1
|
Hu C, Lakshmipathi J, Stuart D, Peti-Peterdi J, Gyarmati G, Hao CM, Hansell P, Kohan DE. Renomedullary Interstitial Cell Endothelin A Receptors Regulate BP and Renal Function. J Am Soc Nephrol 2020; 31:1555-1568. [PMID: 32487560 DOI: 10.1681/asn.2020020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.
Collapse
Affiliation(s)
- Chunyan Hu
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| | | | - Deborah Stuart
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| | - Janos Peti-Peterdi
- Departments of Physiology and Neuroscience and Medicine, University of Southern California, Los Angeles, California
| | - Georgina Gyarmati
- Departments of Physiology and Neuroscience and Medicine, University of Southern California, Los Angeles, California
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Hansell
- Department of Medical Cell Biology, Section of Integrative Physiology, Uppsala University Biomedical Center, Uppsala, Sweden
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah
| |
Collapse
|
2
|
Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Friederich-Persson M, Hansell P. Hyaluronan Production by Renomedullary Interstitial Cells: Influence of Endothelin, Angiotensin II and Vasopressin. Int J Mol Sci 2017; 18:ijms18122701. [PMID: 29236055 PMCID: PMC5751302 DOI: 10.3390/ijms18122701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
The content of hyaluronan (HA) in the interstitium of the renal medulla changes in relation to body hydration status. We investigated if hormones of central importance for body fluid homeostasis affect HA production by renomedullary interstitial cells in culture (RMICs). Simultaneous treatment with vasopressin and angiotensin II (Ang II) reduced HA by 69%. No change occurred in the mRNA expressions of hyaluronan synthase 2 (HAS2) or hyaluronidases (Hyals), while Hyal activity in the supernatant increased by 67% and CD44 expression reduced by 42%. The autocoid endothelin (ET-1) at low concentrations (10−10 and 10−8 M) increased HA 3-fold. On the contrary, at a high concentration (10−6 M) ET-1 reduced HA by 47%. The ET-A receptor antagonist BQ123 not only reversed the reducing effect of high ET-1 on HA, but elevated it to the same level as low concentration ET-1, suggesting separate regulating roles for ET-A and ET-B receptors. This was corroborated by the addition of ET-B receptor antagonist BQ788 to low concentration ET-1, which abolished the HA increase. HAS2 and Hyal2 mRNA did not alter, while Hyal1 mRNA was increased at all ET-1 concentrations tested. Hyal activity was elevated the most by high ET-1 concentration, and blockade of ET-A receptors by BQ123 prevented about 30% of this response. The present study demonstrates an important regulatory influence of hormones involved in body fluid balance on HA handling by RMICs, thereby supporting the concept of a dynamic involvement of interstitial HA in renal fluid handling.
Collapse
Affiliation(s)
- Sara Stridh
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
- Department of Health Sciences, Red Cross University College, SE-14152 Stockholm, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
| | - Tomoko Takahashi
- Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan; (T.T.); (M.I.-K.)
| | - Mayumi Ikegami-Kawai
- Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan; (T.T.); (M.I.-K.)
