1
|
Zhu GH, Zhang LP, Li ZG, Wei A, Yang Y, Tian Y, Ma HH, Wang D, Zhao XX, Zhao YZ, Li N, Liu W, Wang TY, Zhang R. Associations between PRF1 Ala91Val polymorphism and risk of hemophagocytic lymphohistiocytosis: a meta-analysis based on 1366 subjects. World J Pediatr 2020; 16:598-606. [PMID: 32198610 DOI: 10.1007/s12519-020-00351-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Perforin (PRF1) gene mutation can cause the onset of hemophagocytic lymphohistiocytosis (HLH). It has reported that PRF1 Ala91Val polymorphism was related with HLH risk. In the meta-analysis, we aim to evaluate the association between PRF1 Ala91Val polymorphism and HLH risk. METHODS We accomplished a meta-analysis of six published case-control studies including 391 patients with HLH and 975 controls. We evaluated the quality of each study through Newcastle-Ottawa Scale (NOS). Data analysis was performed with Stata software. RESULTS In general, all studies were of high quality (NOS score higher than 7). There were statistically significant between the PRF1 Ala91Val polymorphism and HLH risk though the pooled analysis [for Ala/Val vs. Ala/Ala: pooled odds ratio (OR) = 3.22, 95% confidence interval (CI) 1.08-9.56, P = 0.035, random model; for Ala/Val + Val/Val vs. Ala/Ala: pooled OR = 2.96, 95% CI 1.14-7.69, P = 0.025, random model]. Furthermore, sensitivity analysis also revealed a relationship between PRF1 Ala91Val polymorphism and HLH risk (for Ala/Val vs. Ala/Ala: pooled OR = 5.236, 95% CI 2.72-10.08, P < 0.000, I2 = 12.1%, Pheterogeneity = 0.332; for Ala/Val + Val/Val vs. Ala/Ala, pooled OR = 4.856, 95% CI 2.66-8.85, P < 0.000, I2 = 5.9%, Pheterogeneity = 0.373). Funnel plot and Egger's test did not indicate obvious published bias (P = 0.841 for Ala/Val vs. Ala/Ala; P = 0.284 for Ala/Val + Val/Val vs. Ala/Ala). CONCLUSION This meta-analysis indicated that PRF1 Ala91Val polymorphism affects the factor for developing HLH and future studies of PRF1 Ala91Val on the onset of HLH will be guaranteed.
Collapse
Affiliation(s)
- Guang-Hua Zhu
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Li-Ping Zhang
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Zhi-Gang Li
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Ang Wei
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Ying Yang
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Yu Tian
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Hong-Hao Ma
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Dong Wang
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Xiao-Xi Zhao
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Yun-Ze Zhao
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Na Li
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Wei Liu
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Tian-You Wang
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China
| | - Rui Zhang
- Beijing Children's Hospital, Nanlishi Road No. 56, Xicheng District, Beijing, China.
| |
Collapse
|
2
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
3
|
Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade. J Neurooncol 2018; 140:697-704. [DOI: 10.1007/s11060-018-03001-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022]
|
4
|
Bischof J, Westhoff MA, Wagner JE, Halatsch ME, Trentmann S, Knippschild U, Wirtz CR, Burster T. Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumour Biol 2017; 39:1010428317692227. [PMID: 28347245 DOI: 10.1177/1010428317692227] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One major obstacle in cancer therapy is chemoresistance leading to tumor recurrence and metastasis. Cancer stem cells, in particular glioblastoma stem cells, are highly resistant to chemotherapy, radiation, and immune recognition. In case of immune recognition, several survival mechanisms including, regulation of autophagy, proteases, and cell surface major histocompatibility complex class I molecules, are found in glioblastoma stem cells. In different pathways, cathepsins play a crucial role in processing functional proteins that are necessary for several processes and proper cell function. Consequently, strategies targeting these pathways in glioblastoma stem cells are promising approaches to interfere with tumor cell survival and will be discussed in this review.
