1
|
Espinoza I, García Iglesias MJ, Oleaga Á, de Garnica García MG, Balseiro A. Phenotypic Characterization of Encephalitis in the BRAINS of Badgers Naturally Infected with Canine Distemper Virus. Animals (Basel) 2023; 13:3360. [PMID: 37958115 PMCID: PMC10647365 DOI: 10.3390/ani13213360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Canine distemper virus (CDV) affects a huge diversity of domestic and wild carnivores, with increasing numbers of mortality events worldwide. The local cell-mediated immune response elicited against a natural infection is an important factor in determining the outcome of CDV infection. Therefore, the purposes of this study were to describe the local immune response within the central nervous systems (CNSs) of seven badgers naturally infected with CDV in Asturias (Atlantic Spain) and to determine the phenotype and distribution of microglial cells, T and B lymphocytes, and astrocytes in the foci of gliosis located in the thalamus and cerebellum using immunohistochemistry. The immunohistochemical assessment demonstrated the presence of Iba1-positive microglia and GFAP-positive astrocytes in the foci of gliosis, whereas T (CD3-negative) or B (CD20-negative) lymphocytes in those same lesions were absent. Our results also revealed that the badgers with natural CDV encephalitis presented lesions mostly located in the white matter of the thalamus and cerebellum, suggesting a CDV-specific tropism for the white matter of badger brains in those locations. The knowledge gained in the field of the immunopathogenesis of distemper disease affecting the CNSs of badgers could help to clarify CDV disease patterns in this species.
Collapse
Affiliation(s)
- Israel Espinoza
- Departamento de Sanidad Animal, Universidad de León, 24071 León, Spain; (I.E.); (M.J.G.I.); (M.G.d.G.G.)
| | - María José García Iglesias
- Departamento de Sanidad Animal, Universidad de León, 24071 León, Spain; (I.E.); (M.J.G.I.); (M.G.d.G.G.)
- Instituto Universitario (LOU) de Biomedicina (IBIOMED), Universidad de Léon, 24071 León, Spain
| | - Álvaro Oleaga
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), 33203 Gijón, Spain;
| | - María Gracia de Garnica García
- Departamento de Sanidad Animal, Universidad de León, 24071 León, Spain; (I.E.); (M.J.G.I.); (M.G.d.G.G.)
- Micros Veterinaria, S.L., 24007 León, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Universidad de León, 24071 León, Spain; (I.E.); (M.J.G.I.); (M.G.d.G.G.)
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC—Universidad de León), 24346 León, Spain
| |
Collapse
|
2
|
Geiselhardt F, Peters M, Kleinschmidt S, Chludzinski E, Stoff M, Ludlow M, Beineke A. Neuropathologic and molecular aspects of a canine distemper epizootic in red foxes in Germany. Sci Rep 2022; 12:14691. [PMID: 36038706 PMCID: PMC9424316 DOI: 10.1038/s41598-022-19023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
In the last fifteen years, an epidemic of canine distemper virus (CDV) with marked neurotropism has occurred in Europe after a longer period of endemic transmission. Many wildlife species have been infected, with red foxes (Vulpes vulpes) being particularly affected. Given that this species is assumed to mediate cross-species CDV infections to domestic and wild animals, tissue samples from foxes with confirmed CDV infection in North-Western Germany were investigated to better understand the neurotropic aspects of the disease. This analysis included histopathology, virus distribution and cell tropism, phenotyping of inflammatory responses and determination of the genotype of the viruses based on the phylogeny of the hemagglutinin (H) gene. The predominant lesion type is gliosis in both gray and white matter areas associated with an accumulation of Iba1+ macrophages/microglia and upregulation of major histocompatibility complex class II molecules in the brain, while sequestration of CD3+ T and Pax5+ B cell in CDV-infected foxes is limited. Demyelination is found in few foxes, characterized by reduced myelin staining with loss of CNPase+ oligodendrocytes in the cerebellar white matter and brainstem. In addition, axonal damage, characterized by β-amyloid precursor protein expression, is found mainly in these brain regions. In situ hybridization reveals a primary infection of the cerebral and cerebellar gray matter and brain stem. Iba1+ cells and NeuN+ neurons represent the main CDV targets. Sequencing of the CDV H open reading frame from fox tissues reveals that the virus strains belongs to three different sub-lineages of the Europe-1/South America-1 genotype, suggesting independent transmission lines.
