1
|
Lohova E, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Analysis of Inflammatory and Regulatory Cytokines in the Milk of Dairy Cows with Mastitis: A Comparative Study with Healthy Animals. Immunol Invest 2024; 53:1397-1421. [PMID: 39287131 DOI: 10.1080/08820139.2024.2404623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Bovine mastitis remains a major problem in the global dairy cattle industry. The acute invasion of udder by pathogens induces innate immune response as the first defence mechanism in subclinical and clinical mastitis. The aim of the study was to determine inflammatory and regulatory cytokines IL-2, IL-4, TGF-β1, IL-17A, beta-defensin 3 and IL-10 and their potential changes in milk of dairy cows with subclinical and clinical mastitis, and to compare the findings with healthy animals. Milk samples from 15 holstein Friesian breed cows were used in the study. Cows were divided into three groups based on their health status (5 healthy, 5 subclinical and 5 clinical animals). All samples were tested using immunohistochemistry to evaluate IL-2, IL-4, IL-10, IL17A, TGF-β1 and β-Def 3 proteins. Expression of all proteins was detected in all milk samples. High expression of IL-2, IL-4, IL17A, TGF-β1 was detected in healthy cows' milk and in milk of cows with subclinical and clinical mastitis. However, expression of IL-10 and β-Def 3 in milk samples of healthy cows was significantly higher compared to the milk of cows with subclinical and clinical mastitis (p < .001). IL-10 and β-Def 3 can be considered as informative biomarkers in diagnosis of subclinical and clinical mastitis.
Collapse
Affiliation(s)
- Elizabeta Lohova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Mara Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Andzelika Drutowska
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., Morahalom, Hungary
- Biological Research Center, Plant Biology Institute, Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Silvestrini P, Beccaria C, Renna MS, Engler C, Simonutti V, Cellone I, Calvinho LF, Dallard BE, Baravalle C. In vitro evaluation of ginsenoside Rg1 immunostimulating effect in bovine mononuclear cells. Res Vet Sci 2023; 158:1-12. [PMID: 36898322 DOI: 10.1016/j.rvsc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The aim of this study was to evaluate the immunomodulatory effect of ginsenoside Rg1 on mammary secretion and peripheral blood mononuclear cells (MSMC and PBMC, respectively). The mRNA expression of TLR2, TLR4 and selected cytokines were evaluated on MSMC after Rg1 treatment. Also, TLR2 and TLR4 protein expression was evaluated on MSMC and PBMC after Rg1 treatment. Phagocytic activity and capacity, ROS production and MHC-II expression were evaluated on MSMC and PBMC after Rg1 treatment and co-culture with Staphylococcus aureus strain 5011. Rg1 induced mRNA expression of TLR2, TLR4, TNF-α, IL-1β, IL-6 and IL-8 in groups treated with different concentrations and at different times in MSMC, and induced TLR2 and TLR4 protein expression in MSMC and PBMC. Rg1 increased phagocytic capacity and ROS production in MSMC and PBMC. Rg1 increased MHC-II expression by PBMC. However, Rg1 pre-treatment had no effect on cells co-cultured with S. aureus. In conclusion, Rg1 was able to stimulate several sensing and effector activities in these immune cells.
Collapse
Affiliation(s)
- Paula Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Camila Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Carolina Engler
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Valeria Simonutti
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Ivana Cellone
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Luis F Calvinho
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Investigación de la Cadena Láctea (INTA-CONCET), Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina.
| |
Collapse
|
3
|
Engler C, Renna MS, Beccaria C, Silvestrini P, Pirola SI, Pereyra EAL, Baravalle C, Camussone CM, Monecke S, Calvinho LF, Dallard BE. Differential immune response to two Staphylococcus aureus strains with distinct adaptation genotypes after experimental intramammary infection of dairy cows. Microb Pathog 2022; 172:105789. [PMID: 36176246 DOI: 10.1016/j.micpath.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
The aim of this study was to evaluate and compare the ability of two S. aureus strains with different adaptation genotypes (low and high) to the bovine mammary gland (MG) to establish an intramammary infection (IMI) and induce an immune response after an experimental challenge in lactating cows. Two isolates (designated 806 and 5011) from bovine IMI with different genotypic profiles, harboring genes involved in adherence and biofilm production, belonging to different capsular polysaccharide (CP) type, accessory gene regulator (agr) group, pulsotype (PT) and sequence type/clonal complex (ST/CC) were selected. Strains 806 and 5011 were associated with low (nonpersistent-NP) and high (persistent-P) adaptation to the MG, respectively. Strain 806 (NP) was characterized as agr group II, cap5 positive and ST350; strain 5011 (P) agr group I, cap8 positive and CC188. Three groups of clinically healthy cows, 4 cows/treatment group, were inoculated by the intramammary route with strain 806 (NP), strain 5011 (P) and pyrogen-free saline solution. All mammary quarters challenged with strain 806 (NP) developed mild clinical mastitis between 1 and 7 d post inoculation (pi). Quarters challenged with strain 5011 (P) developed a persistent IMI; bacteria were recovered from milk from d 7 pi and up to d 56 pi. In quarters inoculated with strain 806 (NP) the inflammatory response induced was greater and earlier than the one induced by strain 5011 (P), since a somatic cell count (SCC) peak was observed at d 2 pi, while in quarters inoculated with strain 5011 (P) no variations in SCC were observed until d 4 pi reaching the maximum values at d 14 pi; indicating a lower and delayed initial inflammatory response. The highest levels of nitric oxide (NO) and lactoferrin (Lf) detected in milk from quarters inoculated with both S. aureus strains coincided with the highest SCC at the same time periods, indicating an association with the magnitude of inflammation. The high levels of IL-1β induced by strain 806 (NP) were associated with the highest SCC detected (d 2 pi); while quarters inoculated with strain 5011 (P) showed similar IL-1β levels to those found in control quarters. In quarters inoculated with strain 806 (NP) two peaks of IL-6 levels on d 2 and 14 pi were observed; while in quarters inoculated with strain 5011 (P) IL-6 levels were similar to those found in control quarters. The strain 806 (NP) induced a higher total IgG and IgG1 response; while strain 5011 (P) generated a higher IgG2 response (even against the heterologous strain). The present study demonstrated that S. aureus strains with different genotype and adaptability to bovine MG influence the local host immune response and the course and severity of the infectious process.
Collapse
Affiliation(s)
- Carolina Engler
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Camila Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Paula Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Silvana I Pirola
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Cecilia M Camussone
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, TU Dresden, Dresden, Germany; Alere Technologies GmbH, Jena, Germany
| | - Luis F Calvinho
- Cátedra de Enfermedades Infecciosas. Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina.
| |
Collapse
|
4
|
Gene expression adjustment of inflammatory mechanisms in dairy cow mammary gland parenchyma during host defense against staphylococci. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to identify differences in the expression of splice variants of the PRMT2, LTF and C4A genes in the mammary glands of healthy dairy cows and those infected with staphylococci. An expression study was conducted on 38 Polish Holstein-Friesian dairy cows who were removed from the herd owing to subclinical and chronic mastitic or reproductive issues. Two days before slaughter, milk samples were taken for microbiological analysis and examined for the presence of bacteria. The mammary gland parenchyma samples with a predominance of secretory tissue were taken; these were divided into three groups according to the health status of the mammary gland: H (without pathogenic bacteria in milk), CoNS (with coagulase-negative staphylococci in milk), and CoPS (with coagulase-positive staphylococci in milk). Two of the investigated genes, LTF and C4A, demonstrated variants unequivocally expressed in infected tissue. Two LTF gene variants were found to be associated with cow health status, and with the type of bacteria causing mastitis (CoPS or CoNS). In addition, the expression of C4A isoforms differed with regard to mastitis etiology groups. The comprehensive evaluation of PRMT2 transcript suggested that the gene may also be involved in course of mastitis: two of four PRMT2 transcripts showed increased expression in the mammary gland of the CoPS group compared to controls. The obtained results are important for the knowledge on the etiology of bovine mastitis. The effects of the identified mastitis-relevant splice variants need to be further explored on the protein level to verify the suitability of splice variants and recognize their contribution towards the disease phenotypes and course.
Collapse
|
5
|
Kasai S, Prasad A, Kumagai R, Takanohashi K. Scanning Electrochemical Microscopy-Somatic Cell Count as a Method for Diagnosis of Bovine Mastitis. BIOLOGY 2022; 11:biology11040549. [PMID: 35453748 PMCID: PMC9031417 DOI: 10.3390/biology11040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Mastitis is inflammation/swelling in the breast, which is generally caused by an infection. In this study, we present scanning electrochemical microscopy-somatic cell count (SECM-SCC) as a novel method for diagnosis of mastitis in bovines. We developed a biosensor in this study that can serve as a highly promising portable electrochemical device for mastitis diagnosis in bovines. Abstract The method to diagnose mastitis is generally the somatic cell count (SCC) by flow cytometry measurement. When the number of somatic cells in raw milk is 2.0 × 105 cells/mL or more, the condition is referred to as mastitis. In the current study, we created a milk cell chip that serves as an electrochemical method that can be easily produced and used utilizing scanning electrochemical microscopy (SECM). The microelectrode present in the cell chip scans, and the difference between the oxygen concentration near the milk cell chip and in bulk is measured as the oxygen (O2) reduction current. We estimated the relationship between respiratory activity and the number of somatic cells in raw milk as a calibration curve, using scanning electrochemical microscopy-somatic cell count (SECM-SCC). As a result, a clear correlation was shown in the range of 104 cells/mL to 106 cells/mL. The respiration rate (F) was estimated to be about 10–16 mol/s per somatic cell. We also followed the increase in oxygen consumption during the respiratory burst using differentiation inducer phorbol 12-myristate 13-acetate (PMA) as an early stage of mastitis, accompanied with an increase in immune cells, which showed similar results. In addition, we were able to discriminate between cattle with mastitis and without mastitis.