Collapse
Affiliation(s)
- Joachim Bischof
- 1 Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Mike-Andrew Westhoff
- 2 Department Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Johanna Elisabeth Wagner
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Marc-Eric Halatsch
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Stephanie Trentmann
- 1 Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Uwe Knippschild
- 1 Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Christian Rainer Wirtz
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Timo Burster
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The Pathogenesis of Ebola Virus Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:387-418. [DOI: 10.1146/annurev-pathol-052016-100506] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Baseler
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Karl M. Johnson
- Founder, Special Pathogens Branch, Centers for Disease Control and Prevention, Placitas, New Mexico 87043
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840
| | - David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
6
|
Abstract
Cancer is a disease characterized by a very little apoptosis, ie, genetically programmed cell death. Aberrations in apoptotic pathways are central to tumorigenesis, tumor progression, and overall tumor growth and regression in response to chemotherapy. It is now increasingly accepted that chemotherapeutic drug efficacy is partially related to its ability to induce apoptosis. Apoptosis, therefore, represents not only a vital target in cancer therapy but also a unique biomarker opportunity that has thus far been largely unexploited. In response to therapy, tumor cells undergo apoptosis and release their cellular components in the circulation. As such, these materials may serve as biomarkers to assess response. Apoptosis markers in breast cancer include circulating soluble FasL, granzyme B, and cytochrome c that increase following chemotherapy. Unfortunately, there is a paucity of information in the literature with respect to this approach. As such, large-scale prospective studies are clearly needed to validate this approach and more fully elucidate clinical usefulness.
Collapse
|
7
|
Omura S, Kawai E, Sato F, Martinez NE, Chaitanya GV, Rollyson PA, Cvek U, Trutschl M, Alexander JS, Tsunoda I. Bioinformatics multivariate analysis determined a set of phase-specific biomarker candidates in a novel mouse model for viral myocarditis. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:444-54. [PMID: 25031303 PMCID: PMC4332820 DOI: 10.1161/circgenetics.114.000505] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Myocarditis is an inflammatory disease of the cardiac muscle and is mainly caused by viral infections. Viral myocarditis has been proposed to be divided into 3 phases: the acute viral phase, the subacute immune phase, and the chronic cardiac remodeling phase. Although individualized therapy should be applied depending on the phase, no clinical or experimental studies have found biomarkers that distinguish between the 3 phases. Theiler's murine encephalomyelitis virus belongs to the genus Cardiovirus and can cause myocarditis in susceptible mouse strains. METHODS AND RESULTS Using this novel model for viral myocarditis induced with Theiler's murine encephalomyelitis virus, we conducted multivariate analysis including echocardiography, serum troponin and viral RNA titration, and microarray to identify the biomarker candidates that can discriminate the 3 phases. Using C3H mice infected with Theiler's murine encephalomyelitis virus on 4, 7, and 60 days post infection, we conducted bioinformatics analyses, including principal component analysis and k-means clustering of microarray data, because our traditional cardiac and serum assays, including 2-way comparison of microarray data, did not lead to the identification of a single biomarker. Principal component analysis separated heart samples clearly between the groups of 4, 7, and 60 days post infection. Representative genes contributing to the separation were as follows: 4 and 7 days post infection, innate immunity-related genes, such as Irf7 and Cxcl9; 7 and 60 days post infection, acquired immunity-related genes, such as Cd3g and H2-Aa; and cardiac remodeling-related genes, such as Mmp12 and Gpnmb. CONCLUSIONS Sets of molecules, not single molecules, identified by unsupervised principal component analysis, were found to be useful as phase-specific biomarkers.
Collapse
Affiliation(s)
- Seiichi Omura
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Eiichiro Kawai
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Fumitaka Sato
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Nicholas E Martinez
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Ganta V Chaitanya
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Phoebe A Rollyson
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Urska Cvek
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Marjan Trutschl
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - J Steven Alexander
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Ikuo Tsunoda
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.).