Collapse
Affiliation(s)
- Franziska Geiselhardt
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt (CVUA) Westfalen, Arnsberg, Germany
| | - Sven Kleinschmidt
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food- and Veterinary Institute Braunschweig/Hannover, Brunswick, Germany
| | - Elisa Chludzinski
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
| |
Collapse
|
3
|
Pan Y, Wang S, Li P, Yue F, Zhang Y, Pan B, Liu X. Apoptotic investigation of brain tissue cells in dogs naturally infected by canine distemper virus. Virol J 2021; 18:165. [PMID: 34384430 PMCID: PMC8359588 DOI: 10.1186/s12985-021-01635-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Background Canine distemper caused by canine distemper virus that belongs to the Morbillivirus genus of the Paramyxoviridae family is still a global epidemic significant infectious disease, especially in pet dogs in China and serious harm to the development of the dog industry. It has been known that apoptosis caused by the canine distemper virus can show in culture cells, lymphoid tissues, and the cerebellum. However, its occurrence in brain tissue cells remains unclear. To investigate the relationship among canine distemper infecting brain tissues, apoptosis in brain tissue cells, and demyelinating pathogenesis was investigated. Methods 16 naturally infected dogs that exhibited clinical signs of CD and tested positive for the anti-CDV monoclonal antibody and six healthy dogs that served as the control, were used in the research. Brain specimens were divided into the cerebrum, brain stem, and cerebellum embedded in paraffin and made the sections respectively. Approximately 5 µm-thick sections were stained by hematoxylin–eosin, methyl green pyronin, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling technique, and immunohistochemistry. CDV nucleocapsid protein was detected by immune streptavidin-biotinylated peroxidase complex. Results Alterations in the brain tissues of CDV-infected dogs involved both various cells and nerve fibers. CDV had varying degrees of cytotropism to all brain tissue cells; apoptosis also occurred in all brain cells, especially in the endothelia of cerebral vessels, astrocytes, oligodendrocytes, and ependymal cells, the more serious infection, the more obvious apoptosis. Serious infections also involved the pyramidal and Purkinje cells. The nervous fibers exhibited demyelinating lesions (showed small multifocal vacuole), and some axonal neuron atrophy gradually disappeared (formed large vacuole). Conclusions Apoptosis in brain tissue cells was mainly related to the propagation path and cytotropism of CDV. The apoptosis of astrocytes, oligodendrocytes, and some neurons may play a significant role in the demyelinating pathogenesis in dogs with acute canine distemper. A lot of diverse nervous signs shown in the clinic may be related to different neuron apoptosis.
Collapse
Affiliation(s)
- Yaoqian Pan
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Shuai Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Feng Yue
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Yanfang Zhang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Bo Pan
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA.
