1
|
Ouji Y, Hamasaki M, Misu M, Yoshikawa M, Hamano S. Labeling of miracidium using fluorescent agents to visualize infection of schistosome in intermediate host snails. Parasitol Int 2025; 104:102994. [PMID: 39561957 DOI: 10.1016/j.parint.2024.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. Schistosomes infect humans by cercariae penetrating the skin in a freshwater environment. Findings obtained more than 100 years prior showed that miracidium develops into cercaria in freshwater snails, though detailed development dynamics have not been elucidated. Although results of histological analyses of development of schistosomes in snails were presented in our previous studies, findings obtained with dynamic imaging have yet to be reported. In the present study, imaging of schistosome infection and dynamics in snails occuring within a short period was performed using fluorescent labeling agents. Labeling of S. mansoni cercariae with carboxyfluorescein succinimidyl ester (CFSE) caused no toxicity, and allowed for monitoring of schistosome dynamics in snails for up to 10 days and release of infective cercariae without fluorescence in 40 days following infection.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | - Megumi Hamasaki
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Raaphorst H, Lougheed S, Saou L, van Kleef ND, Rensink I, Ten Brinke A, Freen-van Heeren JJ, Turksma AW. Exploring the dynamics of T-cell responses: a combined approach using EdU incorporation and proliferation dye dilution assay. Immunol Cell Biol 2024. [PMID: 39740009 DOI: 10.1111/imcb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Understanding antigen-specific T-cell responses is crucial for advancing immunotherapies and vaccine development. This study proposes a novel approach combining two complementary assays: the 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay (tracking proliferation over 0-48 h) and the VPD450 dye dilution assay (tracking proliferation over 4-6 days). Integrating these techniques provides additional insights into T-cell proliferation kinetics. Both assays were independently optimized using anti-CD3 and anti-CD28 polyclonal T cell stimulation. 1 μM VPD450 is suitable for assessing T-cell proliferation. The EdU concentration should match the stimulation strength, requiring higher concentrations to efficiently track DNA replication detection during increased cellular division. Day 5 was the optimal read-out day for the EdU incorporation assay. We then combined the VPD450 dye dilution and EdU incorporation assays. As a proof of principle, we stimulated PBMCs from healthy donors with tetanus toxoid to assess antigen-specific T-cell responses. Additionally, we demonstrated the assay's application in drug research by evaluating proliferation in a mixed lymphocyte reaction with abatacept, an agonistic anti-CTLA-4 antibody. This combined approach offers qualitative insights into T-cell proliferation kinetics, beneficial for assessing novel vaccine efficiency or for designing new treatments targeting T cell proliferation, such as in autoimmune settings.
Collapse
Affiliation(s)
- Hilde Raaphorst
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Sinéad Lougheed
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Latifa Saou
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | | | - Irma Rensink
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | | | | |
Collapse
|
3
|
Zhang W, Yelick PC. In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds. Stem Cells Transl Med 2024:szae076. [PMID: 39729491 DOI: 10.1093/stcltm/szae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 12/29/2024] Open
Abstract
The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants. To address this possibility, our research has focused on creating biological tooth substitutes. The study presented here validates a potentially clinically relevant bioengineered tooth replacement therapy for eventual use in humans. We created bioengineered tooth buds by seeding decellularized tooth bud (dTB) extracellular matrix (ECM) scaffolds with human dental pulp cells, porcine tooth bud-derived dental epithelial cells, and human umbilical vein endothelial cells. The resulting bioengineered tooth bud constructs were implanted in the mandibles of adult Yucatan minipigs and grown for 2 or 4 months. We observed the formation of tooth-like tissues, including tooth-supporting periodontal ligament tissues, in cell-seeded dTB ECM constructs. This preclinical translational study validates this approach as a potential clinically relevant alternative to currently used dental implants.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States
| | - Pamela C Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States
| |
Collapse
|
4
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Torres-García D, Mostert TP, Reinalda L, Van Kasteren SI. A Bioorthogonal Dual Fluorogenic Probe for the Live-Cell Monitoring of Nutrient Uptake by Mammalian Cells. Angew Chem Int Ed Engl 2024; 63:e202401733. [PMID: 38716701 DOI: 10.1002/anie.202401733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 06/21/2024]
Abstract
Cells rely heavily on the uptake of exogenous nutrients for survival, growth, and differentiation. Yet quantifying the uptake of small molecule nutrients at the single cell level is difficult. Here we present a new approach to studying the nutrient uptake in live single cells using Inverse Electron-Demand Diels Alder (IEDDA) chemistry. We have modified carboxyfluorescein-diacetate-succinimidyl esters (CFSE)-a quenched fluorophore that can covalently react with proteins and is only turned on in the cytosol of a cell following esterase activity-with a tetrazine. This tetrazine serves as a second quencher for the pendant fluorophore. Upon reaction with nutrients modified with an electron-rich or strained dienophile in an IEDDA reaction, this quenching group is destroyed, thereby enabling the probe to fluoresce. This has allowed us to monitor the uptake of a variety of dienophile-containing nutrients in live primary immune cell populations using flow cytometry and live-cell microscopy.