| |
Collapse
|
8
|
HMGN2, a new anti-tumor effector molecule of CD8⁺ T cells. Mol Cancer 2014; 13:178. [PMID: 25060707 PMCID: PMC4126642 DOI: 10.1186/1476-4598-13-178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/18/2014] [Indexed: 11/24/2022] Open
Abstract
Background Cytolytic T lymphocytes (CTL) and natural killer (NK) cells have been implicated as important cells in antitumor responses. Our previous research has shown that high mobility group nucleosomal-binding domain 2 (HMGN2) could be released by IL-2 and PHA stimulated peripheral blood mononuclear cells (PBMCs) and also induced tumor cells apoptosis at low doses. In this study, we isolated and cultured PBMCs and CD8+ T cells to analyze the expression and antitumor effects of HMGN2. Methods PBMCs from healthy donors were isolated using Human Lymphocyte Separation tube. CD8+ T cells were separated from the PBMCs using MoFlo XDP high-speed flow cytometry sorter. Activation of PBMCs and CD8+ T cells were achieved by stimulating with Phytohemagglutinin (PHA) or tumor antigen. In addition, the methods of ELISA, intracellular staining, and fluorescence-labeling assays were used. Results PHA induced PBMCs to release high levels of HMGN2, and CD8+ T cells was the major cell population in PBMCs that release HMGN2 after PHA activation. Tumor antigen-activated CD8+ T cells also released high levels of HMGN2. Supernatants of tumor antigen-activated CD8+ T cells were able to kill tumor cells in a dose-dependent manner. This antitumor effect could be significantly blocked by using an anti-HMGN2 antibody. Fluorescence-labeling assays showed that the supernatant proteins of activated CD8+ T cells could be transported into tumor cells, and the transport visibly decreased after HMGN2 was depleted by anti-HMGN2 antibody. Conclusions These results suggest that HMGN2 is an anti-tumor effector molecule of CD8+ T cells.
Collapse
|
9
|
Hu A, Dong X, Liu X, Zhang P, Zhang Y, Su N, Chen Q, Feng Y. Nucleosome-binding protein HMGN2 exhibits antitumor activity in oral squamous cell carcinoma. Oncol Lett 2013; 7:115-120. [PMID: 24348831 PMCID: PMC3861564 DOI: 10.3892/ol.2013.1665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/15/2013] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells and cytolytic T lymphocytes (CTLs) serve as effectors in the antitumor response. High mobility group nucleosomal binding domain 2 (HMGN2) is a candidate effector molecule involved in CTL and NK cell function. In the current study, recombinant human HMGN2 was isolated and purified from transformed Escherichia coli. Tca8113 cells, an oral squamous cell carcinoma line, were treated with a variety of HMGN2 protein concentrations and cell growth was analyzed. HMGN2 significantly inhibited the growth of Tca8113 cells and was predicted to arrest cells in the S phase. Moreover, HMGN2 treatment increased the apoptosis rate of Tca8113 cells. Western blotting indicated the upregulation of p53 and Bax proteins, whereas Bcl-2 was significantly downregulated. In addition, caspase-3 was found to be activated. Furthermore, the HMGN2 protein may suppress the growth of Tca8113 cells in vivo. The results of the current study indicated that the HMGN2 protein may inhibit the growth of oral squamous cell carcinoma and HMGN2 may represent an antitumor effector molecule of CTL or NK cells.
Collapse
Affiliation(s)
- Ankang Hu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqian Dong
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiqian Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yonghong Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Su
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model. Blood Cancer J 2013; 3:e106. [PMID: 23524591 PMCID: PMC3615217 DOI: 10.1038/bcj.2013.4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumors develop when infiltrating immune cells contribute growth stimuli, and cancer cells are selected to survive within such a cytotoxic microenvironment. One possible immune-escape mechanism is the upregulation of PI-9 (Serpin B9) within cancer cells. This serine proteinase inhibitor selectively inactivates apoptosis-inducing granzyme B (GrB) from cytotoxic granules of innate immune cells. We demonstrate that most classical Hodgkin lymphoma (cHL)-derived cell lines express PI-9, which protects them against the GrB attack and thereby renders them resistant against GrB-based immunotherapeutics. To circumvent this disadvantage, we developed PI-9-insensitive human GrB mutants as fusion proteins to target the Hodgkin-selective receptor CD30. In contrast to the wild-type GrB, a R201K point-mutated GrB construct most efficiently killed PI-9-positive and -negative cHL cells. This was tested in vitro and also in vivo whereby a novel optical imaging-based tumor model with HL cell line L428 was applied. Therefore, this variant, as part of the next generation immunotherapeutics, also named cytolytic fusion proteins showing reduced immunogenicity, is a promising molecule for (targeted) therapy of patients with relapsing malignancies, such as cHL, and possibly other PI-9-positive malignancies, such as breast or lung carcinoma.