| | - Xingyou Liu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Díaz-Delgado J, Groch KR, Ressio R, Riskallah IPJ, Sierra E, Sacchini S, Quesada-Canales Ó, Arbelo M, Fernández A, Santos-Neto E, Ikeda J, de Carvalho RR, Azevedo ADF, Lailson-Brito J, Flach L, Kanamura CT, Fernandes NCCA, Cogliati B, Centelleghe C, Mazzariol S, Di Renzo L, Di Francesco G, Di Guardo G, Catão-Dias JL. Comparative Immunopathology of Cetacean morbillivirus Infection in Free-Ranging Dolphins From Western Mediterranean, Northeast-Central, and Southwestern Atlantic. Front Immunol 2019; 10:485. [PMID: 30936878 PMCID: PMC6431672 DOI: 10.3389/fimmu.2019.00485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cetacean morbillivirus (CeMV; Paramyxoviridae) causes epizootic and interepizootic fatalities in odontocetes and mysticetes worldwide. Studies suggest there is different species-specific susceptibility to CeMV infection, with striped dolphins (Stenella coeruleoalba), bottlenose dolphins (Tursiops truncatus), and Guiana dolphins (Sotalia guianensis) ranking among the most susceptible cetacean hosts. The pathogenesis of CeMV infection is not fully resolved. Since no previous studies have evaluated the organ-specific immunopathogenetic features of CeMV infection in tissues from infected dolphins, this study was aimed at characterizing and comparing immunophenotypic profiles of local immune responses in lymphoid organs (lymph nodes, spleen), lung and CNS in CeMV-molecularly (RT-PCR)-positive cetaceans from Western Mediterranean, Northeast-Central, and Southwestern Atlantic. Immunohistochemical (IHC) analyses targeted molecules of immunologic interest: caspase 3, CD3, CD20, CD57, CD68, FoxP3, MHCII, Iba1, IFNγ, IgG, IL4, IL10, lysozyme, TGFβ, and PAX5. We detected consistent CeMV-associated inflammatory response patterns. Within CNS, inflammation was dominated by CD3+ (T cells), and CD20+ and PAX5+ (B cells) lymphocytes, accompanied by fewer Iba1+, CD68+, and lysozyme+ histiocytes, mainly in striped dolphins and bottlenose dolphins. Multicentric lymphoid depletion was characterized by reduced numbers of T cells and B cells, more pronounced in Guiana dolphins. Striped dolphins and bottlenose dolphins often had hyperplastic (regenerative) phenomena involving the aforementioned cell populations, particularly chronically infected animals. In the lung, there was mild to moderate increase in T cells, B cells, and histiocytes. Additionally, there was a generalized increased expression of caspase 3 in lymphoid, lung, and CNS tissues. Apoptosis, therefore, is believed to play a major role in generalized lymphoid depletion and likely overt immunosuppression during CeMV infection. No differences were detected regarding cytokine immunoreactivity in lymph nodes, spleen, and lung from infected and non-infected dolphins by semiquantitative analysis; however, there was striking immunoreactivity for IFNγ in the CNS of infected dolphins. These novel results set the basis for tissue-specific immunophenotypic responses during CeMV infection in three highly susceptible delphinid species. They also suggest a complex interplay between viral and host's immune factors, thereby contributing to gain valuable insights into similarities, and differences of CeMV infection's immunopathogenesis in relation to body tissues, CeMV strains, and cetacean hosts.
Collapse
Affiliation(s)
- Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Kátia R. Groch
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Ressio
- Pathology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Isis P. J. Riskallah
- Pathology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Laboratory of Morphologic and Molecular Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eva Sierra
- School of Veterinary Medicine, Institute for Animal Health and Food Safety, University of Las Palmas of Gran Canaria, Arucas, Spain
| | - Simona Sacchini
- School of Veterinary Medicine, Institute for Animal Health and Food Safety, University of Las Palmas of Gran Canaria, Arucas, Spain
| | - Óscar Quesada-Canales
- School of Veterinary Medicine, Institute for Animal Health and Food Safety, University of Las Palmas of Gran Canaria, Arucas, Spain
| | - Manuel Arbelo
- School of Veterinary Medicine, Institute for Animal Health and Food Safety, University of Las Palmas of Gran Canaria, Arucas, Spain
| | - Antonio Fernández
- School of Veterinary Medicine, Institute for Animal Health and Food Safety, University of Las Palmas of Gran Canaria, Arucas, Spain
| | - Elitieri Santos-Neto
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Joana Ikeda
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Rafael Ramos de Carvalho
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alexandre de Freitas Azevedo
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Jose Lailson-Brito
- Laboratory of Aquatic Mammals and Bioindicators: Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculty of Oceanography, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Leonardo Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro, Brazil
| | | | | | - Bruno Cogliati
