithelial cells and myometrium of the uterus. This localization implicates all four isotypes in movement of water during uterine imbibition and, based on their localization to the luminal epithelial cells, AQP-2 and -3 in facilitating water movement into the lumen of the uterus. The analysis of the plasma membrane permeability of luminal epithelial cells by two separate cell swelling assays confirmed a highly increased water permeability of these cells in response to estrogen treatment. This finding suggests that estrogen decreases the luminal fluid viscosity, in part, by enhancing the water permeability of the epithelial layer, most likely by increasing the expression of AQP-2 and/or the availability of AQP-3. Together these results provide novel information concerning the mechanism by which estrogen controls water imbibition and luminal fluid viscosity in the mouse uterus.
Collapse
Affiliation(s)
- Elizabeth M Jablonski
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | | | | | | |
Collapse
|
40
|
Tsujikawa T, Itoh A, Fukunaga T, Satoh J, Yasuoka T, Fujiyama Y. Alteration of aquaporin mRNA expression after small bowel resection in the rat residual ileum and colon. J Gastroenterol Hepatol 2003; 18:803-8. [PMID: 12795752 DOI: 10.1046/j.1440-1746.2003.03033.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Diarrhea occurring after small bowel resection gradually improves due to intestinal adaptation. It is known that several water channels, termed aquaporins (AQP), are expressed in the gastrointestinal tract and facilitate water transport. However, the changes of AQP after bowel resection remain unclear. In the present paper, the alterations in AQP mRNA expression were investigated after a massive small bowel resection in the rat residual ileum and colon. METHODS The 6-week-old male Sprague-Dawley rats (n = 15) underwent an 80% distal small bowel resection. The residual ileum and colon were dissected on postoperative day 1, 3, 5 or 7 (n= 3 on each day). Total RNA was purified from each mucosa, and the expressions of AQP and sodium-dependent glucose transporter (SGLT1) mRNA were analyzed by northern blot. The plasma vasoactive intestinal polypeptide (VIP) concentrations on the preoperative day and postoperative day 1 were assayed. RESULTS In the residual small intestine, the expression of AQP-1 and AQP-3 mRNA increased significantly on postoperative day 1. The AQP-7 mRNA increased on postoperative day 3, but the AQP-4 mRNA did not change after the bowel resection. The SGLT1 mRNA gradually decreased after the bowel resection. In the colon, the expression of AQP-3 increased on postoperative day 1 and 7, but AQP-4 mRNA did not change after surgery. The AQP-8 mRNA levels increased slightly on postoperative day 7. Plasma VIP concentration did not change between preoperative day and postoperative day 1. CONCLUSIONS These results indicate that several AQP, except for AQP-4, were up-regulated after a massive small bowel resection, and that AQP might play important roles during adaptation.
Collapse
Affiliation(s)
- Tomoyuki Tsujikawa
- Division of Gastroenterology, Shiga University of Medical Science, Seta, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Calamita G, Mazzone A, Bizzoca A, Svelto M. Possible involvement of aquaporin-7 and -8 in rat testis development and spermatogenesis. Biochem Biophys Res Commun 2001; 288:619-25. [PMID: 11676488 DOI: 10.1006/bbrc.2001.5810] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluid secretion and reabsorption are of central importance in male reproductive (MR) physiology. However, the related molecular mechanisms are poorly known. Here, potential roles for AQP7 and AQP8, two aquaporin water channels abundantly expressed in the MR tract, were investigated by studying their expression and distribution in the developing testis of the Wistar rat. By semiquantitative RT-PCR and immunoblotting, first expression of AQP7 was noted at postnatal day 45 (P45), with levels increasing substantially at P90 and remaining at high levels thereafter. AQP8 began to be expressed at P15, rapidly increased until P20, and remained fairly stable thereafter. Immunohistochemical analyses demonstrated AQP7 in elongated spermatids, testicular spermatozoa, and residual bodies at P45 with increased signal intensity thereafter. AQP8 was observed in primary spermatocytes from P20 to P30 and, in elongated spermatids, residual bodies and Sertoli cells at P30 and thereafter. The ontogeny and distribution of AQP7 and AQP8 in rat testis suggest involvement in major physiologic changes in testis development and spermatogenesis.
Collapse
Affiliation(s)
- G Calamita
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | |
Collapse
|