Collapse
|
11
|
Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
12
|
Wang Y, Mao S, Li B, Tan P, Feng D, Wen J. Treatment of hepatitis C virus core-positive hepatocytes with the transfer of recombinant caspase-3 using the 2',5'-oligoadenylate synthetase gene promoter. Acta Biochim Biophys Sin (Shanghai) 2009; 41:554-60. [PMID: 19578719 DOI: 10.1093/abbs/gmp044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver-related morbidity and mortality throughout the world. There is no vaccine available and current therapy is only partially effective. Since HCV infects only a minority of hepatocytes, we hypothesized that induction of apoptosis might be a promising approach for the treatment of hepatitis C. In the present study, recombinant caspase-3 gene (re-caspase-3) was used because it has the ability to induce apoptosis that is independent of the initiator caspases. An HCV-specific promoter is required to regulate the cytotoxic caspase-3 expression in HCV-infected cells. It has been reported that HCV core protein can specifically activate the 2',5'-oligoadenylate synthetase (OAS) gene promoter in human hepatocytes. Therefore, we constructed an expression vector consisting of the re-caspase-3 under the OAS gene promoter (pGL3-OAS-re-caspase-3) and then investigated its effect on HCV core-positive liver cells. It was found that the pGL3-OAS-re-caspase-3 construct induced apoptosis in HCV core-positive liver cells, but not in normal liver cells. These results strongly suggested that the transfer of the re-caspase-3 gene under the OAS promoter was a novel targeting approach for the treatment of HCV infection.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, Basic Medical College, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
13
|
Stahnke B, Thepen T, Stöcker M, Rosinke R, Jost E, Fischer R, Tur MK, Barth S. Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 2008; 7:2924-32. [PMID: 18790773 DOI: 10.1158/1535-7163.mct-08-0554] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) cells of subtypes M4 and M5 show enhanced expression of CD64 (FcgammaRI), the high-affinity receptor for IgG, which is normally expressed at high levels only on activated cells of the myeloid lineage. CD64 is therefore a prime target for the specific delivery of cytotoxic agents. A promising toxin candidate is granzyme B, a human serine protease originating from cytotoxic granules of CD8+ T lymphocytes and natural killer cells. After evaluating the sensitivity of the AML-related cell line U937 toward cytosolic granzyme B, we genetically fused granzyme B to H22, a humanized single-chain antibody fragment (scFv) specific for CD64, to obtain Gb-H22(scFv), a fusion protein lacking the immunogenic properties of nonhuman immunofusions. Gb-H22(scFv) was successfully expressed in human 293T cells, secreted, and purified from cell culture supernatants. The purified protein bound specifically to CD64+ U937 cells. Despite linkage to the binding domain, the proteolytic activity of functional Gb-H22(scFv) was identical to that of free granzyme B. Target cell-specific cytotoxicity was observed with a half-maximal inhibitory concentration (IC50) between 1.7 and 17 nmol/L. In addition, the induction of apoptosis in U937 cells was confirmed by Annexin A5 staining and the detection of activated caspase-3 in the cytosol. Finally, apoptosis was observed in primary CD64+ AML cells, whereas CD64(-) AML cells were unaffected. This is the first report of a completely human granzyme B-based immunotoxin directed against CD64, with activity against an AML-related cell line and primary AML cells.
Collapse
Affiliation(s)
- Bettina Stahnke
- Fraunhofer IME, Department of Pharmaceutical Product Development, Forckenbeckstr. 6, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang T, Zhao J, Ren JL, Zhang L, Wen WH, Zhang R, Qin WW, Jia LT, Yao LB, Zhang YQ, Chen SY, Yang AG. Recombinant Immunoproapoptotic Proteins with Furin Site Can Translocate and Kill HER2-Positive Cancer Cells. Cancer Res 2007; 67:11830-9. [DOI: 10.1158/0008-5472.can-07-1160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Presentation of HCV antigens to naive CD8+T cells: why the where, when, what and how are important for virus control and infection outcome. Clin Immunol 2007; 124:5-12. [PMID: 17540619 DOI: 10.1016/j.clim.2007.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 01/16/2023]
Abstract
T cell-mediated protection against HCV depends on constantly activated effector CD8(+)T cells that control emergence, spread and expansion of the virus. Why these cells fail to contain HCV replication in 70-80% of the individuals who develop persistent viremia is not clear. Although many reviews have focused on HCV's ability to interfere with the process of antigen presentation by dendritic cells (DC), only few have discussed the mechanisms whereby HCV-derived antigens become available for presentation to naive CD8(+)T cells. The importance of these mechanisms has been recently brought to light by new insight into DC biology, antigen processing, HCV replication and the immune system's functional anatomy. This review explores the different immunological scenarios in which CD8(+)T cell responses against HCV may be initiated. It describes the critical factors limiting antigen sensing and capture by APC and antigen recognition by T cells, and discusses how these factors may favor chronicity of HCV infection. Despite the lack of critical detail and hard experimental proof, this review proposes a model whereby liver seclusion, unproductive infection of professional antigen presenting cells and lack of direct tissue damage hamper the launch of a virus-specific CD8(+)T cell response. The implications for vaccine development are also discussed.