| | - Malou Friederich-Persson
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
| | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
- Correspondence: ; Tel.: +46-184-714-130
| |
Collapse
|
3
|
Thaete LG, Neerhof MG, Silver RK. Differential Effects of Endothelin A and B Receptor Antagonism on Fetal Growth in Normal and Nitric Oxide-Deficient Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Larry G. Thaete
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Northwestern University Medical School, Evanston Northwestern Healthcare, Evanston, Illinois; Evanston Northwestern Healthcare, 2650 Ridge Avenue, Suite 1600 WH, Evanston, IL 60201
| | | | - Richard K. Silver
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Northwestern University Medical School, Evanston Northwestern Healthcare, Evanston, Illinois
| |
Collapse
|
4
|
Luo K, Thaete LG, Neerhof MG. Endothelin Receptor A Antagonism and Fetal Growth in Endothelial Nitric Oxide Synthase Gene Knockout Maternal and Fetal Mice. Reprod Sci 2016; 23:1028-36. [PMID: 26791973 DOI: 10.1177/1933719115625839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fetal growth restriction (FGR) is commonly associated with perinatal morbidity and mortality. Nitric oxide (NO) deficiency increases endothelin-1 (ET-1) production, and this increased ET-1 may contribute to the pathophysiology of NO deficiency-induced FGR. Using an endothelial NO synthase knockout mouse model of FGR, we sought to determine (a) the relative importance of maternal versus conceptus (fetal and placental) NO deficiency and (b) the contribution of ET-1 to the pathogenesis of FGR in this model. Fetal growth restriction occurred both with NO-deficient conceptuses in the setting of maternal NO production and with maternal NO deficiency in the setting of NO-producing conceptuses. Placental ET-1 expression was increased in NO-deficient dams, ET receptor A (ETA) production increased in endothelial nitric oxide synthase(+/-) placentas, and antagonism of ETA prevented FGR. These results demonstrate that both maternal and conceptus NO deficiency can contribute to FGR and suggest a role for ETA antagonists as therapeutic agents in FGR.
Collapse
Affiliation(s)
- Kehuan Luo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Larry G Thaete
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA Department of Obstetrics and Gynecology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Mark G Neerhof
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA Department of Obstetrics and Gynecology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Neerhof MG, Synowiec S, Khan S, Thaete LG. Impact of endothelin A receptor antagonist selectivity in chronic nitric oxide synthase inhibition-induced fetal growth restriction in the rat. Hypertens Pregnancy 2010; 29:284-93. [PMID: 20504166 DOI: 10.3109/10641950902777739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endothelin receptor A (ETA) antagonism improves fetal and placental growth and placental perfusion on days 1 and 4, but not day 7 of a 7-day infusion of a nitric oxide synthase (NOS) inhibitor. Our purpose was to evaluate the significance of the degree of ETA antagonist selectivity on uteroplacental perfusion and fetal growth on day 7 of chronic NOS inhibition. METHODS Timed-pregnant rats were treated with the NOS inhibitor nitro-L-arginine methyl ester (L-NAME, 2.5 mg/kg/h) with and without one of the following ETA antagonists or their respective vehicles for 7 days beginning on day 14 of gestation: A-127722 (2,000-fold selective for ETA over ETB), FR139317 (8,000-fold ETA-selective), or ABT-546 (28,000-fold ETA-selective). Uterine and placental perfusion, as well as fetal and placental weight, was evaluated at the 7th day of treatment (gestation day 21). RESULTS L-NAME administration resulted in a significant reduction in uterine and placental perfusion as well as fetal and placental growth. In the setting of NOS inhibition, ETA antagonism did not improve uterine or placental perfusion or fetal growth after 7 days of infusion irrespective of the degree of selectivity of the antagonist used. CONCLUSIONS ETA antagonism, irrespective of the degree of receptor selectivity, does not improve fetal growth or uteroplacental perfusion on day 7 of chronic NOS inhibition.