Collapse
Affiliation(s)
- Shigenobu Kasai
- Graduate Department of Electronics, Tohoku Institute of Technology, Sendai 982-8577, Japan; (R.K.); (K.T.)
- Correspondence: (S.K.); (A.P.)
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
- Correspondence: (S.K.); (A.P.)
| | - Ryoma Kumagai
- Graduate Department of Electronics, Tohoku Institute of Technology, Sendai 982-8577, Japan; (R.K.); (K.T.)
| | - Keita Takanohashi
- Graduate Department of Electronics, Tohoku Institute of Technology, Sendai 982-8577, Japan; (R.K.); (K.T.)
| |
Collapse
|
6
|
Vitenberga-Verza Z, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022; 11:372. [PMID: 35335696 PMCID: PMC8954094 DOI: 10.3390/pathogens11030372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In naturally occurring bovine mastitis, effects of infection depend on the host inflammatory response, including the effects of secreted cytokines. Knowledge about the inflammatory and regulatory cytokines in milk cells of free-stall barn dairy cows and in naturally occurring mastitis is lacking as most studies focus on induced mastitis. Hereby, the aim of the study was to determine inflammatory and regulatory cytokines in the milk of dairy cows with subclinical and clinical mastitis. The following examinations of milk samples were performed: differential counting of somatic cells (SCC), bacteriological examination, and immunocytochemical analysis. Mean SCC increased in subclinical and clinical mastitis cases. The number of pathogenic mastitis-causing bacteria on plates increased in subclinical mastitis cases but decreased in clinical mastitis. The inflammatory and regulatory markers in the milk cells of healthy cows showed the highest mean cell numbers (%). In mastitis cases, immunoreactivity was more pronounced for IL-4, IL-6, IL-12, IL-13, IL-17A, TNF-α, and IFN-γ. Data about subclinical and clinical mastitis demonstrate inflammatory responses to intramammary infection driven by IL-1α, IL-4, and IL-17A. Moreover, the host defense response in mastitis is characterized by continuation or resolution of initial inflammation. IL-12 and INF-γ immunoreactivity was recognized to differ mastitis cases from the relative health status.
Collapse
Affiliation(s)
- Zane Vitenberga-Verza
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Māra Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, 1010 Rīga, Latvia; (M.P.); (K.Š.); (I.M.)
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Andżelika Drutowska
- Research and Innovation Centre Pro-Akademia, 95-050 Konstantynów Łódzki, Poland; (Ł.G.); (M.K.); (A.D.)
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., 6782 Morahalom, Hungary;
- Biological Research Center, Plant Biology Institute, 6726 Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Niedziela DA, Murphy MP, Grant J, Keane OM, Leonard FC. Clinical presentation and immune characteristics in first-lactation Holstein-Friesian cows following intramammary infection with genotypically distinct Staphylococcus aureus strains. J Dairy Sci 2020; 103:8453-8466. [PMID: 32622604 DOI: 10.3168/jds.2019-17433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is an important cause of bovine mastitis, and intramammary infections caused by this pathogen are often characterized as mild, chronic, or persistent. The strains of Staph. aureus associated with mastitis belong to several distinct bovine-adapted bacterial lineages. Studies of host-pathogen interactions have demonstrated that significant differences exist between Staph. aureus strains and lineages in their ability to internalize and to elicit expression of chemokines and pro-inflammatory mediators in bovine cells in vitro. To determine the effect of bacterial strain on the response to intramammary infection in vivo, 14 disease-free, first-lactation cows were randomly allocated to 2 groups and challenged with Staph. aureus strain MOK023 (belonging to CC97) or MOK124 (belonging to CC151). Clinical signs of infection, as well as somatic cell count (SCC), bacterial load, IL-8 and IL-1β in milk, anti-Staph. aureus IgG in milk and serum, anti-Staph. aureus IgA in milk, and white blood cell populations in milk and blood were monitored for 30 d after the challenge. Cows infected with MOK023 generally developed subclinical mastitis, whereas cows infected with MOK124 generally developed clinical mastitis. Milk yield was reduced to a greater extent in response to infection with MOK124 compared with MOK023 in the first week of the study. Significantly higher SCC, IL-8, and IL-1β in milk as well as higher anti-Staph. aureus IgG and IgA in milk and anti-Staph. aureus IgG in serum were also observed in response to MOK124 compared with the response to MOK023. Higher proportions of neutrophils were observed in milk of animals infected with MOK124 than in animals infected with MOK023. Higher neutrophil concentration in blood was also observed in the MOK124 group compared with the MOK023 group. Overall, the results indicate that the outcome of mastitis mediated by Staph. aureus is strain dependent.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93; School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Mark P Murphy
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - Jim Grant
- Statistics and Applied Physics, Teagasc, Ashtown, Dublin 15, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
8
|
Lewandowska-Sabat AM, Kirsanova E, Klopp C, Solberg TR, Heringstad B, Østerås O, Boysen P, Olsaker I. Transcription Profiling of Monocyte-Derived Macrophages Infected In Vitro With Two Strains of Streptococcus agalactiae Reveals Candidate Pathways Affecting Subclinical Mastitis in Cattle. Front Genet 2019; 10:689. [PMID: 31417606 PMCID: PMC6681682 DOI: 10.3389/fgene.2019.00689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are key cells of innate immune response and serve as the first line of defense against bacteria. Transcription profiling of bacteria-infected macrophages could provide important insights on the pathogenicity and host defense mechanisms during infection. We have examined transcription profiles of bovine monocyte-derived macrophages (bMDMs) isolated from the blood of 12 animals and infected in vitro with two strains of Streptococcus agalactiae. Illumina sequencing of RNA from 36 bMDMs cultures exposed in vitro to either one of two sequence types of S. agalactiae (ST103 or ST12) for 6 h and unchallenged controls was performed. Analyses of over 1,656 million high-quality paired-end sequence reads revealed 5,936 and 6,443 differentially expressed genes (p < 0.05) in bMDMs infected with ST103 and ST12, respectively, versus unchallenged controls. Moreover, 588 genes differentially expressed between bMDMs infected with ST103 versus ST12 were identified. Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST103 revealed significant enrichment for granulocyte adhesion and diapedesis, while significant enrichment for the phagosome formation pathway was found among down-regulated genes. Moreover, Ingenuity pathway analysis of the differentially up-regulated genes in the bMDMs infected with ST12 showed significant enrichment for type 1/type 2 T helper cell activation, while the complement activation pathway was overrepresented in the down-regulated genes. Our study identified pathogen-induced regulation of key genes and pathways involved in the immune response of macrophages against infection but also likely involved in bacterial evasion of the host immune system. These results may contribute to better understanding of the mechanisms underlying subclinical infection such as bovine streptococcal mastitis.