Collapse
|
16
|
Azuma Y, Kurusu Y, Sato H, Higai K, Matsumoto K. Increased expression of Lewis X and Y antigens on the cell surface and FUT 4 mRNA during granzyme B-induced Jurkat cell apoptosis. Biol Pharm Bull 2007; 30:655-60. [PMID: 17409497 DOI: 10.1248/bpb.30.655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytotoxic T cells and natural killer cells play key roles in cell-mediated cytotoxicity and can induce apoptosis in virus-infected and malignant cells by releasing cytotoxic granules. In the current study, apoptosis was induced in Jurkat cells, a human T cell line, by delivering granzyme B into the cells using BioPORTER, a cationic lipid formulation. During granzyme B-induced apoptosis, there was an increase in the cell surface expression of Lewis X and Y antigens. To clarify the roles of initiator and executioner caspases in the expression of Lewis X and Y antigens, we treated Jurkat cells with granzyme B in the presence of caspase 3, 8, and 9 inhibitors. The results indicated that delivery of granzyme B into Jurkat cells induces apoptosis by activating caspase 3 and that caspase 3 but not caspase 8 and 9 plays a key role in enhancing the expression of Lewis X and Y antigens. Real-time PCR revealed that expression of the mRNAs for alpha1,3-fucosyltransferases FUT4 was increased at 3 h during granzyme B-induced apoptosis, while FUT9 mRNA expression gradually increased after 12 h. This increased expression of FUT4 mRNA occurred downstream of caspase 3 activation and resulted in the increased cell surface expression of Lewis X and Y antigens.
Collapse
Affiliation(s)
- Yutaro Azuma
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Japan.
| | | | | | | | | |
Collapse
|
17
|
Zhao J, Zhang LH, Jia LT, Zhang L, Xu YM, Wang Z, Yu CJ, Peng WD, Wen WH, Wang CJ, Chen SY, Yang AG. Secreted Antibody/Granzyme B Fusion Protein Stimulates Selective Killing of HER2-overexpressing Tumor Cells. J Biol Chem 2004; 279:21343-8. [PMID: 15004021 DOI: 10.1074/jbc.m312648200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Targeted cell killing is required for effective treatment of cancers. We previously described the generation of a chimeric immunocasp-3 protein and its potent selective antitumor activity (Jia, L. T., Zhang, L. H., Yu, C. J., Zhao, J., Xu, Y. M., Gui, J. H., Jin, M., Ji, Z. L., Wen, W. H., Wang, C. J., Chen, S. Y., and Yang, A. G. (2003) Cancer Res. 63, 3257-3262). Here we extend the repertoire of another chimeric pro-apoptotic protein immunoGrB, which comprises an anti-HER2 single-chain antibody, a Pseudomonas exotoxin A translocation domain and active granzyme B. Human lymphoma Jurkat cells transfected with the immunoGrB gene expression vector were able to produce and secrete the chimeric protein. The immunoGrB molecule selectively recognized and destroyed HER2-overexpressing tumor cells both in vitro and in nude mouse after intramuscular injection of the immunoGrB expression plasmid. Further in vivo study showed that intravenous administration of immunoGrB gene-modified lymphocytes led to suppression of HER2-overexpressing tumor growth and prolonged animal survival because of continuous secretion of immunoGrB molecules into blood and lymph fluid. These results demonstrate that the chimeric immunoGrB molecule, which is capable of antibody-directed targeting and granzyme B-mediated killing, has therapeutic potential against HER2 tumors, especially in cases in which caspase-dependent apoptosis is inhibited.