Collapse
Affiliation(s)
- Yixuan Wang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Diana Torres-García
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Thijmen P Mostert
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
6
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
7
|
Hettiarachchi DU, Alston VN, Bern L, Al-Armanazi J, Su B, Shang M, Wang J, Xing D, Li S, Litvak MK, Dunham RA, Butts IAE. Advancing aquaculture: Production of xenogenic catfish by transplanting blue catfish (Ictalurus furcatus) and channel catfish (I. punctatus) stem cells into white catfish (Ameiurus catus) triploid fry. PLoS One 2024; 19:e0302687. [PMID: 38848398 PMCID: PMC11161074 DOI: 10.1371/journal.pone.0302687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
Xenogenesis has been recognized as a prospective method for producing channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrids. The xenogenesis procedure can be achieved by transplanting undifferentiated stem cells derived from a donor fish into a sterile recipient. Xenogenesis for hybrid catfish embryo production has been accomplished using triploid channel catfish as a surrogate. However, having a surrogate species with a shorter maturation period, like white catfish (Ameiurus catus), would result in reduced feed costs, labor costs, and smaller body size requirements, making it a more suitable species for commercial applications where space is limited, and as a model species. Hence, the present study was conducted to assess the effectiveness of triploid white catfish as a surrogate species to transplant blue catfish stem cells (BSCs) and channel catfish stem cells (CSCs). Triploid white catfish fry were injected with either BSCs or CSCs labeled with PKH 26 fluorescence dye from 0 to 12 days post hatch (DPH). No significant differences in weight and length of fry were detected among BSCs and CSCs injection times (0 to 12 DPH) when fry were sampled at 45 and 90 DPH (P > 0.05). The highest survival was reported when fry were injected between 4.0 to 5.5 DPH (≥ 81.2%). At 45 and 90 DPH, cell and cluster area increased for recipients injected from 0 to 5.2 DPH, and the highest cluster area values were reported between 4.0 to 5.2 DPH. Thereafter, fluorescent cell and cluster area in the host declined with no further decrease after 10 DPH. At 45 DPH, the highest percentage of xenogens were detected when fry were injected with BSCs between 4.0 to 5.0 and CSCs between 3.0 to 5.0 DPH. At 90 DPH, the highest number of xenogens were detected from 4.0 to 6.0 DPH when injected with either BSCs or CSCs. The current study demonstrated the suitability of white catfish as a surrogate species when BSCs and CSCs were transplanted into triploid white catfish between 4.0 to 6.0 DPH (27.4 ± 0.4°C). Overall, these findings allow enhanced efficiency of commercializing xenogenic catfish carrying gametes of either blue catfish or channel catfish.
Collapse
Affiliation(s)
- Darshika Udari Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Veronica N. Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Logan Bern
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jacob Al-Armanazi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Matthew K. Litvak
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Rex A. Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
8
|
Tabler CO, Tilton JC. Analysis of Individual Viral Particles by Flow Virometry. Viruses 2024; 16:802. [PMID: 38793683 PMCID: PMC11125929 DOI: 10.3390/v16050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small viruses that complicates detection, coincidental detection of multiple small particles due to their high concentrations, and challenges with sample preparation including the inability to easily "wash" samples to remove unbound fluorescent antibodies. We will discuss how the field has overcome these challenges to reveal novel insights into viral biology.