- Laboratory of Morphologic and Molecular Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Legnaro, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Hygiene (BCA), University of Padova, Legnaro, Italy
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | | | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Tong M, Yi L, Sun N, Cheng Y, Cao Z, Wang J, Li S, Lin P, Sun Y, Cheng S. Quantitative Analysis of Cellular Proteome Alterations in CDV-Infected Mink Lung Epithelial Cells. Front Microbiol 2017; 8:2564. [PMID: 29312244 PMCID: PMC5743685 DOI: 10.3389/fmicb.2017.02564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Canine distemper virus (CDV), a paramyxovirus, causes a severe highly contagious lethal disease in carnivores, such as mink. Mink lung epithelial cells (Mv.1.Lu cells) are sensitive to CDV infection and are homologous to the natural host system of mink. The current study analyzed the response of Mv.1.Lu cells to CDV infection by iTRAQ combined with LC-MS/MS. In total, 151 and 369 differentially expressed proteins (DEPs) were markedly up-regulated or down-regulated, respectively. Thirteen DEPs were validated via real-time RT-PCR or western blot analysis. Network and KEGG pathway analyses revealed several regulated proteins associated with the NF-κB signaling pathway. Further validation was performed by western blot analysis and immunofluorescence assay, which demonstrated that different CDV strains induced NF-κB P65 phosphorylation and nuclear translocation. Moreover, the results provided interesting information that some identified DEPs possibly associated with the pathogenesis and the immune response upon CDV infection. This study is the first overview of the responses to CDV infection in Mv.1.Lu cells, and the findings will help to analyze further aspects of the molecular mechanisms involved in viral pathogenesis and the immune responses upon CDV infection.
Collapse
Affiliation(s)
- Mingwei Tong
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhigang Cao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Lin
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Garcia JA, Ferreira HL, Vieira FV, Gameiro R, Andrade AL, Eugênio FR, Flores EF, Cardoso TC. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus. Vet Comp Oncol 2015; 15:336-344. [PMID: 26373887 DOI: 10.1111/vco.12168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/17/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy.
Collapse
Affiliation(s)
- J A Garcia
- Veterinary Medicine School, Department of Support, Production and Animal Health, University of São Paulo State, Laboratory of Animal Virology and Cell Culture, Araçatuba, São Paulo, Brazil
| | - H L Ferreira
- FZEA-USP, Department of de Veterinary Medicine, Pirassununga, São Paulo, Brazil
| | - F V Vieira
- Veterinary Medicine School, Department of Support, Production and Animal Health, University of São Paulo State, Laboratory of Animal Virology and Cell Culture, Araçatuba, São Paulo, Brazil.,Veterinary Medicine School, Department of Clinical, Surgery and Animal Reproduction, University of São Paulo State, Veterinary Hospital Section, Araçatuba, São Paulo, Brazil
| | - R Gameiro
- Veterinary Medicine School, Department of Clinical, Surgery and Animal Reproduction, University of São Paulo State, Veterinary Hospital Section, Araçatuba, São Paulo, Brazil
| | - A L Andrade
- Veterinary Medicine School, Department of Clinical, Surgery and Animal Reproduction, University of São Paulo State, Veterinary Hospital Section, Araçatuba, São Paulo, Brazil
| | - F R Eugênio
- Veterinary Medicine School, Department of Clinical, Surgery and Animal Reproduction, University of São Paulo State, Veterinary Hospital Section, Araçatuba, São Paulo, Brazil
| | - E F Flores
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - T C Cardoso
- Veterinary Medicine School, Department of Support, Production and Animal Health, University of São Paulo State, Laboratory of Animal Virology and Cell Culture, Araçatuba, São Paulo, Brazil.,Veterinary Medicine School, Department of Clinical, Surgery and Animal Reproduction, University of São Paulo State, Veterinary Hospital Section, Araçatuba, São Paulo, Brazil
| |
Collapse
|
8
|
Abstract
Canine distemper is a highly contagious viral disease caused by the canine distemper virus (CDV), which is a member of the Morbillivirus genus, Paramyxoviridae family. Animals that most commonly suffer from this disease belong to the Canidae family; however, the spectrum of natural hosts for CDV also includes several other families of the order Carnivora. The infectious disease presents worldwide distribution and maintains a high incidence and high levels of lethality, despite the availability of effective vaccines, and no specific treatment. CDV infection in dogs is characterized by the presentation of systemic and/or neurological courses, and viral persistence in some organs, including the central nervous system (CNS) and lymphoid tissues. An elucidation of the pathogenic mechanisms involved in canine distemper disease will lead to a better understanding of the injuries and clinical manifestations caused by CDV. Ultimately, further insight about this disease will enable the improvement of diagnostic methods as well as therapeutic studies.