Collapse
Affiliation(s)
- Jing Zhao
- Departments of Biochemistry and Molecular Biology and Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Inactivated vaccines require adjuvants to stimulate an immune response. The choice of adjuvant or immune enhancer determines whether the immune response is effective, ineffective or damaging. Accordingly, there is a need for new adjuvants that stimulate the appropriate immunity, for example, T cell immunity for intracellular pathogens and cancer vaccines. In several adjuvants, the identification of chemical groups that interact with specific cell toll-like receptors (innate immunity) or receptors for co-stimulatory ligands (adaptive immunity), has enabled the establishment of structure-function relationships that are useful in the design of new adjuvants. Because of the crucial immunomodulating role of adjuvants, sub-unit vaccine development will remain dependent on new adjuvants.
Collapse
Affiliation(s)
- Dante J Marciani
- Galenica Pharmaceuticals, Inc., 2800 Milan Court, Suite 118, Birmingham, Alabama 35211, USA.
| |
Collapse
|
19
|
de Saint Basile G, Fischer A. Defective cytotoxic granule-mediated cell death pathway impairs T lymphocyte homeostasis. Curr Opin Rheumatol 2003; 15:436-45. [PMID: 12819472 DOI: 10.1097/00002281-200307000-00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hemophagocytic syndrome is a severe and often fatal syndrome resulting from excessive activation and proliferation of T lymphocytes and macrophages. Onset of a hemophagocytic syndrome characterized the course of several human inherited immune disorders, all of them resulting from molecular defects of the perforin-dependent cytotoxic process exerted by both T and Natural Killer (NK) lymphocytes. These disorders highlight the determinant role of this lytic pathway in the control of lymphocyte expansion and homeostasis. New effectors of this secretory pathway have been thus identified.
Collapse
|
20
|
McCormick AL, Smith VL, Chow D, Mocarski ES. Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J Virol 2003; 77:631-41. [PMID: 12477866 PMCID: PMC140587 DOI: 10.1128/jvi.77.1.631-641.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By 24 h after infection with human cytomegalovirus, the reticular mitochondrial network characteristic of uninfected fibroblasts was disrupted as mitochondria became punctate and dispersed. These alterations were associated with expression of the immediate-early (alpha) antiapoptotic UL37x1 gene product viral mitochondrion-localized inhibitor of apoptosis (vMIA). Similar alterations in mitochondrial morphology were induced directly by vMIA in transfected cells. A 68-amino-acid antiapoptotic derivative of vMIA containing the mitochondrial localization and antiapoptotic domains also induced disruption, whereas a mutant lacking the antiapoptotic domain failed to cause disruption. These data suggest that the fission and/or fusion process that normally controls mitochondrial networks is altered by vMIA. Mitochondrial fission has been implicated in the induction of apoptosis and vMIA-mediated inhibition of apoptosis may occur subsequent to this event.
Collapse
Affiliation(s)
- A Louise McCormick
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5124, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease of unknown etiology. In this paper we review the clinical and histological features of OLP, process of OLP diagnosis, causes of OLP, management of OLP patients and medical treatment of OLP lesions. Approximately 0.2 per cent OLP patients develop intra-oral carcinoma each year compared with approximately 0.005 per cent Australian adults. Possible mechanisms of increased oral cancer risk in OLP patients are presented. The aims of current OLP therapy are to eliminate mucosal erythema and ulceration, alleviate symptoms and reduce the risk of oral cancer. Patient education may improve the outcomes of OLP therapy and further reduce the risk of oral cancer in OLP patients. Although OLP may be diagnosed clinically, appropriate specialist referral is required for: (i) histological diagnosis; (ii) assessment of causative/exacerbating factors, associated diseases and oral cancer risk; (iii) patient education and management; (iv) medical treatment; and (v) long-term review and re-biopsy as required.
Collapse
Affiliation(s)
- P B Sugerman
- AstraZeneca R&D Boston, Waltham, Massachusetts 02451, USA.
| | | |
Collapse
|
22
|
Abstract
All known apoptosis modulators in poxviruses have been shown to function as inhibitors. The mechanistic classes of these poxvirus-encoded inhibitors are quite diverse, and indicate that a wide variety of distinct host proteins in cellular apoptotic pathways have been targeted for inhibition by individual poxviruses.