Collapse
Affiliation(s)
- Anna Monika Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Elena Kirsanova
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Bjørg Heringstad
- Geno Breeding and A.I. Association, Hamar, Norway
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Østerås
- Norwegian Cattle Health Services and TINE Extension Services, Ås, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
9
|
Li L, Wang HH, Nie XT, Jiang WR, Zhang YS. Sodium butyrate ameliorates lipopolysaccharide-induced cow mammary epithelial cells from oxidative stress damage and apoptosis. J Cell Biochem 2019; 120:2370-2381. [PMID: 30259565 DOI: 10.1002/jcb.27565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
This study investigated the molecular mechanism by which sodium butyrate (NaB) causes oxidative stress damage induced by lipopolysaccharide (LPS) on cow mammary epithelial cells (MAC-T). We found that NaB significantly increased the activities of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase, catalase, peroxidase, and total antioxidant capacity and decreased the reactive oxygen species production in LPS-induced MAC-T cells. NaB attenuated protein damage and reduced apoptosis in LPS-induced MAC-T cells. The messenger RNA (mRNA) levels of caspase-3, caspase-9, and Bax decreased, while the Bcl-2 mRNA level increased in LPS-induced MAC-T cells treated with NaB. Our results showed that NaB treatment increased the phosphoinositide 3-kinase (PI3K) and phospho-AKT (P-AKT) protein levels, whereas it decreased the Bax, caspase-3, and caspase-9 protein levels in LPS-induced MAC-T cells. However, the increase in PI3K and P-AKT protein levels and the decrease in Bax, caspase-3, and caspase-9 protein levels induced by NaB treatment were reversed when the cells were pretreated with LY294002 (PI3K inhibitor). These results indicate that NaB ameliorates LPS-induced oxidative damage by increasing antioxidative enzyme activities and ameliorating protein damage in MAC-T cells. In addition, NaB decreased apoptosis by inhibiting caspase-3, caspase-9, and Bax protein levels, and this action was mainly achieved via activation of the PI3K/AKT signaling pathways in LPS-induced MAC-T cells. These results provide substantial information for NaB as a chemical supplement to treat oxidative stress and its related diseases in ruminants.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Huan-Huan Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Xin-Tian Nie
- Department of Mechanical Engineering, College of Engineering, Nanjing Agriculture University, Nanjing, China
| | - Wan-Ru Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| | - Yuan-Shu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
10
|
Kazemi H, Najafi M, Ghasemian E, Rahimi-Mianji G, Pirsaraei ZA. Polymorphism detection of promoter region of IFN-
$$\gamma $$
γ
and IL-2 genes and their association with productive traits in Mazandaran native breeder fowls. J Genet 2018. [DOI: 10.1007/s12041-018-0981-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Gong XX, Su XS, Zhan K, Zhao GQ. The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J Dairy Sci 2018; 101:10089-10097. [PMID: 30146292 DOI: 10.3168/jds.2017-14328] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/30/2018] [Indexed: 01/11/2023]
Abstract
Chlorogenic acid (CGA) is the ester of caffeic acid and quinic acid and plays an important role in antibacterial activity and anti-inflammatory properties. The objective of this study was to examine the effects of CGA on the growth of Staphylococcus aureus and the mRNA levels of the genes encoding the inflammatory response cytokines, κ-casein, and neutrophil function in bovine mammary epithelial cells (BMEC) exposed to S. aureus. Chlorogenic acid has important antibacterial, antioxidant, and anti-inflammatory functions; however, the effect of CGA on BMEC and neutrophils exposed to S. aureus has not been investigated previously. Our results demonstrated that 10, 20, and 30 μg/mL CGA had no cytotoxic effects on BMEC in culture, and that 20 μg/mL CGA enhanced the viability of BMEC exposed to S. aureus, whereas 30 μg/mL CGA reduced S. aureus growth after 9 h compared with controls. The rate of S. aureus invasion into BMEC was also attenuated by 30 μg/mL CGA compared with controls, whereas this treatment led to reduced abundance of IL6, IL8, and TLR2 mRNA in S. aureus-exposed BMEC. Migration of bovine polymorphonuclear leukocytes was significantly decreased in S. aureus-exposed BMEC with 10 and 20 μg/mL CGA treatment when compared with S. aureus treatment alone. In addition, incubation with 20 or 30 μg/mL CGA enhanced the phagocytic ability of polymorphonuclear leukocytes compared with the control group. Importantly, levels of κ-casein were enhanced by treatment of S. aureus-exposed BMEC with CGA. Our results suggest that the use of CGA may be a potent therapeutic tool against bovine mastitis caused by S. aureus.
Collapse
Affiliation(s)
- X X Gong
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - X S Su
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - K Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - G Q Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Human-Mediated Introgression of Haplotypes in a Modern Dairy Cattle Breed. Genetics 2018; 209:1305-1317. [PMID: 29848486 PMCID: PMC6063242 DOI: 10.1534/genetics.118.301143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Domestic animals can serve as model systems of adaptive introgression and their genomic signatures. In part, their usefulness as model systems is due to their well-known histories. Different breeding strategies such as introgression and artificial selection have generated numerous desirable phenotypes and superior performance in domestic animals. The modern Danish Red Dairy Cattle is studied as an example of an introgressed population. It originates from crossing the traditional Danish Red Dairy Cattle with the Holstein and Brown Swiss breeds, both known for high milk production. This crossing happened, among other things due to changes in the production system, to raise milk production and overall performance. The genomes of modern Danish Red Dairy Cattle are heavily influenced by regions introgressed from the Holstein and Brown Swiss breeds and under subsequent selection in the admixed population. The introgressed proportion of the genome was found to be highly variable across the genome. Haplotypes introgressed from Holstein and Brown Swiss contained or overlapped known genes affecting milk production, as well as protein and fat content (CD14, ZNF215, BCL2L12, and THRSP for Holstein origin and ITPR2, BCAT1, LAP3, and MED28 for Brown Swiss origin). Genomic regions with high introgression signals also contained genes and enriched QTL associated with calving traits, body confirmation, feed efficiency, carcass, and fertility traits. These introgressed signals with relative identity-by-descent scores larger than the median showing Holstein or Brown Swiss introgression are mostly significantly correlated with the corresponding test statistics from signatures of selection analyses in modern Danish Red Dairy Cattle. Meanwhile, the putative significant introgressed signals have a significant dependency with the putative significant signals from signatures of selection analyses. Artificial selection has played an important role in the genomic footprints of introgression in the genome of modern Danish Red Dairy Cattle. Our study on a modern cattle breed contributes to an understanding of genomic consequences of selective introgression by demonstrating the extent to which adaptive effects contribute to shape the specific genomic consequences of introgression.
Collapse
|
13
|
Varzandian B, Ghaderi-Zefrehei M, Hosseinzadeh S, Sayyadi M, Taghadosi V, Varzandian S. An Investigation on the Expression Level of Interleukin 10 (IL-10) in the Healthy and Mastitic Holstein Cows and the Bioinformatics Analysis of Nucleosome Profile. Anim Biotechnol 2017; 28:294-300. [PMID: 28267404 DOI: 10.1080/10495398.2017.1283322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cytokines are immune regulators that play an essential role in regulating immune response against various infections. The present study focused on the possible association between the expression level of Interleukin 10 (IL-10) in blood and milk samples of 25 healthy and 25 mastitic cows in Fars province, Iran, using a quantitative real-time PCR assay. The experimental groups were categorized according to the number of calvings. The expression level of IL-10 was significantly higher in the blood and milk samples of mastitic cows compared to the healthy ones. Concomitant to increasing the number of calving, a numerical elevation in the expression of IL-10 in blood was observed (P < 0.05). The bioinformatics analysis of IL-10 gene revealed the promoter, exon-intron regions, and nucleosome profile. The nucleosome occupancy site was finally predicted using NUPOP software. Our result indicated that the promoter was not exactly placed in the nucleosome region, which was finally aimed to predict the position and expression of IL-10 gene in the mastitic cows.
Collapse
Affiliation(s)
- Bahareh Varzandian
- a Department of Animal Breeding, School of Agriculture , Yasouj University , Yasouj , Iran
| | | | - Saeid Hosseinzadeh
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Mostafa Sayyadi
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Vahideh Taghadosi
- b Department of Food Hygiene and Public Health, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Sara Varzandian
- c Department of Clinical Sciences, School of Veterinary Medicine, Kazerun Branch , Islamic Azad University , Kazerun , Iran
| |
Collapse
|
14
|
Silvestrini P, Beccaria C, Pereyra EAL, Renna MS, Ortega HH, Calvinho LF, Dallard BE, Baravalle C. Intramammary inoculation of Panax ginseng plays an immunoprotective role in Staphylococcus aureus infection in a murine model. Res Vet Sci 2017; 115:211-220. [PMID: 28505549 DOI: 10.1016/j.rvsc.2017.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/20/2017] [Accepted: 05/06/2017] [Indexed: 01/05/2023]
Abstract
The immunoprotective effect of Panax ginseng (Pg) extract was investigated in a mouse mastitis model. Lactating female mice were intramammarily inoculated with Pg or placebo, and then were challenged with S. aureus, while other group was inoculated with S. aureus alone. The number of bacteria recovered from mammary glands was significantly lower in Pg-treated S. aureus-infected mice (group I) compared with placebo-treated S. aureus-infected mice (group II) and S. aureus-infected mice (group III). The mRNA expression of TLR2, TLR4, IL-1α and TNF-α was influenced by treatment; being the transcript levels for all genes higher in group I compared with group II and III. Activation of NF-κB and the number of monocytes-macrophages in mammary gland tissue was significantly increased in group I compared with group II and III. Pg extract was able to trigger an adequate immune response to confront an infection demonstrating its protective effect and potential for preventing bovine intramammary infections.