Collapse
|
9
|
Del Puerto HL, Martins AS, Braz GF, Alves F, Heinemann MB, Rajão DS, Araújo FC, Martins SF, Nascimento DR, Leite RC, Vasconcelos AC. Vero cells infected with the Lederle strain of canine distemper virus have increased Fas receptor signaling expression at 15 h post-infection. GENETICS AND MOLECULAR RESEARCH 2011; 10:2527-33. [PMID: 22009866 DOI: 10.4238/2011.october.18.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We evaluated the expression of the Fas receptor gene in Vero cells infected with the Lederle vaccine strain of canine distemper virus using RT-PCR. Vero cells were plated, and after being grown for 24 h in MEM with 5% FBS, 80-90% confluent monolayer cultures were infected with the virus. The cells were harvested at 3, 6, 9, and 15 h post-infection. Uninfected Vero cells were used as a control. Total RNA was isolated from Vero cells using 1 mL Trizol(®) LS, and RT was performed using 2 μg total RNA. Primer pairs for RT-PCR amplification for the canine distemper virus nucleocapsid gene, the S26 reference gene, and the Vero rFas gene were used to analyze expression in Vero cells. RT-PCR results revealed virus activity at 3, 6, 9, and 15 h in the virus-infected Vero cells. The S26 housekeeping gene was amplified in virus infected and control samples. However, expression of the cell death receptor Fas was detected in Vero cells only at 15 h post-infection. We suggest that the Lederle vaccine induces apoptosis by Fas receptor signaling, possibly through caspase-8 signaling rather than through mitochondrial signaling in the infected cells.
Collapse
Affiliation(s)
- H L Del Puerto
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Del Puerto HL, Martins AS, Moro L, Milsted A, Alves F, Braz GF, Vasconcelos AC. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus. GENETICS AND MOLECULAR RESEARCH 2010; 9:151-61. [PMID: 20198571 DOI: 10.4238/vol9-1gmr717] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Canine distemper is an immunosuppressive disease caused by the canine distemper virus (CDV). Pathogenesis mainly involves the central nervous system and immunosuppression. Dogs naturally infected with CDV develop apoptotic cells in lymphoid tissues and the cerebellum, but this apoptotic mechanism is not well characterized. To better understand this process, we evaluated the expression of Bax, Bcl-2, and caspase-3, -8 and -9, by evaluating mRNA levels in the peripheral blood, lymph nodes and cerebellum of CDV-infected (CDV+) and uninfected (CDV-) dogs by real-time polymerase chain reaction (PCR). Blood samples from 12 CDV+ and 8 CDV- dogs, diagnosed by reverse transcription-PCR, were subjected to hematological analysis and apoptotic gene expression was evaluated using real-time-PCR. Tissues from the cerebellum and lymph nodes of four CDV+ and three CDV-dogs were also subjected to real time-PCR. No significant differences were found between CDV+ and CDV- dogs in the hemotological results or in the expression of caspase-3, -8, -9, Bax, and Bcl-2 in the peripheral blood. However, expression of Bax, caspase-3, -8 and -9 was significantly higher in the cerebellum of CDV+ compared to CDV- dogs. Expression of caspase-3 and -8 was significantly higher in the lymph nodes of CDV+ compared to CDV- dogs. We concluded that infection with CDV induces apoptosis in the cerebellum and lymph nodes in different ways. Lymph node apoptosis apparently occurs via caspase-3 activation, through the caspase-8 pathway, and cerebellum apoptosis apparently occurs via caspase-3 activation, through the caspase-8 and mitochondrial pathways.