Collapse
Affiliation(s)
- Helen Everett
- Department of Biochemistry, University of Alberta, 4-63 Medical Sciences Building, Edmonton, T6G 2H7, Alberta, Canada.
| | | |
Collapse
|
23
|
Feldmann J, Le Deist F, Ouachée-Chardin M, Certain S, Alexander S, Quartier P, Haddad E, Wulffraat N, Casanova JL, Blanche S, Fischer A, de Saint Basile G. Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis. Br J Haematol 2002; 117:965-72. [PMID: 12060139 DOI: 10.1046/j.1365-2141.2002.03534.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Familial haemophagocytic lymphohistiocytosis (FHL), an inherited form of haemophagocytic lymphohistiocytosis (HLH) syndrome, is characterized by the overwhelming activation of T lymphocytes and macrophages invariably leading to death in the absence of treatment. FHL is a heterogeneous autosomal recessive disorder, with one known causative gene which codes for perforin, a cytotoxic effector protein. In this study, we have characterized the genotype and phenotype of 14 unrelated families with perforin deficiency. Four new missense mutations of the perforin gene were identified. In every case, perforin gene mutations led to undetectable intracellular perforin expression within cytotoxic cells, while some residual T-cell cytotoxic activity could be associated with certain missense mutations. Clinical and biological analyses did not differentiate between patients with nonsense or missense mutations, although age at diagnosis, which tended to be similar within members of the same family, was delayed in patients from two families belonging to the second group. In one case, consequences of perforin deficiency, diagnosed at birth, could be assessed prior to onset of clinical manifestations. No evidence for T-cell activation could be shown, suggesting that an exogenous event is required to trigger the disease manifestation. Control assessment of perforin expression and cytotoxic assays by lymphocytes from young children led to the conclusion that perforin content of natural killer cells could be a reliable diagnostic test at any age. Altogether, these data enabled a better characterization of perforin deficiency and its consequences, and defined reliable diagnostic tools.
Collapse
Affiliation(s)
- Jérôme Feldmann
- Unité de Recherche sur le développement normal et pathologique du système immunitaire, INSERM U429, Hôpital Necker-Enfants Malades, 149 rue de Sevres, 75743 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jiang B, Gentsch JR, Glass RI. The role of serum antibodies in the protection against rotavirus disease: an overview. Clin Infect Dis 2002; 34:1351-61. [PMID: 11981731 DOI: 10.1086/340103] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Indexed: 01/12/2023] Open
Abstract
A critical observation in understanding immunity to rotavirus is that children infected with wild virus or vaccinated with oral live vaccines develop a humoral immune response and are protected against severe disease upon reinfection. Nevertheless, much controversy exists as to whether these serum antibodies are directly involved in protection or merely reflect recent infection, leaving the protective role to mucosal or cell-mediated immunity or to other as-yet-undefined mechanisms. We have reviewed data from a variety of studies in humans, including challenge experiments in adult volunteers, longitudinal studies of rotavirus infection in young children, and clinical trials of animal and animal-human reassortant rotavirus vaccines in infants. These data suggest that serum antibodies, if present at critical levels, are either protective themselves or are an important and powerful correlate of protection against rotavirus disease, even though other host effectors may play an important role as well.
Collapse
Affiliation(s)
- Baoming Jiang
- Viral Gastroenteritis Section, Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
25
|
Lacelle C, Xu S, Wang E. Identification of high caspase-3 mRNA expression as a unique signature profile for extremely old individuals. Mech Ageing Dev 2002; 123:1133-44. [PMID: 12044963 DOI: 10.1016/s0047-6374(02)00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, or programmed cell death, is important for maintaining tissue homeostasis, as it permits the elimination of damaged, functionless or unwanted cells. As we age, our immune system undergoes constant remodeling, during which age-associated changes in immune parameters, including decreased naïve and increased memory T cells, have been reported. However, excessive immune cell loss, rendering the elderly more vulnerable to infections, and inappropriate deletion of damaged or functionless lymphocytes, can contribute to the development of age-associated diseases. As such, we studied the mRNA expression of cell death (specifically caspase) genes in nonagenarians and centenarians, successful models of ageing who have survived or avoided age-associated diseases, as well as in their younger counterparts and found that population composed of extremely old individuals shows a unique pattern of caspase mRNA expression, characterized by high levels of caspase-1 and -3, and low levels of caspase-8, mRNA while those composed of old individuals are characterize by high level of caspase-8 mRNA expression. Furthermore, we show that the described changes in caspases mRNA do not appear to results from age-related changes in PBMC composition, such as decreases in CD24. Therefore, we suggest that unique patterns of caspase mRNA results from the regulation of message abundance on a per cell basis, via a putative regulation of caspase genes at the transcription or RNA processing level, rather than changes in immune profiles.