Collapse
Affiliation(s)
- P Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - C Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Departamento de Clínicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - L F Calvinho
- Departamento de Clínicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina; Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina
| | - B E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - C Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
15
|
Wu H, Zhao G, Jiang K, Chen X, Zhu Z, Qiu C, Deng G. Puerarin Exerts an Antiinflammatory Effect by Inhibiting NF-kB and MAPK Activation in Staphylococcus aureus-Induced Mastitis. Phytother Res 2016; 30:1658-1664. [PMID: 27335240 DOI: 10.1002/ptr.5666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 05/20/2016] [Indexed: 11/07/2022]
Abstract
Mastitis is defined as the inflammation of the mammary gland. There is generally no effective treatment for mastitis in animals. Puerarin, extracted from Radix puerariae, has been proven to possess many biological activities. The present study aims to reveal the potential mechanism that is responsible for the antiinflammatory action of puerarin in Staphylococcus aureus (S. aureus)-induced mastitis in mice. Histopathological changes showed that puerarin ameliorated the inflammatory injury induced by S. aureus. Quantitative real-time polymerase chain reaction and ELISA analysis indicated that puerarin not only suppressed the production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 but also promoted the secretion of IL-10. Toll-like receptor 2 (TLR2) is important in the immune defense against S. aureus infection. Research in molecular biology has shown that the expression of TLR2 was inhibited with administration of puerarin. Further studies were performed on NF-kB and mitogen-activated protein kinase signaling pathways using western blot. The results demonstrated that puerarin suppressed phosphorylated IkBα, p65, p38, extracellular signal-regulated kinase 1and 2 (ERK), and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. All of the results suggested that puerarin may be a potential therapy for treating mastitis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhe Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
16
|
Fonseca I, Cardoso F, Higa R, Giachetto P, Brandão H, Brito M, Ferreira M, Guimarães S, Martins M. Gene expression profile in zebu dairy cows (Bos taurus indicus) with mastitis caused by Streptococcus agalactiae. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Polymorphisms in the promoter of interleukin-12β2 and interleukin-23 receptor genes influence milk production traits in Chinese Holstein cows. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Pereyra EAL, Dallard BE, Calvinho LF. [Aspects of the innate immune response to intramammary Staphylococcus aureus infections in cattle]. Rev Argent Microbiol 2015; 46:363-75. [PMID: 25576422 DOI: 10.1016/s0325-7541(14)70096-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the pathogen most frequently isolated from bovine mastitis worldwide, causing chronic intramammary infections that limit profitable dairying. The objective of this article is to characterize the mechanisms involved in S. aureus mammary gland infections considering two different aspects of the infectious process; on the one hand, the aspects involved in the host innate immune response and on the other hand, the capacity of this organism to evade the immune system and interact with different cell types. The exploration of S. aureus interactions with the immune response of bovine mammary gland will help identify targets to outline new preventive or curative alternatives for intramammary infections caused by this organism.
Collapse
Affiliation(s)
- Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), UNL-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), UNL-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Luis F Calvinho
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Fe, Argentina; Facultad de Ciencias Veterinarias, UNL, Santa Fe, Argentina.
| |
Collapse
|
19
|
Modulation of the inflammatory response of bovine mammary epithelial cells by cholecalciferol (vitamin D) during Staphylococcus aureus internalization. Microb Pathog 2014; 77:24-30. [DOI: 10.1016/j.micpath.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/24/2022]
|
20
|
Ezzat Alnakip M, Quintela-Baluja M, Böhme K, Fernández-No I, Caamaño-Antelo S, Calo-Mata P, Barros-Velázquez J. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J Vet Med 2014; 2014:659801. [PMID: 26464939 PMCID: PMC4590879 DOI: 10.1155/2014/659801] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023] Open
Abstract
The health of dairy animals, particularly the milk-producing mammary glands, is essential to the dairy industry because of the crucial hygienic and economic aspects of ensuring production of high quality milk. Due to its high prevalence, mastitis is considered the most important threat to dairy industry, due to its impacts on animal health and milk production and thus on economic benefits. The MG is protected by several defence mechanisms that prevent microbial penetration and surveillance. However, several factors can attenuate the host immune response (IR), and the possession of various virulence and resistance factors by different mastitis-causing microorganisms greatly limits immune defences and promotes establishment of intramammary infections (IMIs). A comprehensive understanding of MG immunity in both healthy and inflammatory conditions will be an important key to understand the nature of IMIs caused by specific pathogens and greatly contributes to the development of effective control methods and appropriate detection techniques. Consequently, this review aims to provide a detailed overview of antimicrobial defences in the MG under healthy and inflammatory conditions. In this sense, we will focus on pathogen-dependent variations in IRs mounted by the host during IMI and discuss the potential ramifications of these variations.
Collapse
Affiliation(s)
- Mohamed Ezzat Alnakip
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
- Food Control Department, Dairy Division, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Al Sharkia 44519, Egypt
| | - Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
| | - Inmaculada Fernández-No
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
| | - Sonia Caamaño-Antelo
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
| | - Pillar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Campus Lugo, Rúa Carballo Calero, 27002 Lugo, Spain
| |
Collapse
|
21
|
Zbinden C, Stephan R, Johler S, Borel N, Bünter J, Bruckmaier RM, Wellnitz O. The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PLoS One 2014; 9:e87374. [PMID: 24498088 PMCID: PMC3907564 DOI: 10.1371/journal.pone.0087374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/24/2013] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a major mastitis-causing pathogen in dairy cows. The latex agglutination-based Staphaurex test allows bovine S. aureus strains to be grouped into Staphaurex latex agglutination test (SLAT)-negative [SLAT(−)] and SLAT-positive [SLAT(+)] isolates. Virulence and resistance gene profiles within SLAT(−) isolates are highly similar, but differ largely from those of SLAT(+) isolates. Notably, specific genetic changes in important virulence factors were detected in SLAT(−) isolates. Based on the molecular data, it is assumed that SLAT(+) strains are more virulent than SLAT(−) strains. The objective of this study was to investigate if SLAT(−) and SLAT(+) strains can differentially induce an immune response with regard to their adhesive capacity to epithelial cells in the mammary gland and in turn, could play a role in the course of mastitis. Primary bovine mammary epithelial cells (bMEC) were challenged with suspensions of heat inactivated SLAT(+) (n = 3) and SLAT(−) (n = 3) strains isolated from clinical bovine mastitis cases. After 1, 6, and 24 h, cells were harvested and mRNA expression of inflammatory mediators (TNF-α, IL-1β, IL-8, RANTES, SAA, lactoferrin, GM-CSF, COX-2, and TLR-2) was evaluated by reverse transcription and quantitative PCR. Transcription (ΔΔCT) of most measured factors was induced in challenged bMEC for 6 and 24 h. Interestingly, relative mRNA levels were higher (P<0.05) in response to SLAT(+) compared to SLAT(−) strains. In addition, adhesion assays on bMEC also showed significant differences between SLAT(+) and SLAT(−) strains. The present study clearly shows that these two S. aureus strain types cause a differential immune response of bMEC and exhibit differences in their adhesion capacity in vitro. This could reflect differences in the severity of mastitis that the different strain types may induce.
Collapse
Affiliation(s)
- Christina Zbinden
- Veterinary Physiology, Vetsuisse Faculty University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Bünter
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Olga Wellnitz
- Veterinary Physiology, Vetsuisse Faculty University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Gonzalez D, Rimondi A, Perez Aguirreburualde M, Mozgovoj M, Bellido D, Wigdorovitz A, Dus Santos M. Quantitation of cytokine gene expression by real time PCR in bovine milk and colostrum cells from cows immunized with a bovine rotavirus VP6 experimental vaccine. Res Vet Sci 2013; 95:703-8. [DOI: 10.1016/j.rvsc.2013.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/04/2013] [Accepted: 03/24/2013] [Indexed: 10/26/2022]
|
23
|
Beecher C, Daly M, Ross RP, Flynn J, McCarthy TV, Giblin L. Characterization of the bovine innate immune response in milk somatic cells following intramammary infection with Streptococcus dysgalactiae subspecies dysgalactiae. J Dairy Sci 2012; 95:5720-9. [PMID: 22884338 DOI: 10.3168/jds.2012-5338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/14/2012] [Indexed: 02/03/2023]
Abstract
The innate immune response of milk somatic cells in cows to Streptococcus dysgalactiae ssp. dysgalactiae was investigated by deliberate intramammary challenge. Cows were challenged with 2,500 colony-forming units of Strep. dysgalactiae DPC 5435, previously isolated from a clinical mastitis case. Eight of the 9 cows treated showed clinical signs of mastitis (swollen udders, increased somatic cell score, and clotted milk) within 1 wk of challenge. Messenger RNA levels of IL-1β and toll-like receptor 4 (TLR4) in milk somatic cells increased approximately 40 fold within 48 h of infusion, whereas tumor necrosis factor α increased 16 fold within the same time frame. Interestingly, cows homozygous for the G allele of the C-X-C chemokine receptor type 1 (CXCR1)-777 polymorphism had higher IL-8 and CXCR1 transcript abundance at 24h postinfusion compared with cows homozygous for the C allele. The difference in expression of these genes at this critical time point may influence the severity of disease within different genotypes.