Collapse
Affiliation(s)
- H L Del Puerto
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Beineke A, Puff C, Seehusen F, Baumgärtner W. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol 2008; 127:1-18. [PMID: 19019458 DOI: 10.1016/j.vetimm.2008.09.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Canine distemper is a worldwide occurring infectious disease of dogs, caused by a morbillivirus, closely related to measles and rinderpest virus. The natural host range comprises predominantly carnivores. Canine distemper virus (CDV), an enveloped, negative-sense RNA virus, infects different cell types, including epithelial, mesenchymal, neuroendocrine and hematopoietic cells of various organs and tissues. CDV infection of dogs is characterized by a systemic and/or nervous clinical course and viral persistence in selected organs including the central nervous system (CNS) and lymphoid tissue. Main manifestations include respiratory and gastrointestinal signs, immunosuppression and demyelinating leukoencephalomyelitis (DL). Impaired immune function, associated with depletion of lymphoid organs, consists of a viremia-associated loss of lymphocytes, especially of CD4+ T cells, due to lymphoid cell apoptosis in the early phase. After clearance of the virus from the peripheral blood an assumed diminished antigen presentation and altered lymphocyte maturation cause an ongoing immunosuppression despite repopulation of lymphoid organs. The early phase of DL is a sequel of a direct virus-mediated damage and infiltrating CD8+ cytotoxic T cells associated with an up-regulation of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-alpha and IL-12 and a lacking response of immunomodulatory cytokines such as IL-10 and transforming growth factor (TGF)-beta. A CD4+-mediated delayed type hypersensitivity and cytotoxic CD8+ T cells contribute to myelin loss in the chronic phase. Additionally, up-regulation of interferon-gamma and IL-1 may occur in advanced lesions. Moreover, an altered balance between matrix metalloproteinases and their inhibitors seems to play a pivotal role for the pathogenesis of DL. Summarized, DL represents a biphasic disease process consisting of an initial direct virus-mediated process and immune-mediated plaque progression. Immunosuppression is due to early virus-mediated lymphocytolysis followed by still poorly understood mechanisms affecting antigen presentation and lymphocyte maturation.
Collapse
Affiliation(s)
- A Beineke
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|
12
|
Gomes MG, Silva CMD, Ribeiro AFC, Ocarino NM, Moro L, Vasconcelos AC, Serakides R. [Apoptosis, proliferation and spleen histomorphometry of adult female rats with thyroid and ovarian hypofunction]. ACTA ACUST UNITED AC 2008; 52:1031-8. [PMID: 18820815 DOI: 10.1590/s0004-27302008000600015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022]
Abstract
Apoptosis, proliferation and histomorphometry of spleen were investigated in ovariectomized and non-ovariectomized adult Wistar rats maintained in hypothyroidism induced by daily administration of propylthiouracil (PTU) during 120 days. Two groups ovariectomized euthyroid and non-ovariectomized euthyroid were used as controls. Plasma was collected for free T4 dosage and the spleen for histomorphometry analysis, apoptosis index and the immunohistochemistry expression of caspase 3 and CDC47. Values of free T4 were lower in rats treated with PTU (p<0.05). In the hypothyroid groups there was some decrease in the spleen weight as well as the number and size of lymphoid follicles and there was some increase in the apoptotic index and the caspase 3 expression (p<0.05). However, the increase in the apoptosis index and the expression of caspase 3 in ovariectomized hypothyroid rats spleen was less accentuated than non-ovariectomized hypothyroid ones (p<0.05). The ovariectomized euthyroid group presented white pulp hyperplasia in comparison to the non-ovariectomized euthyroid group. There was no difference in the CDC47 expression between groups. It was concluded that the thyroid and ovarian hypofunction have distinct effects on the spleen and that in the hypothyroidism-hypogonadism association, the increase in the apoptosis index and in the expression of splenic caspase 3 is not as much as in isolated hypothyroidism.