Collapse
Affiliation(s)
| | - John C. Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
9
|
Wang Z, Wang H, Lin S, Angers S, Sargent EH, Kelley SO. Phenotypic targeting using magnetic nanoparticles for rapid characterization of cellular proliferation regulators. SCIENCE ADVANCES 2024; 10:eadj1468. [PMID: 38718125 PMCID: PMC11078187 DOI: 10.1126/sciadv.adj1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024]
Abstract
Genome-wide CRISPR screens have provided a systematic way to identify essential genetic regulators of a phenotype of interest with single-cell resolution. However, most screens use live/dead readout of viability to identify factors of interest. Here, we describe an approach that converts cell proliferation into the degree of magnetization, enabling downstream microfluidic magnetic sorting to be performed. We performed a head-to-head comparison and verified that the magnetic workflow can identify the same hits from a traditional screen while reducing the screening period from 4 weeks to 1 week. Taking advantage of parallelization and performance, we screened multiple mesenchymal cancer cell lines for their dependency on cell proliferation. We found and validated pan- and cell-specific potential therapeutic targets. The method presented provides a nanoparticle-enabled approach means to increase the breadth of data collected in CRISPR screens, enabling the rapid discovery of drug targets for treatment.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H. Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Chemistry, Weinberg College of Arts and Science, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Shana O. Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Chemistry, Weinberg College of Arts and Science, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
11
|
Fourneaux C, Racine L, Koering C, Dussurgey S, Vallin E, Moussy A, Parmentier R, Brunard F, Stockholm D, Modolo L, Picard F, Gandrillon O, Paldi A, Gonin-Giraud S. Differentiation is accompanied by a progressive loss in transcriptional memory. BMC Biol 2024; 22:58. [PMID: 38468285 PMCID: PMC10929117 DOI: 10.1186/s12915-024-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.
Collapse
Affiliation(s)
- Camille Fourneaux
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Laëtitia Racine
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Catherine Koering
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Dussurgey
- Plateforme AniRA-Cytométrie, Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, SFR Biosciences, Lyon, F-69007, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Moussy
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Romuald Parmentier
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Fanny Brunard
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Laurent Modolo
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Franck Picard
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Gandrillon
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France
- Inria Center, Grenoble Rhone-Alpes, Equipe Dracula, Villeurbanne, F69100, France
| | - Andras Paldi
- Ecole Pratique des Hautes Etudes, PSL Research University, Sorbonne Université, INSERM, CRSA, Paris, 75012, France
| | - Sandrine Gonin-Giraud
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
12
|
Luah YH, Wu T, Cheow LF. Identification, sorting and profiling of functional killer cells via the capture of fluorescent target-cell lysate. Nat Biomed Eng 2024; 8:248-262. [PMID: 37652987 DOI: 10.1038/s41551-023-01089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Assays for assessing cell-mediated cytotoxicity are largely target-cell-centric and cannot identify and isolate subpopulations of cytotoxic effector cells. Here we describe an assay compatible with flow cytometry for the accurate identification and sorting of functional killer-cell subpopulations in co-cultures. The assay, which we named PAINTKiller (for 'proximity affinity intracellular transfer identification of killer cells'), relies on the detection of an intracellular fluorescent protein 'painted' by a lysed cell on the surface of the lysing cytotoxic cell (specifically, on cell lysis the intracellular fluorescein derivative carboxyfluorescein succinimidyl ester is captured on the surface of the natural killer cell by an antibody for anti-fluorescein isothiocyanate linked to an antibody for the pan-leucocyte surface receptor CD45). The assay can be integrated with single-cell RNA sequencing for the analysis of molecular pathways associated with cell cytotoxicity and may be used to uncover correlates of functional immune responses.
Collapse
Affiliation(s)
- Yen Hoon Luah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Critical Analytics for Manufacturing of Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore
| | - Tongjin Wu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Critical Analytics for Manufacturing of Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Asfiya R, Xu L, Paramanantham A, Kabytaev K, Chernatynskaya A, McCully G, Yang H, Srivastava A. Physio-chemical Modifications to Re-engineer Small Extracellular Vesicles for Targeted Anticancer Therapeutics Delivery and Imaging. ACS Biomater Sci Eng 2024; 10:697-722. [PMID: 38241003 PMCID: PMC10956554 DOI: 10.1021/acsbiomaterials.3c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Cancer theranostics developed through nanoengineering applications are essential for targeted oncologic interventions in the new era of personalized and precision medicine. Recently, small extracellular vesicles (sEVs) have emerged as an attractive nanoengineering platform for tumor-directed anticancer therapeutic delivery and imaging of malignant tumors. These natural nanoparticles have multiple advantages over synthetic nanoparticle-based delivery systems, such as intrinsic targeting ability, less immunogenicity, and a prolonged circulation time. Since the inception of sEVs as a viable replacement for liposomes (synthetic nanoparticles) as a drug delivery vehicle, many studies have attempted to further the therapeutic efficacy of sEVs. This article discusses engineering strategies for sEVs using physical and chemical methods to enhance their anticancer therapeutic delivery performance. We review physio-chemical techniques of effective therapeutic loading into sEV, sEV surface engineering for targeted entry of therapeutics, and its cancer environment sensitive release inside the cells/organ. Next, we also discuss the novel hybrid sEV systems developed by a combination of sEVs with lipid and metal nanoparticles to garner each component's benefits while overcoming their drawbacks. The article extensively analyzes multiple sEV labeling techniques developed and investigated for live tracking or imaging sEVs. Finally, we discuss the theranostic potential of engineered sEVs in future cancer care regimens.