Collapse
Affiliation(s)
- C Beecher
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | | | | |
Collapse
|
24
|
Fijałkowski K, Czernomysy-Furowicz D, Nawrotek P, Karakulska J. Influence of S. aureus exosecretions on cytokine profile in bovine leukocyte cultures in vitro. Res Vet Sci 2012; 93:1179-84. [PMID: 22832006 DOI: 10.1016/j.rvsc.2012.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022]
Abstract
The aim of the research was to evaluate the in vitro effect of Staphylococcus aureus exosecretions on the expression of genes encoding IL-2 and IL-12 and secretion of IFN-γ and TNF-α, in bovine leukocyte cultures in vitro. The research was based on 30 S. aureus isolates collected from milk samples from cows with clinical mastitis. Supernatants prepared from the bacterial liquid cultures, which were used to treat leukocytes, were divided into three groups: one with superantigen-like properties, one with leukotoxic-like properties and the one without superantigen or leukotoxic-like properties. The MNC, PMN and MIX (consisted of MNC and PMN leukocytes) cultures were grown and treated with the supernatants. The work shows that the effect on the cytokine gene expression and cytokine secretion caused by S. aureus exosecretions is mainly due to the presence of virulence factors connected with superantigen-like activity and less with leukotoxic-like activity whereas exosecretions of other activity are not or only slightly involved in this process.
Collapse
Affiliation(s)
- Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Doktora Judyma 24, 71-466 Szczecin, Poland.
| | | | | | | |
Collapse
|
25
|
The innate immune response of the bovine mammary gland to bacterial infection. Vet J 2012; 192:148-52. [PMID: 22498784 DOI: 10.1016/j.tvjl.2011.09.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 09/16/2011] [Accepted: 09/21/2011] [Indexed: 01/18/2023]
Abstract
Intra-mammary (IM) bacterial infection in cattle can result in clinical outcomes that range from being acute and life-threatening to those that are chronic and sub-clinical. The typical bacteria involved in IM bacterial infections activate the mammary immune system in different ways which can influence the severity of the outcome. A clear understanding of the mechanisms that activate and regulate this response is central to the development of effective preventative and treatment regimes. This review focuses on the different immune responses of the bovine mammary gland to common mastitis-causing pathogens. There is special emphasis on comparing the responses to Escherichia coli and Staphylococcus aureus infections, as these are typically associated, respectively, with acute/severe and chronic/sub-clinical forms of the disease.
Collapse
|
26
|
Ma JL, Zhu YH, Zhang L, Zhuge ZY, Liu PQ, Yan XD, Gao HS, Wang JF. Serum concentration and mRNA expression in milk somatic cells of toll-like receptor 2, toll-like receptor 4, and cytokines in dairy cows following intramammary inoculation with Escherichia coli. J Dairy Sci 2012; 94:5903-12. [PMID: 22118081 DOI: 10.3168/jds.2011-4167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/27/2011] [Indexed: 01/01/2023]
Abstract
The objective of the current study was to investigate the toll-like receptors (TLR), including the soluble forms sTLR2 and sTLR4, involved in innate immune responses of dairy cows to experimentally induced Escherichia coli mastitis. Six clinically healthy Holstein dairy cows received an intramammary inoculation of E. coli O111:K58 between 63 and 83 d postpartum. Concentrations of sTLR2 and sTLR4, the proinflammatory cytokines IL-6 and tumor necrosis factor-α (TNF-α), and acute phase proteins serum amyloid A (SAA) and haptoglobin (Hp) in blood were measured by ELISA. Furthermore, 10mL of milk was collected from challenged quarters immediately before inoculation and at 6, 12, 24, 48, and 72 h after inoculation, and mRNA expression of selected genes, including TLR2, TLR4, IL-1β, IL-6, TNF-α, and IL-8, was quantified by real-time PCR. Escherichia coli intramammary infection elicited a decrease in the circulating levels of leukocytes. Rectal temperature was elevated at 6h postinoculation (PI). Similarly, the serum concentrations of TNF-α, IL-6, and SAA increased at 6h PI. However, serum concentrations of sTLR2, sTLR4, and Hp did not differ after challenge. The mRNA expression of TLR2, IL-1β, and IL-8 in milk somatic cells increased at 12h PI, whereas a decreased IL-6 mRNA expression was detected from 6 to 48 h PI. In conclusion, we found that TLR2 mRNA expression increased in milk somatic cells collected from infected quarters of cows challenged with E. coli, whereas the concentrations of sTLR2 and sTLR4 remained unchanged after challenge. Thus, sTLR2 and sTLR4 may protect the host by sequestrating pathogen-associated molecular patterns during E. coli mastitis.
Collapse
Affiliation(s)
- J L Ma
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Molecular Cloning, Characterization, Polymorphism, and Association Study of the Interleukin-2 Gene in Indian Crossbred Cattle. Biochem Genet 2011; 49:638-44. [DOI: 10.1007/s10528-011-9438-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
|
28
|
Le Maréchal C, Thiéry R, Vautor E, Le Loir Y. Mastitis impact on technological properties of milk and quality of milk products—a review. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0009-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Nagahata H, Kawai H, Higuchi H, Kawai K, Yayou K, Chang CJ. Altered leukocyte responsiveness in dairy cows with naturally occurring chronic Staphylococcus aureus mastitis. J Vet Med Sci 2011; 73:885-94. [PMID: 21415573 DOI: 10.1292/jvms.10-0379] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in inflammatory parameters, leukocyte surface markers, functional responses and cytokine mRNA expression of leukocytes of dairy cows with naturally occurring chronic Staphylococcus aureus (S. aureus) mastitis and healthy cows were determined to elucidate the leukocyte responses to S. aureus infection of the mammary gland. Increased values in inflammatory parameters and matrix metalloproteinase activities in milk revealed the characteristics of cows with chronic mastitis. Expression of L-selectin and CD18 molecules on neutrophils and proportion of CD8 cells in milk from cows with S. aureus mastitis were significantly (P<0.05) increased compared with those found in healthy cows. The FcR-stimulated CL response of blood neutrophils was significantly (P<0.05) decreased in cows with S. aureus mastitis. Significantly (P<0.05) decreased mitogenic responses of lymphocytes were found in cows with S. aureus mastitis; however, the values were not restored to those of healthy cows when stimulated with both mitogens and the cytokine IL-1β. The mRNA expression of TNF-α, IL-1β and IL-8 on milk leukocytes from cows with S. aureus was found to be increased compared with that of healthy cows. The changes of immune responses found in cows with S. aureus mastitis appear to be influenced by the severity and duration of inflammation in infected quarters. The down-regulation of the leukocyte functions found in cows with S. aureus mastitis appears to be associated with the progress of the chronic stage of S. aureus mastitis.
Collapse
Affiliation(s)
- Hajime Nagahata
- Department of Animal Health, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Le Maréchal C, Jardin J, Jan G, Even S, Pulido C, Guibert JM, Hernandez D, François P, Schrenzel J, Demon D, Meyer E, Berkova N, Thiéry R, Vautor E, Le Loir Y. Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis. Vet Res 2011; 42:35. [PMID: 21324116 PMCID: PMC3052181 DOI: 10.1186/1297-9716-42-35] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/15/2011] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a major cause of mastitis in ruminants. In ewe mastitis, symptoms range from subclinical to gangrenous mastitis. S. aureus factors or host-factors contributing to the different outcomes are not completely elucidated. In this study, experimental mastitis was induced on primiparous ewes using two S. aureus strains, isolated from gangrenous (strain O11) or subclinical (strain O46) mastitis. Strains induced drastically distinct clinical symptoms when tested in ewe and mice experimental mastitis. Notably, they reproduced mild (O46) or severe (O11) mastitis in ewes. Ewe sera were used to identify staphylococcal immunoreactive proteins commonly or differentially produced during infections of variable severity and to define core and accessory seroproteomes. Such SERological Proteome Analysis (SERPA) allowed the identification of 89 immunoreactive proteins, of which only 52 (58.4%) were previously identified as immunogenic proteins in other staphylococcal infections. Among the 89 proteins identified, 74 appear to constitute the core seroproteome. Among the 15 remaining proteins defining the accessory seroproteome, 12 were specific for strain O11, 3 were specific for O46. Distribution of one protein specific for each mastitis severity was investigated in ten other strains isolated from subclinical or clinical mastitis. We report here for the first time the identification of staphylococcal immunogenic proteins common or specific to S. aureus strains responsible for mild or severe mastitis. These findings open avenues in S. aureus mastitis studies as some of these proteins, expressed in vivo, are likely to account for the success of S. aureus as a pathogen of the ruminant mammary gland.
Collapse
Affiliation(s)
- Caroline Le Maréchal
- INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rinaldi M, Li RW, Capuco AV. Mastitis associated transcriptomic disruptions in cattle. Vet Immunol Immunopathol 2010; 138:267-79. [PMID: 21040982 DOI: 10.1016/j.vetimm.2010.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mastitis is ranked as the top disease for dairy cattle based on traditional cost analysis. Greater than 100 organisms from a broad phylogenetic spectrum are able to cause bovine mastitis. Transcriptomic characterization facilitates our understanding of host-pathogen relations and provides mechanistic insight into host resistance to mastitis. In this review, we discuss effector mechanisms and transcriptomic changes within the mammary gland in response to experimental infections. We compare temporal, spatial and pathogen-specific local transcriptomic disruptions in the mammary gland as well as pathogen-induced systemic responses and transcriptional changes in distant organs. We attempt to explain why studies on transcriptomic changes during critical physiological periods and in response to non-mastitic pathogens may have important implications for mastitis studies. Future perspectives on revealing bidirectional molecular cross-talk between mastitis pathogens and host cells using cutting-edge genomic technologies are also discussed.