Collapse
Affiliation(s)
- Mardelene G Gomes
- Setor de Patologia do Departamento de Clínica e Cirurgia Veterinárias da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|
13
|
Kajita M, Katayama H, Murata T, Kai C, Hori M, Ozaki H. Canine distemper virus induces apoptosis through caspase-3 and -8 activation in vero cells. ACTA ACUST UNITED AC 2006; 53:273-7. [PMID: 16907958 DOI: 10.1111/j.1439-0450.2006.00963.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the signal-transduction pathway of canine distemper virus-Onderstepoort (CDV-Ond) vaccine strain-mediated apoptosis in Vero cells. Canine distemper virus-Onderstepoort at a multiplicity of infection (MOI) of 0.1 induced DNA fragmentation 48 h after infection. Immunofluorescence staining revealed that 57% +/- 4% of the CDV-N-protein-positive cells were terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive, and all TUNEL-positive cells were CDV-N-protein-positive, indicating that CDV-Ond induced apoptosis only in the infected cells. We also found that CDV-Ond infection induced activation of caspase-3 and caspase-8. In the semi-quantitative reverse transcription-polymerase chain reaction assay for apoptosis-related genes, the expression of mRNA of the death receptor, Fas, was also increased in CDV-Ond-infected cells. In contrast, the expressions of Bcl-2 and Bax, regulators for intrinsic apoptotic signaling through the mitochondria, did not change. These results suggest that CDV-Ond induced apoptosis by activating caspase-3, possibly through caspase-8 signaling rather than through p53/Bax-mediated, mitochondrial signaling in the infected cells.
Collapse
Affiliation(s)
- M Kajita
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Yarim GF, Karahan S, Yarim M. Cerebellum progesterone concentration decreased in canine distemper virus infection. Res Vet Sci 2006; 82:173-80. [PMID: 16919304 DOI: 10.1016/j.rvsc.2006.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 04/27/2006] [Accepted: 05/20/2006] [Indexed: 11/26/2022]
Abstract
Progesterone has neuroprotective effects including augmentation of myelination in the central and peripheral nervous system. This study was designed to determine if demyelinating lesions in the cerebellum resulting from canine distemper virus (CDV) infection are associated with progesterone levels. Progesterone was measured using radioimmunoassay in samples of the cerebellum, corpus callosum, medulla oblongata, parietal, frontal, temporal, and occipital cortices as well as cerebrospinal fluid (CSF) and plasma collected from ten CDV infected and six non-infected dogs. The cerebellum progesterone level was significantly different between CDV infected (0.66+/-0.09 ng/g) and control dogs (1.14+/-0.09 ng/g) (p<0.001); however, no difference was observed for the other CNS regions, plasma and CSF (p>0.05). The cerebellum progesterone level was also significantly different between acute (0.71+/-0.0 5 ng/g) and chronic cases (0.61+/-0.09 ng/g) (p<0.05). The CDV infected cerebella were also categorized histopathologically according to the severity of demyelinating lesions as mild (n=5), moderate (n=2), or severe (n=3) among which the cerebellum progesterone level was significantly different (p<0.05). Progesterone concentration was 0.71+/-0.05 ng/g in mild, 0.65+/-0.10 ng/g in moderate, and 0.56+/-0.07 ng/g in severe cases. In conclusion, progesterone concentration decreases in the cerebellum in CDV infection and the severity of demyelinating lesions is the greatest in cerebella with the lowest progesterone concentrations. The results suggest that local impairment of progesterone metabolism may be associated with the initiation and progression of cerebellar lesions in CDV infection.
Collapse
Affiliation(s)
- Gul Fatma Yarim
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, 55139 Kurupelit, Samsun, Turkey.
| | | | | |
Collapse
|
15
|
Cho HS, Park NY. Detection of canine distemper virus in blood samples by reverse transcription loop-mediated isothermal amplification. ACTA ACUST UNITED AC 2006; 52:410-3. [PMID: 16283921 PMCID: PMC7165947 DOI: 10.1111/j.1439-0450.2005.00886.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) was used to detect canine distemper virus (CDV) genomic RNA. A set of four primers, two outer and two inner, were designed from CDV genomic RNA targeting the nucleocapsid protein gene. The optimal reaction time and temperature for LAMP were determined to be 60 min at 65°C. The relative sensitivity and specificity of RT‐LAMP was found to be 100% and 93.3%, respectively, based on 50 canine blood samples and using RT‐PCR as the gold standard. The detection limit of the RT‐LAMP method was 100 times lower than with RT‐PCR (10‐1TCID50 ml−1 versus 10TCID50 ml−1). In addition to the advantage resulting from the visual detection of the end‐product, the LAMP method is fast, requiring only 1 h to complete the assay. The LAMP method is a viable alternative to RT‐PCR for diagnosing CDV infection in dogs. The LAMP method might be useful as an on site diagnostic assay for detecting CDV.