Collapse
Affiliation(s)
- Chantale Lacelle
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Quebec, Montreal, Canada, H3A 2B2
| | | | | |
Collapse
|
26
|
Semra YK, Seidi OA, Sharief MK. Disease activity in multiple sclerosis correlates with T lymphocyte expression of the inhibitor of apoptosis proteins. J Neuroimmunol 2002; 122:159-66. [PMID: 11777555 DOI: 10.1016/s0165-5728(01)00464-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The pathogenesis of multiple sclerosis (MS) is thought to involve failure of programmed cell death (apoptosis) to eliminate potentially pathogenic, autoreactive T lymphocytes. This failure may be caused by multiple abnormalities of the cell death machinery. The inhibitors of apoptosis (IAP) proteins are central regulators of cell death that inhibit apoptosis induced by a variety of stimuli. In this study, we investigated the dynamics of cellular IAP-1, IAP-2, and X-linked IAP, in resting and mitogen stimulated T lymphocytes from MS patients and relevant controls. The expression of IAP proteins was significantly higher in mitogen stimulated T lymphocytes from patients with clinically active MS when compared to corresponding expressions from patients with stable MS or from other controls. Heightened expression of IAP proteins in patients with active MS correlated with clinical features of disease activity, and with T lymphocyte resistance to apoptosis. In contrast, cellular expression of the anti-apoptosis protein Bcl-2 did not differ between active and stable MS, and was relatively similar between MS patients and controls. These findings suggest that overexpression of IAP proteins in stimulated T lymphocytes is a feature of clinically active multiple sclerosis.
Collapse
Affiliation(s)
- Y K Semra
- Department of Neuroimmunology, Guy's, King's and St. Thomas' School of Medicine, Hodgkin Building, Guy's Hospital, SE1 9RT, London, UK
| | | | | |
Collapse
|
27
|
Abstract
Several human inherited immune disorders lead to the same fatal lymphoproliferative syndrome, called the hemophagocytic syndrome. Through defective perforin expression or transport, these disorders highlight the determinant role of the secretory cytotoxic pathway in the regulation of the immune response and in lymphocyte homeostasis. In addition, new effectors of this secretory pathway have been identified.
Collapse
Affiliation(s)
- G de Saint Basile
- Institut National de la Santé et de la Recherche Médicale (INSERM) U429, Hôpital Necker, 149 rue de Sèvres, 75015, Paris, France.
| | | |
Collapse
|
28
|
Loyer V, Fontaine P, Pion S, Hétu F, Roy DC, Perreault C. The In Vivo Fate of APCs Displaying Minor H Antigen and/or MHC Differences Is Regulated by CTLs Specific for Immunodominant Class I-Associated Epitopes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The goal of this work was to evaluate the fate of APCs following interactions with T cells in unprimed mice with a normal T cell repertoire. We elaborated a model in which male adherent peritoneal mononuclear cells were injected into the foreleg footpads of naive female recipients mismatched for either minor or major histocompatibility Ags. At various times after injection, APC numbers in the draining (axillary and brachial) lymph nodes were assessed using a Ube1y gene-specific PCR assay. Our experimental model was designed so that the number of APCs expressing the priming epitope was similar to what is observed under real life conditions. Thus, early after injection, the frequency of afferent lymph-derived APCs expressing the priming epitope was in the range of 101–102/106 lymph node cells. We found that APCs presenting some, but not all, nonself epitopes were killed rapidly after entrance into the lymph nodes. Rapid elimination of APCs occurred following interactions with MHC class I-restricted, but not class II-restricted, T cells and was observed when APCs presented an immunodominant (B6dom1/H7a), but not a nondominant (HY), epitope. Killing of APCs was mediated partly, but not exclusively, by perforin-dependent process. We propose that killing of APCs by CTLs specific for immunodominant MHC class I-restricted epitopes may be instrumental in regulating the intensity, duration, and diversity of T cell responses.
Collapse
Affiliation(s)
- Véronique Loyer
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Pierre Fontaine
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Stéphane Pion
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Francis Hétu
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Denis-Claude Roy
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Claude Perreault
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|