Collapse
Affiliation(s)
- Manuela Rinaldi
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium.
| | | | | |
Collapse
|
32
|
Skelding A, Schenkel FS, Sharma BS, Verschoor C, Pant S, Biggar G, Boermans H, Karrow N. Identification of single nucleotide polymorphisms in the bovine interleukin-12 and interleukin-23 receptor genes and their associations with health and production traits in Holstein cows. J Dairy Sci 2010; 93:4860-71. [PMID: 20855021 DOI: 10.3168/jds.2009-2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/09/2010] [Indexed: 11/19/2022]
Abstract
Interleukin-12 (IL-12) and interleukin-23 (IL-23) are proinflammatory cytokines produced by macrophages and dendritic cells in response to infection with intracellular pathogens. The IL-12 receptor (IL-12R) is a heterodimer composed of 2 subunits, β1 and β2. The IL-23 receptor (IL-23R) is a heterodimer composed of the IL-12Rβ1 subunit and a unique IL-23R subunit. Given the importance of IL-12 and IL-23 for modulating inflammation and the host immune response, the IL-12 and IL-23 receptor genes may be suitable candidate genes for studying disease resistance in dairy cattle. We hypothesize that single nucleotide polymorphisms (SNP) exist within these genes and that they contribute to variation in health and production traits in dairy cattle. To investigate this, a selective DNA pool was constructed using bull semen based on the estimated breeding values for somatic cell score (SCS), an indicator trait used to achieve genetic improvement for resistance to mastitis. Gene segments were amplified from this pool by PCR and the amplicons were sequenced to reveal SNP. A total of 10 SNP, including 2 in IL-12Rβ1, 5 in IL-12Rβ2, and 3 in IL-23R were identified. The SNP (n=5) were found in the 5' untranslated region (UTR) putative promoter regions of the genes, and SNP IL-23R c.1714A>C was a nonsynonymous SNP. Canadian Holstein bulls (n=492) were genotyped using Sequenom MassARRAY (Sequenom Inc., San Diego, CA). No association was found with SCS based on bull deregressed estimated breeding values for SCS; however, associations of SNP in the IL-12Rβ2 gene (c.-511A>G, c.87A>G, c.2957A>C) were found with milk and protein yield. Further investigation will be required to elucidate the biological and practical relevance of these SNP.
Collapse
Affiliation(s)
- A Skelding
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bruno DR, Rossitto PV, Bruno RGS, Blanchard MT, Sitt T, Yeargan BV, Smith WL, Cullor JS, Stott JL. Differential levels of mRNA transcripts encoding immunologic mediators in mammary gland secretions from dairy cows with subclinical environmental Streptococci infections. Vet Immunol Immunopathol 2010; 138:15-24. [PMID: 20656361 DOI: 10.1016/j.vetimm.2010.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/03/2010] [Accepted: 06/11/2010] [Indexed: 01/07/2023]
Abstract
Dry-off, and the period around parturition, are associated with increased susceptibility to intramammary infections in dairy cows. The immunological profiles of mammary gland secretions during these periods are not well described. The objective of the present study was to better characterize association(s) between chronic subclinical Environmental Streptococci infections at dry-off and relative levels of mRNA transcripts encoding multiple immunologic mediators present in cells derived from mammary gland secretions at dry-off and continuing through parturition. The chronic subclinical bacterial infections in the present study were characterized by multiple isolations of Streptococcus species and elevated SSC for a minimum of three weeks prior to dry-off. The majority of differences between principal and control quarters were identified at dry-off. Transcript levels of IL-17, IL2Rα and iNOS were increased while pro-inflammatory cytokine IL-6, and the regulatory cytokine IL-10, were reduced. Following antibiotic treatment of mammary glands, IL-17 transcripts remained elevated over the course of the study, indicative of a persistent insult. IL-4 transcript levels were modestly elevated at 7 days following dry-off and significantly elevated at 14 days, consistent with activated T(H)1 and T(H)2 lymphocytes in the principal quarters, respectively. From a temporal perspective, transcript levels of IL-8 decreased in all animals through the dry-off period animals and returned to pre-dry-off levels at parturition; levels of iNOS peaked at parturition. Five of the six principal cows experienced recurrent bacterial mastitis during the subsequent lactation; four were in the same quarter as was initially infected with Streptococcus and three of these four were due to coliforms. Taken together, this apparent chronic susceptibility of select mammary glands to bacterial infection would suggest a physiologic and/or immunologic dysfunction. Identification of factor(s) that contribute to the predisposition of mammary glands to developing mastitis should facilitate development of new control strategies.
Collapse
Affiliation(s)
- Daniela R Bruno
- Texas Veterinary Medical Diagnostic Laboratory, Texas A&M, Amarillo, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu C, Gong R, Guo A, Chen H. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine 2010; 28:4038-44. [DOI: 10.1016/j.vaccine.2010.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 03/28/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
|
35
|
Prakash V, Bhattachar TK, Pandey O. Genetic Polymorphism Study of Promoter Region of Interleukin-2 Gene and its Association with Certain Milk Associated Traits in Indian Crossbred Cattle. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jmolgene.2010.15.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats. Vet Immunol Immunopathol 2009; 135:208-17. [PMID: 20060596 DOI: 10.1016/j.vetimm.2009.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
Abstract
To study gene expression within the mammary glands of dairy goats with mastitis, mRNA was collected from milk somatic cells (MSCs) of left udder halves challenged with Staphylococcus aureus and right udder halves infused with PBS, as control, at different time points (0, 12, 24 and 48h post-infection). Transcriptional profiles were investigated using bovine cDNA microarrays; of the total 288 differentially expressed genes identified with ANOVA analysis (False Discovery Rate=0.05, 1.5-fold change), 26, 36 and 16 genes were down-regulated at 12, 24 and 48h post-infection, respectively, while 60, 141 and 9 genes were up-regulated at the same corresponding time points. The expression profiles clearly changed at 24h post-infection with 177 genes significantly altered, corresponding to a 10-fold increase of S. aureus bacterial count in milk from infected udders. Differential expression of selected genes (CD2BP2, BCAP31, MHCII, FOSL2, MAPK13, ILT5 and JUNB) was also confirmed by real-time PCR at the different time points considered, showing high correlation with the microarray measurements and high reliability of the microarray analyses. The most readily inducible classes of genes in caprine MSCs infected with S. aureus were pro-inflammatory cytokines, chemokines and their receptors; IL-1alpha, lymphotoxin alpha, granulocyte chemotactic protein (CXCL6), and IL-2 receptor gamma were all up-regulated in infected udders versus healthy controls. This study identified a number of differentially expressed genes induced by S. aureus intramammary infection and demonstrates the intricacy of the patterns of gene expression that influence host response to a complex pathogen of significant relevance to both human and veterinary medicine.
Collapse
|
37
|
Effect of a biological response modifier on expression of CD14 receptor and tumor necrosis factor-alpha in Staphylococcus aureus-infected mammary glands at drying off. Vet Immunol Immunopathol 2009; 132:237-42. [DOI: 10.1016/j.vetimm.2009.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/09/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
|
38
|
Fonseca I, Silva PV, Lange CC, Guimarães MFM, Weller MMDCA, Sousa KRS, Lopes PS, Guimarães JD, Guimarães SEF. Expression profile of genes associated with mastitis in dairy cattle. Genet Mol Biol 2009; 32:776-81. [PMID: 21637453 PMCID: PMC3036910 DOI: 10.1590/s1415-47572009005000074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 07/08/2009] [Indexed: 11/21/2022] Open
Abstract
In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expression was higher in the group of BW and Gyr cows with mastitis compared to animals free of infection from both breeds (p < 0.05). It was also higher in BW Holstein animals with clinical mastitis (p < 0.001), but it was not significant when Gyr cows with and without mastitis were compared (0.05 < p < 0.10). Among healthy cows, BW Holstein animals tended to present a higher expression of all genes studied, with a significant difference for the IL-2 and IFN- γ genes (p < 0.001). For animals with mastitis no significant difference in gene expression was observed between the two breeds. These findings suggest that animals with mastitis develop a preferentially cell-mediated immune response. Further studies including larger samples are necessary to better characterize the gene expression profile in cows with mastitis.