Collapse
Affiliation(s)
- Mark G Neerhof
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, North Shore University Health System, Evanston, Illinois 60201, USA. mneerhof@ enh.org
| | | | | | | |
Collapse
|
6
|
Lteif AA, Fulford AD, Considine RV, Gelfand I, Baron AD, Mather KJ. Hyperinsulinemia fails to augment ET-1 action in the skeletal muscle vascular bed in vivo in humans. Am J Physiol Endocrinol Metab 2008; 295:E1510-7. [PMID: 18957616 PMCID: PMC2603554 DOI: 10.1152/ajpendo.90549.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endogenous endothelin action is augmented in human obesity and type 2 diabetes and contributes to endothelial dysfunction and impairs insulin-mediated vasodilation in humans. We hypothesized that insulin resistance-associated hyperinsulinemia could preferentially drive endothelin-mediated vasoconstriction. We applied hyperinsulinemic-euglycemic clamps with higher insulin dosing in obese subjects than lean subjects (30 vs. 10 mU.m(-2).min(-1), respectively), with the goal of matching insulin's nitric oxide (NO)-mediated vascular effects. We predicted that, under these circumstances, insulin-stimulated endothelin-1 (ET-1) action (assessed with the type A endothelin receptor antagonist BQ-123) would be augmented in proportion to hyperinsulinemia. NO bioactivity was assessed using the nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine. Insulin-mediated vasodilation and insulin-stimulated NO bioavailability were well matched across groups by this approach. As expected, steady-state insulin levels were approximately threefold higher in obese than lean subjects (109.2 +/- 10.2 pmol/l vs. 518.4 +/- 84.0, P = 0.03). Despite this, the augmentation of insulin-mediated vasodilation by BQ-123 was not different between groups. ET-1 flux across the leg was not augmented by insulin alone but was increased with the addition of BQ-123 to insulin (P = 0.01 BQ-123 effect, P = not significant comparing groups). Endothelin antagonism augmented insulin-stimulated NO bioavailability and NOx flux, but not differently between groups and not proportional to hyperinsulinemia. These findings do not support the hypothesis that insulin resistance-associated hyperinsulinemia preferentially drives endothelin-mediated vasoconstriction.
Collapse
Affiliation(s)
- Amale A Lteif
- Indiana Univ. School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
7
|
Age-related renal disease in female Dahl salt-sensitive rats is attenuated with 17 beta-estradiol supplementation by modulating nitric oxide synthase expression. ACTA ACUST UNITED AC 2008; 5:147-59. [PMID: 18573482 DOI: 10.1016/j.genm.2008.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND The incidence of chronic renal disease in women increases with aging, especially after menopause, suggesting that loss of sex hormones may contribute to the development and progression of renal disease. However, the mechanisms by which sex hormones, particularly estrogens, contribute to the disease process are unclear. OBJECTIVE The present study examined the effects of ovariectomy (OVX) with or without 17 beta-estradiol (E2) supplementation (OVX+E2) on the expression of inducible (iNOS) and endothelial (eNOS) nitric oxide synthase in the kidney. METHODS The study was performed in young (4 months [4M]) and aged (12 months [12M]) female Dahl salt-sensitive rats fed a low-sodium (0.1% NaCl) diet. At 3 months of age, the animals were either subjected to sham surgery, OVX, or OVX with implantation of an E2 silastic pellet. The treatments were administered for either 1 or 9 months, rendering the animals 4 months of age or 12 months of age at the time of sacrifice, respectively. Renal expression of NOS isoforms was measured by Western blotting and immunohistochemistry. RESULTS OVX in the aged rats was associated with 35% and 25% decreases in medullary iNOS (mean [SEM] relative optical density [ROD]: 4M OVX, 1.81 [0.14] vs 12M OVX, 1.17 [0.16]; P < 0.05) and eNOS (mean ROD: 4M OVX, 1.91 [0.09] vs 12M OVX, 1.43 [0.15]; P < 0.05) protein expression, respectively, and a 25-fold increase in the abundance of CD68-positive cells, indicating macrophage infiltration (mean cells/mm2: 4M OVX, 1.18 [0.09] vs 12M OVX, 30.0 [0.74]; P < 0.001). E2 supplementation either partially or completely attenuated these changes in iNOS (mean ROD: 4M OVX+E2, 2.26 [0.08] vs 12M OVX+E2, 1.70 [0.09]; P < 0.05), eNOS (mean ROD: 4M OVX+E2, 2.03 [0.07] vs 12M OVX+E2, 1.77 [0.11]; P = NS) and CD68 (mean cells/mm2: 4M OVX+E2, 1.46 [0.07] vs 12M OVX+E2, 6.87 [1.6]; P < 0.01) associated with OVX in the aging kidney. CONCLUSIONS These data suggest that ovarian E2 loss with aging may contribute to the development of age-related renal disease through downregulation of iNOS and eNOS protein abundance and increased renal inflammation in this animal model. Furthermore, E2 supplementation may be protective in the aging kidney by attenuating these changes.