Collapse
Affiliation(s)
- Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Lei Xu
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Kuanysh Kabytaev
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Anna Chernatynskaya
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
- Ellis Fischel Cancer Centre, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| |
Collapse
|
14
|
Liston A. Renewing an author-centric publication process. Immunol Cell Biol 2024; 102:75-78. [PMID: 38212948 DOI: 10.1111/imcb.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Immunology & Cell Biology celebrated its 100-year birthday as a journal with an editorial workshop focused on how we can improve the author experience. In our renewed editorial policies, we articulate our editorial focus on the quality of the scientific question and the robustness of the conclusions, including a new "scoop protection" policy to live our values. The journal is dedicated to maintaining its relationship with reviewers, enabling rapid quality peer review, but is also opening new lines of submission with expedited cross-platform assessment of reviews and incorporation into the Review Commons submission pipeline. In 2024 we will expand our social media promotion of articles and build on the career development resource of Immunology Futures. Here we lay out the ethos, numbers and rationale behind ICB's renewed author-centric publication policies for 2024.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
He JL, You YX, Pei X, Jiang W, Zeng QM, Chen B, Wang YH, Chen EQ, Tang H, Gao XF, Wu DB. Tracking of Stem Cells in Chronic Liver Diseases: Current Trends and Developments. Stem Cell Rev Rep 2024; 20:447-454. [PMID: 37993759 DOI: 10.1007/s12015-023-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Stem cell therapy holds great promise for future clinical practice for treatment of advanced liver diseases. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, has not been fully elucidated. Herein, recent advances regarding the imaging tools for stem cells tracking mainly in chronic liver diseases with the advantages and disadvantages of each approach have been described. Magnetic resonance imaging is a promising clinical imaging modality due to non-radioactivity, excellent penetrability, and high spatial resolution. Fluorescence imaging and radionuclide imaging demonstrate relatively increased sensitivity, with the latter excelling in real-time monitoring. Reporter genes specialize in long-term tracing. Nevertheless, the disadvantages of low sensitivity, radiation, exogenous gene risk are inevitably present in each of these means, respectively. In this review, we aim to comprehensively evaluate the current state of methods for tracking of stem cell, highlighting their strengths and weaknesses, and providing insights into their future potential. Multimodality imaging strategies may overcome the inherent limitations of single-modality imaging by combining the strengths of different imaging techniques to provide more comprehensive information in the clinical setting.
Collapse
Affiliation(s)
- Jin-Long He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Yi-Xian You
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiong Pei
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Min Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Gornostaeva AN, Bobyleva PI, Andreeva ER, Gogiya BS, Buravkova LB. Alteration of PBMC transcriptome profile after interaction with multipotent mesenchymal stromal cells under "physiological" hypoxia. Immunobiology 2024; 229:152766. [PMID: 38091798 DOI: 10.1016/j.imbio.2023.152766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have demonstrated a pronounced immunosuppressive activity, the manifestation of which depends on the microenvironmental factors, including O2 level. Here we examined the effects of MSCs on transcriptomic profile of allogeneic phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) after interaction at ambient (20%) or "physiological" hypoxia (5%) O2. As revealed with microarray analysis, PBMC transcriptome at 20% O2 was more affected, which was manifested as differential expression of more than 300 genes, whereas under 5% O2 220 genes were changed. Most of genes at 20% O2 were downregulated, while at hypoxia most of genes were upregulated. Altered gene patterns were only partly overlapped at different O2 levels. A set of altered genes at hypoxia only was of particular interest. According to Gene Ontology a part of above genes was responsible for adhesion, cell communication, and immune response. At both oxygen concentrations, MSCs demonstrated effective immunosuppression manifested as attenuation of T cell activation and proliferation as well as anti-inflammatory shift of cytokine profile. Thus, MSC-mediated immunosuppression is executed with greater efficacy at a "physiological" hypoxia, since the same result has been achieved through a change in the expression of a fewer genes in target PBMCs.