Collapse
Affiliation(s)
- Isabela Fonseca
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Oviedo-Boyso J, Bravo-Patiño A, Cajero-Juárez M, Valdez-Alarcón JJ, Baizabal-Aguirre VM. TNF-alpha reduces the level of Staphylococcus epidermidis internalization by bovine endothelial cells. FEMS Microbiol Lett 2009; 292:92-9. [PMID: 19191876 DOI: 10.1111/j.1574-6968.2008.01469.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus epidermidis is an environmental opportunistic pathogen associated with bovine intramammary infections. In bacterial infections, the endothelial tissue plays an important role during inflammation and it is the target of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha). Therefore, this work was designed to explore the effect of TNF-alpha on the interaction of S. epidermidis with bovine endothelial cells (BEC). We show that cell signaling activated by TNF-alpha caused a marked reduction in the number of intracellular S. epidermidis, suggesting that molecules participating in this pathway were involved in the internalization of this bacterium. We also found that S. epidermidis internalization was not associated with basal levels of nuclear factor kappa B (NF-kappaB) activity because the intracellular number of bacteria recovered after treating BEC with the NF-kappaB inhibitors, SN50 or BAY 11-7083, was similar to that of the untreated control. Interestingly, inhibition of the basal activity of JNK with SP600125 and p38 with SB203580 caused a decrease in the number of intracellular S. epidermidis. These results suggest that activation of the signaling pathway initiated by TNF-alpha could play an important role in the phagocytosis of this bacterium. However, the basal activity of NF-kappaB was shown not to be important for the internalization process of S. epidermidis.
Collapse
Affiliation(s)
- Javier Oviedo-Boyso
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico
| | | | | | | | | |
Collapse
|
40
|
Bannerman DD. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci 2008; 87:10-25. [PMID: 18708595 DOI: 10.2527/jas.2008-1187] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mastitis is a highly prevalent and costly disease of dairy cows that is commonly caused by intramammary bacterial infection. The innate immune response to bacterial penetration of the mammary gland is evoked within hours of infection, and the rapidity and magnitude of this response have been demonstrated to influence the resolution of this disease. Cytokines and other mediators of inflammation are known to play critical roles in the innate immune response to intramammary infection. The objectives of this review are to summarize the current understanding of the cytokine response to intramammary infection, highlight recent findings identifying differences in the cytokine response to various bacterial pathogens, and discuss future research directions that will increase our knowledge of the role of inflammatory mediators in predicting and governing the outcome of mastitis.
Collapse
Affiliation(s)
- D D Bannerman
- Bovine Functional Genomics Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
41
|
Inflammatory breast diseases during lactation: health effects on the newborn-a literature review. Mediators Inflamm 2008; 2008:298760. [PMID: 18437232 PMCID: PMC2324165 DOI: 10.1155/2008/298760] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/31/2008] [Indexed: 01/22/2023] Open
Abstract
Breastfeeding-associated inflammatory breast diseases appear especially during the first twelve weeks postpartum and are the most common reason for early cessation of breastfeeding. It also becomes increasingly evident that these inflammatory mammary diseases are triggered or perpetuated in a large part by psychosocial stress. Immunological processes taking place during this cascade in the mammary gland and consequences for the breastfeed newborn are mostly yet unknown. This review summarizes insights from studies on modulation of cytokine levels in breast milk during inflammatory processes like milk stasis and mastitis systematically. It also gives an overview on possible pathological effects, which these cytokine changes in the breast milk might have on the newborn.
Collapse
|
42
|
Lutzow YCS, Donaldson L, Gray CP, Vuocolo T, Pearson RD, Reverter A, Byrne KA, Sheehy PA, Windon R, Tellam RL. Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet Res 2008; 4:18. [PMID: 18513449 PMCID: PMC2430192 DOI: 10.1186/1746-6148-4-18] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 06/02/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mastitis in dairy cattle results from infection of mammary tissue by a range of micro-organisms but principally coliform bacteria and Gram positive bacteria such as Staphylococcus aureus. The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. Moreover, the effect of infection on the presence of bioactive innate immune proteins in milk is also unclear. The nature of these responses may determine the susceptibility of the tissue and its ability to resolve the infection. RESULTS Transcriptional profiling was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after brief and graded intramammary challenges with S. aureus. These limited challenges had no significant effect on the expression pattern of the gene encoding beta-casein but caused coordinated up-regulation of a number of cytokines and chemokines involved in pro-inflammatory responses. In addition, the enhanced expression of two genes, S100 calcium-binding protein A12 (S100A12) and Pentraxin-3 (PTX3) corresponded with significantly increased levels of their proteins in milk from infected udders. Both genes were shown to be expressed by mammary epithelial cells grown in culture after stimulation with lipopolysaccharide. There was also a strong correlation between somatic cell count, a widely used measure of mastitis, and the level of S100A12 in milk from a herd of dairy cows. Recombinant S100A12 inhibited growth of Escherichia coli in vitro and recombinant PTX3 bound to E. coli as well as C1q, a subunit of the first component of the complement cascade. CONCLUSION The transcriptional responses in infected bovine mammary tissue, even at low doses of bacteria and short periods of infection, probably reflect the combined contributions of gene expression changes resulting from the activation of mammary epithelial cells and infiltrating immune cells. The secretion of a number of proinflammatory cytokines and chemokines from mammary epithelial cells stimulated by the bacteria serves to trigger the recruitment and activation of neutrophils in mammary tissue. The presence of S100A12 and PTX3 in milk from infected udder quarters may increase the anti-bacterial properties of milk thereby helping to resolve the mammary tissue infection as well as potentially contributing to the maturation of the newborn calf epithelium and establishment of the newborn gut microbial population.
Collapse
|
43
|
Oviedo-Boyso J, Barriga-Rivera JG, Valdez-Alarcón JJ, Bravo-Patiño A, Cárabez-Trejo A, Cajero-Juárez M, Baizabal-Aguirre VM. Internalization of Staphylococcus aureus by bovine endothelial cells is associated with the activity state of NF-kappaB and modulated by the pro-inflammatory cytokines TNF-alpha and IL-1beta. Scand J Immunol 2008; 67:169-76. [PMID: 18201371 DOI: 10.1111/j.1365-3083.2007.02056.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial internalization is an important process in the pathogenesis of infectious diseases in which nuclear factor kappaB (NF-kappaB) plays a prominent role. We present pharmacological evidence indicating that in bovine endothelial cells (BEC) the internalization of Staphylococcus aureus, a pathogenic bacterium that causes mastitis in bovine cattle, was associated with the activation of NF-kappaB. The internalization of S. aureus increased when BEC were stimulated with alpha-tumour necrosis factor (TNF-alpha) or beta-interleukin 1 (IL-1beta) which are known activators of NF-kappaB. SN50 (an inhibitor peptide of NF-kappaB nuclear translocation) and BAY 11-7083 (a chemical that inhibits the IkappaBalpha phosphorylation) caused significant reduction in S. aureus intracellular number, indicating that its internalization was associated with the NF-kappaB activity. Furthermore, specific inhibition of c-Jun N-terminal kinase with SP600125 (SP) or p-38 with SB203580 (SB) did not cause any change in the S. aureus intracellular number compared with the untreated control. Finally, TNF-alpha treatment of BEC after the addition of both SP and SB, induced a significant increase in S. aureus internalization above the control value. These data indicate that NF-kappaB activity is associated with S. aureus internalization and suggest that this transcription factor may play a role in the pathophysiology of bovine mastitis caused by this bacterium.
Collapse
Affiliation(s)
- J Oviedo-Boyso
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México
| | | | | | | | | | | | | |
Collapse
|
44
|
Tao W, Mallard B. Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows. Vet Immunol Immunopathol 2007; 120:201-11. [PMID: 17658619 DOI: 10.1016/j.vetimm.2007.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/08/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
To study pathway specific gene expression within the immune-endocrine axis of dairy cows with Staphylococcus aureus mastitis, mRNA was collected from blood mononuclear cells (BMCs) and milk somatic cells (MSCs) of cows (n=7) identified as culture positive for S. aureus and their matched negative control cows (n=7) with no evidence of S. aureus mastitis. Labeled cDNA probes derived from BMCs and MSCs of infected and healthy cows were applied to a bovine immune-endocrine cDNA array containing 167 genes. Genes with a log(2) ratio> or =0.5 were considered to be up-regulated and genes with a log(2) ratio< or =-0.5 to be down-regulated. In total, 22 genes were differentially displayed in BMCs and 16 genes in MSCs of case versus controls. Expression of selected genes in BMCs and MSCs were confirmed by real-time PCR. The RT-PCR results were highly correlated with microarray measurements. Some of these genes, such as interleukin (IL)-8 have been previously implicated in other bacterial diseases, and are known to regulate immune responses; whereas, others may reflect novel pathways or genes involved in progressive mammary gland disease. For example, IL-18 was up-regulated in BMCs but not MSCs of mastitic quarters, while IL-17 was more highly expressed in MSCs compared to BMCs. This study identified a number of differentially expressed genes associated with bovine S. aureus mastitis and demonstrates the intricacy of the patterns of gene expression that influence host response to a complex pathogen of significant relevance to both human and veterinary medicine.