Collapse
|
8
|
Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE. Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension 2008; 51:1605-10. [PMID: 18391099 DOI: 10.1161/hypertensionaha.107.108126] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with a collecting duct-specific deletion of endothelin-1 are hypertensive and have impaired Na excretion. Because endothelin-1 activates NO synthase (NOS) in the collecting duct, we hypothesized that impaired renal NO production in knockout mice exacerbates the hypertensive state. Control and knockout mice were treated chronically with N(G)-nitro-l-arginine methyl ester, and blood pressure (BP) and urinary nitrate/nitrite excretion were assessed. On a normal Na diet, knockout systolic BP was 18 mm Hg greater than in controls. N(G)-nitro-l-arginine methyl ester increased BP in control mice by 30 mm Hg and 10 mm Hg in collecting duct-specific deletion of endothelin-1 knockout mice, thereby abolishing the difference in systolic BP between the groups. A high-Na diet increased BP similarly in both groups. Urinary nitrate/nitrite excretion was lower in knockout mice than in controls on normal or high Na intake. In separate experiments, renal perfusion pressure was adjusted in anesthetized mice, and urinary nitrate/nitrite and Na excretion were determined. Similar elevations of BP increased urinary Na and nitrate/nitrite excretion in control mice but to a significantly lesser extent in knockout mice. Isoform-specific NOS activity and expression were determined in renal inner medulla homogenates from control and knockout mice. NOS1 and NOS3 activities were lower in knockout than in control mice given normal or high-Na diets. However, NOS1 or NOS3 protein expressions were similar in both groups on normal or high-Na intake. These data demonstrate that collecting duct-derived endothelin-1 is important in the following: (1) chronic N(G)-nitro-l-arginine methyl ester-induced hypertension; (2) full expression of pressure-dependent changes in sodium excretion; and (3) control of inner medullary NOS1 and NOS3 activity.
Collapse
|
9
|
Suga SI, Yasui N, Yoshihara F, Horio T, Kawano Y, Kangawa K, Johnson RJ. Endothelin a receptor blockade and endothelin B receptor blockade improve hypokalemic nephropathy by different mechanisms. J Am Soc Nephrol 2003; 14:397-406. [PMID: 12538740 DOI: 10.1097/01.asn.0000046062.85721.ac] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hypokalemia causes renal tubulointerstitial injury with an elevation in renal endothelin-1 (ET-1). It was hypothesized that hypokalemic tubulointerstitial injury is ameliorated by the blockade of ET-A receptors (ETA), whereas ET-B receptor (ETB) antagonism may exacerbate the injury, because ETB is thought to mediate vasodilation. Rats were fed a K(+)-deficient diet alone (LC) or with an ETA-selective antagonist ABT-627 (LA) or an ETB-selective antagonist A-192621 (LB) for 8 wk. Control rats were on a normal K(+) diet alone or with the ETA-selective or ETB-selective antagonists. The severity of hypokalemia was not significantly different among LA, LB, and LC. LC developed tubulointerstitial injury with an elevation of renal preproET-1 mRNA level. There was an increase in tubular osteopontin expression, macrophage infiltration, collagen accumulation, and tubular cell hyperplasia. ETA blockade significantly ameliorated all parameters for renal injury in the cortex without suppressing local ET-1 and ETA expression. By contrast, ETB blockade significantly reduced local ET-1 and ETA expression and improved the injury to a similar extent in the cortex. In the medulla, ETA or ETB blockade only partially blocked renal injury. ETA blockade did not affect BP in normokalemic or hypokalemic rats. ETB blockade induced a BP elevation with a decrease in urinary Na(+) excretion in normokalemic but not in hypokalemic rats. These results indicate that ET-1 can mediate hypokalemic renal injury in two different ways: by directly stimulating ETA and by locally promoting endogenous ET-1 production via ETB. Thus, ETA as well as ETB blockade may be renoprotective in hypokalemic nephropathy.