Collapse
Affiliation(s)
- H. S. Cho
- Address of authors: Department of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 500‐757, Korea
| | - N. Y. Park
- Address of authors: Department of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 500‐757, Korea
- Corresponding author: Tel.: +82 62 530 2843; fax: +82 62 530 2847; E‐mail:
| |
Collapse
|
16
|
Suter SE, Chein MB, von Messling V, Yip B, Cattaneo R, Vernau W, Madewell BR, London CA. In vitro canine distemper virus infection of canine lymphoid cells: a prelude to oncolytic therapy for lymphoma. Clin Cancer Res 2005; 11:1579-87. [PMID: 15746063 DOI: 10.1158/1078-0432.ccr-04-1944] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Measles virus (MV) causes the regression of human lymphoma xenografts. The purpose of this study was to determine if canine lymphoid cells could be infected in vitro with MV or canine distemper virus (CDV, the canine Morbillivirus equivalent of MV) and determine if in vitro viral infection leads to apoptotic cell death. EXPERIMENTAL DESIGN Reverse transcriptase-PCR was used to examine the expression of both signal lymphocyte activation molecule (CD150) and membrane cofactor molecule (CD46) mRNA. An attenuated CDV expressing enhanced green fluorescent protein was used to infect canine cells in vitro. Both flow cytometry and reverse transcriptase-PCR was used to document CDV infection. Cell death was examined using a propidium iodide staining assay and Annexin V binding. RESULTS Canine lymphoid cell lines and neoplastic B and T lymphocytes collected from dogs with spontaneous lymphoma expressed the Morbillivirus receptor CD150 mRNA. In contrast, only neoplastic lymphocytes expressed detectable levels of CD46 mRNA. Although MV did not infect canine cells, CDV efficiently infected between 40% and 70% of all three canine lymphoid lines tested. More importantly, CDV infected 50% to 90% of neoplastic lymphocytes isolated from dogs with both B and T cell lymphoma. Apoptosis of CDV-infected cell lines was documented. CONCLUSIONS Attenuated CDV may be a useful treatment for canine lymphoma. As such, dogs with lymphoma may represent a biologically relevant large animal model to investigate the feasibility, safety, and efficacy of Morbillivirus therapy in a clinical setting with findings that may have direct applicability in the treatment of human non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Steven E Suter
- Department of Surgical and Radiological Science, School of Veterinary Medicine, University of California, 2112 Tupper Hall, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lossi L, Cantile C, Tamagno I, Merighi A. Apoptosis in the mammalian CNS: Lessons from animal models. Vet J 2005; 170:52-66. [PMID: 15993789 DOI: 10.1016/j.tvjl.2004.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 12/30/2022]
Abstract
It is generally assumed that about half of the neurons produced during neurogenesis die before completion of maturation of the central nervous system (CNS). Neural cell death is also relevant in aging and several neurodegenerative diseases. Among the modalities by which neurons die, apoptosis has very much attracted the interest of investigators because in this type of cell death neurons are actively responsible for their own demise by switching on a number of genes and activating a series of specific intracellular pathways. This review focuses on the cellular and molecular mechanisms of apoptosis in normal and transgenic animal models related to naturally occurring neuronal death within the CNS. We will also consider some examples of apoptotic cell death in canine neuropathologies. A thorough analysis of naturally occurring neuronal death in vivo will offer a basis for parallel and future studies involving secondary neuronal loss such as those in neurodegenerative disorders, trauma or ischaemia.
Collapse
Affiliation(s)
- L Lossi
- Dipartimento di Morfofisiologia Veterinaria, University of Torino, Via Leonardo da Vinci 44, I-10095 Grugliasco, Italy.
| | | | | | | |
Collapse
|