Collapse
Affiliation(s)
- Wenjing Tao
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
45
|
Sohn EJ, Paape MJ, Connor EE, Bannerman DD, Fetterer RH, Peters RR. Bacterial lipopolysaccharide stimulates bovine neutrophil production of TNF-α, IL-1β, IL-12 and IFN-γ. Vet Res 2007; 38:809-18. [PMID: 17727806 DOI: 10.1051/vetres:2007033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 05/14/2007] [Indexed: 11/15/2022] Open
Abstract
After intramammary infection, polymorphonuclear neutrophil leukocytes (PMN) are the first cells recruited into the mammary gland. Rapid recruitment of and bacterial phagocytosis and killing by PMN are the most effective defenses against establishment of bacterial infection. In addition to their phagocytic and bactericidal properties, PMN may play a key supportive role through secretion of cytokines during the innate immune response. We sought to determine whether bovine PMN produce cytokines in response to stimulation by lipopolysaccharide (LPS). To investigate the effects of LPS on the expression of cytokines secreted by bovine PMN, we measured the expression of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-12, and interferon (IFN)-gamma by ELISA after stimulation with different concentrations of LPS, and secretion of IL-8 after co-stimulation with LPS and either TNF-alpha or IL-1beta. Bovine PMN were shown to secrete TNF-alpha , IL-1beta, IL-12, IL-8 and IFN-gamma in response to LPS. Co-incubation of PMN with LPS and TNF-alpha increased secretion of IL-8 when compared to LPS alone. It was concluded that LPS stimulation up-regulates the secretion of cytokines by bovine PMN, and that co-incubation of LPS with TNF-alpha had an additive effect on the secretion of IL-8. These data show that bovine PMN, in addition to their phagocytic and bactericidal properties, may play a supportive role in the innate immune response to infection by Gram-negative bacteria through their ability to produce immuno-regulating cytokines.
Collapse
Affiliation(s)
- Eun J Sohn
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
46
|
Oviedo-Boyso J, Valdez-Alarcón JJ, Cajero-Juárez M, Ochoa-Zarzosa A, López-Meza JE, Bravo-Patiño A, Baizabal-Aguirre VM. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 2007; 54:399-409. [PMID: 16882453 DOI: 10.1016/j.jinf.2006.06.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/26/2006] [Accepted: 06/15/2006] [Indexed: 01/15/2023]
Abstract
Mastitis (mammary gland inflammation) is one of the most important bovine diseases causing economic losses to dairy producers. Mammary gland inflammation is a consequence of the activity of a number of cell and soluble factors that function together to eliminate invading microorganisms. The factors involved in this inflammatory response differ depending on the infectious agent. This review analyzes the factors involved in the immunologic mechanisms against the main pathogenic bacteria causing mastitis, and emphasizes the innate immune response of the mammary gland. Knowledge, at the molecular level, of the mammary gland immune response during infection by pathogenic bacteria is fundamental to the design of effective therapies to control and eradicate bovine mastitis.
Collapse
Affiliation(s)
- Javier Oviedo-Boyso
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Apdo. Postal 53, Administración Chapultepec, C.P. 58262 Morelia, Michoacán, México
| | | | | | | | | | | | | |
Collapse
|
47
|
Nguyen H, Sankaran S, Dandekar S. Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes. Virology 2006; 354:58-68. [PMID: 16876223 DOI: 10.1016/j.virol.2006.04.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/17/2006] [Accepted: 04/24/2006] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) Core protein is implicated in the development of hepatocellular carcinoma (HCC). We utilized a HepG2 human hepatocyte cell line with inducible expression of HCV Core protein (HCV-1b) to investigate the early effects of Core protein on hepatocyte gene expression and to identify molecular processes modulated by the Core protein. A significant change was observed in the expression of 407 genes, which included genes regulating apoptosis, immune response, and cell cycle. Some of these genes were previously known to be tumor markers. The decreased expression of chemo-attractants such as TNFSF10, CCL20, and osteopontin was observed, which suggested that HCV Core expression could lead to suppression of inflammatory response as well as trafficking of macrophages and neutrophils to the site of HCV infection. An increased expression of anti-apoptosis factors including PAK2, API5, BH1, Tax1BP1, DAXX, and TNFAIP3/A20 was observed. Some of these genes were also linked to the regulation of NFKB activation and that the alteration of their expression levels, by HCV Core, might lead to the suppression NFKB activation of inflammatory responses. Our data suggested that Core expression may contribute to the viral persistence by protecting infected hepatocytes from cell death by the suppressing apoptosis and inflammatory reaction to HCV viral infection.
Collapse
Affiliation(s)
- Hau Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, Topper Hall, Room 3146, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
48
|
McClenahan DJ, Sotos JP, Czuprynski CJ. Cytokine response of bovine mammary gland epithelial cells to Escherichia coli, coliform culture filtrate, or lipopolysaccharide. Am J Vet Res 2006; 66:1590-7. [PMID: 16261834 DOI: 10.2460/ajvr.2005.66.1590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To define the cytokine response of a cultured mammary gland epithelial cell line (ie, Mac-T) when incubated with Escherichia coli or its products. SAMPLE POPULATION Mac-T cells and E coli from cows with mastitis. PROCEDURE Mac-T cells were incubated with E coli or its products. The cytokine response of Mac-T cells to these treatments was quantified by measuring mRNA content of interleukin (IL)-1alpha, IL-1beta, IL-8, and tumor necrosis factor (TNF)-alpha by use of a quantitative reverse transcriptase-polymerase chain reaction assay. The amount of TNF-alpha secreted was also measured. RESULTS Treatment with E coli or its products resulted in significant increases in IL-1alpha, IL-8, and TNF-alpha mRNA content in Mac-T cells. This increase was reversible when culture filtrate was incubated with polymyxin B. The amount of IL-1beta mRNA in Mac-T cells increased only slightly over baseline after treatment with E coli or its products, but this increase was not diminished by incubation of E coli filtrate with polymyxin B. CONCLUSIONS AND CLINICAL RELEVANCE Incubation of Mac-T cells with E coli or its products resulted in increased amounts of IL1alpha, IL-8, and TNF-alpha mRNA. Inhibition of this response by incubation of culture filtrate with polymyxin B suggested that lipopolysaccharide was the main bacterial product that stimulated the cytokine response. The small increase in IL-1beta content in Mac-T cells incubated with E coli or its products suggested that this cytokine had a smaller role in the Mac-T cell response to E coli.
Collapse
Affiliation(s)
- David J McClenahan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
49
|
Bannerman DD, Chockalingam A, Paape MJ, Hope JC. The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet Immunol Immunopathol 2005; 107:201-15. [PMID: 15970335 DOI: 10.1016/j.vetimm.2005.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/15/2005] [Accepted: 04/27/2005] [Indexed: 01/15/2023]
Abstract
Almost half of all clinical cases of mastitis are caused by Gram-negative bacteria. Among these bacteria, intramammary infection by Pseudomonas aeruginosa remains one of the most refractory to antibiotic therapy. The ability to recognize potentially harmful pathogens whether previously encountered or not, as well as the induction of an initial pro-inflammatory response to these pathogens, are critical components of host innate immunity. Although the innate immune response to another Gram-negative mastitis-causing pathogen, Escherichia coli, has been well-characterized, little is known about the response to other Gram-negative bacteria, including P. aeruginosa. The objective of the current study was to characterize the systemic and localized bovine innate immune response to intramammary infection with P. aeruginosa. The contralateral quarters of ten mid-lactating Holstein cows were challenged with either saline or P. aeruginosa. Following the establishment of infection, milk samples were collected and assayed for changes in cytokine and growth factor concentrations, complement activation, and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), two accessory molecules involved in host recognition of Gram-negative bacteria. Initial increases in milk somatic cell counts were evident within 12h of experimental challenge and remained elevated for >or=3 weeks. Increased permeability of the mammary gland vasculature, as evidenced by elevated milk levels of BSA, was initially observed 20 h post-infection and persisted for 2 weeks. Within 32 h of challenge, increased levels of IL-8, TNF-alpha, IL-10, and IL-12 were detected, however, the elevated levels of these cytokines were not sustained for longer than a 24h period. In contrast, elevations in IL-1beta, IFN-gamma, TGF-alpha, TGF-beta1, TGF-beta2, sCD14, LBP, and activated complement factor 5 (C5a) were sustained for periods of >48 h. Systemic changes were characterized by elevated body temperature, induction of the acute phase protein synthesis of serum amyloid A and LBP, and a transient decrease in circulating neutrophils and lymphocytes. Together, these data demonstrate the capability of the mammary gland to mount a robust innate immune response to P. aeruginosa that is characterized by the induction of pro-inflammatory cytokines, complement activation, and increased levels of accessory molecules involved in Gram-negative bacterial recognition.
Collapse
Affiliation(s)
- Douglas D Bannerman
- Bovine Functional Genomics Laboratory, USDA-Agricultural Research Service, ANRI, BARC-East, Bldg. 1040, Room #2, Beltsville, MD 20705-2350, USA.
| | | | | | | |
Collapse
|
50
|
Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 2005; 31:72-86. [PMID: 15882946 DOI: 10.1016/j.cyto.2005.02.010] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 02/10/2005] [Accepted: 02/14/2005] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24h elicited a marked increase in mRNA expression for IL-1beta, IL-8, TNFalpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway, although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1beta, IL-8, TNFalpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components.
Collapse
Affiliation(s)
- Ylva Strandberg
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia 4067, QLD, Australia
| | | | | | | | | | | |
Collapse
|