Collapse
Affiliation(s)
- Shin-Ichi Suga
- National Cardiovascular Center Research Institute, Department of Medicine, National Cardiovascular Center, Suita, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Maric C, Casley D, Harris PJ, Alcorn D. Angiotensin II binding to renomedullary interstitial cells is regulated by osmolality. J Am Soc Nephrol 2001; 12:450-455. [PMID: 11181792 DOI: 10.1681/asn.v123450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Angiotensin II (Ang II) AT(1A) receptors are localized to renomedullary interstitial cells (RMIC) in the inner stripe of the outer medulla but not in the inner medulla. Thus, there seems to be a correlation between decreases in AT(1A) receptor binding to RMIC and increases in interstitial osmolality, suggesting that osmolality is important in determining Ang II binding to RMIC. Cultured RMIC were incubated in media of differing osmolalities (330, 630, 930, and 1230 mOsm/kg H(2)O). (125)I-[Sar(1), Ile(8)] Ang II binding to AT(1A) receptors on RMIC grown in hyperosmolal media (930 mOsm/kg H(2)O) was reduced compared with isoosmolal (330 mOsm/kg H(2)O) media and was progressively reduced with further increases of osmolality. Similar studies were performed using bradykinin (BK) as a control peptide. Binding of the BK receptor ligand (125)I-[HPP-Hoe 140] to B(2) receptors was not affected by varying osmolality of the media. Reverse transcriptase-PCR demonstrated the presence of the mRNA expression for both AT(1A) and B(2) receptors at each osmolality. The conclusion is that osmolality modulates Ang II binding to RMIC; in these cells, this phenomenon is restricted to Ang II as BK binding is not affected. Osmolality-induced changes in Ang II binding may modulate the actions of this peptide on RMIC and provide an important mechanism by which these cells modulate renal medullary function.
Collapse
Affiliation(s)
- Christine Maric
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - David Casley
- Department of Medicine (Austin and Repatriation Medical Centre), University of Melbourne, Victoria, Australia
| | - Peter J Harris
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Daine Alcorn
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Zhuo JL. Renomedullary interstitial cells: a target for endocrine and paracrine actions of vasoactive peptides in the renal medulla. Clin Exp Pharmacol Physiol 2000; 27:465-73. [PMID: 10874500 DOI: 10.1046/j.1440-1681.2000.03277.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. The renal medulla plays an important role in regulating body sodium and fluid balance and blood pressure homeostasis through its unique structural relationships and interactions between renomedullary interstitial cells (RMIC), renal tubules and medullary vasculature. 2. Several endocrine and/or paracrine factors, including angiotensin (Ang)II, endothelin (ET), bradykinin (BK), atrial natriuretic peptide (ANP) and vasopressin (AVP), are implicated in the regulation of renal medullary function and blood pressure by acting on RMIC, tubules and medullary blood vessels. 3. Renomedullary interstitial cells express multiple vasoactive peptide receptors (AT1, ETA, ETB, BK B2, NPRA and NPRB and V1a) in culture and in tissue. 4. In cultured RMIC, AngII, ET, BK, ANP and AVP act on their respective receptors to induce various cellular responses, including contraction, prostaglandin synthesis, cell proliferation and/or extracellular matrix synthesis. 5. Infusion of vasoactive peptides or their antagonists systemically or directly into the medullary interstitium modulates medullary blood flow, sodium excretion and urine osmolarity. 6. Overall, expression of multiple vasoactive peptide receptors in RMIC, which respond to various vasoactive peptides and paracrine factors in vitro and in vivo, supports the hypothesis that RMIC may be an important paracrine target of various vasoactive peptides in the regulation of renal medullary function and long-term blood pressure homeostasis.
Collapse
Affiliation(s)
- J L Zhuo
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|