Collapse
Affiliation(s)
- A N Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia.
| | - P I Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - E R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - B Sh Gogiya
- Department of Herniology and Plastic Surgery, A. V. Vishnevsky Institute of Surgery, Bolshaya Serpukhovskaya Str, 27, 117997 Moscow, Russia
| | - L B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| |
Collapse
|
17
|
Tario JD, Soh KT, Wallace PK, Muirhead KA. Monitoring Cell Proliferation by Dye Dilution: Considerations for Panel Design. Methods Mol Biol 2024; 2779:159-216. [PMID: 38526787 DOI: 10.1007/978-1-0716-3738-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
High dimensional studies that include proliferation dyes face two inherent challenges in panel design. First, the more rounds of cell division to be monitored based on dye dilution, the greater the starting intensity of the labeled parent cells must be in order to distinguish highly divided daughter cells from background autofluorescence. Second, the greater their starting intensity, the more difficult it becomes to avoid spillover of proliferation dye signal into adjacent spectral channels, with resulting limitations on the use of other fluorochromes and ability to resolve dim signals of interest. In the third and fourth editions of this series, we described the similarities and differences between protein-reactive and membrane-intercalating dyes used for general cell tracking, provided detailed protocols for optimized labeling with each dye type, and summarized characteristics to be tested by the supplier and/or user when validating either dye type for use as a proliferation dye. In this fifth edition, we review: (a) Fundamental assumptions and critical controls for dye dilution proliferation assays; (b) Methods to evaluate the effect of labeling on cell growth rate and test the fidelity with which dye dilution reports cell division; and. (c) Factors that determine how many daughter generations can be accurately included in proliferation modeling. We also provide an expanded section on spectral characterization, using data collected for three protein-reactive dyes (CellTrace™ Violet, CellTrace™ CFSE, and CellTrace™ Far Red) and three membrane-intercalating dyes (PKH67, PKH26, and CellVue® Claret) on three different cytometers to illustrate typical decisions and trade-offs required during multicolor panel design. Lastly, we include methods and controls for assessing regulatory T cell potency, a functional assay that incorporates the "know your dye" and "know your cytometer" principles described herein.
Collapse
Affiliation(s)
- Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kah Teong Soh
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Agenus, Inc., Lexington, MA, USA
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- SciGro, Inc., Sedona, AZ, USA
| | | |
Collapse
|
18
|
Koukoulias K, Papayanni PG, Jones J, Kuvalekar M, Watanabe A, Velazquez Y, Gilmore S, Papadopoulou A, Leen AM, Vasileiou S. Assessment of the cytolytic potential of a multivirus-targeted T cell therapy using a vital dye-based, flow cytometric assay. Front Immunol 2023; 14:1299512. [PMID: 38187380 PMCID: PMC10766817 DOI: 10.3389/fimmu.2023.1299512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Reliable and sensitive characterization assays are important determinants of the successful clinical translation of immunotherapies. For the assessment of cytolytic potential, the chromium 51 (51Cr) release assay has long been considered the gold standard for testing effector cells. However, attaining the approvals to access and use radioactive isotopes is becoming increasingly complex, while technical aspects [i.e. sensitivity, short (4-6 hours) assay duration] may lead to suboptimal performance. This has been the case with our ex vivo expanded, polyclonal (CD4+ and CD8+) multivirus-specific T cell (multiVST) lines, which recognize 5 difficult-to-treat viruses [Adenovirus (AdV), BK virus (BKV), cytomegalovirus (CMV), Epstein Barr virus (EBV), and human herpes virus 6 (HHV6)] and when administered to allogeneic hematopoietic stem cell (HCT) or solid organ transplant (SOT) recipients have been associated with clinical benefit. However, despite mediating potent antiviral effects in vivo, capturing in vitro cytotoxic potential has proven difficult in a traditional 51Cr release assay. Now, in addition to cytotoxicity surrogates, including CD107a and Granzyme B, we report on an alternative, vital dye -based, flow cytometric platform in which superior sensitivity and prolonged effector:target co-culture duration enabled the reliable detection of both CD4- and CD8-mediated in vitro cytolytic activity against viral targets without non-specific effects.
Collapse
Affiliation(s)
- Kiriakos Koukoulias
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Penelope G. Papayanni
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Julia Jones
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | | | - Anastasia Papadopoulou
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
19
|
Liston A, La Flamme AC, Belz GT, Parish CR, Greer JM. A centenary of service: 100 years of Immunology & Cell Biology. Immunol Cell Biol 2023; 101:882-890. [PMID: 37842760 DOI: 10.1111/imcb.12700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This year marks the 100th year of the publication of Immunology & Cell Biology since it was first published in March 1924 as the Australian Journal of Experimental Biology and Medical Science. In this Editorial, we recount the journal from its founding, to its focus on immunology, through to the modern era.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gabrielle T Belz
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher R Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Judith M Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Liston A. 100 years of Immunology & Cell Biology. Immunol Cell Biol 2023; 101:880-881. [PMID: 37909124 DOI: 10.1111/imcb.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Law JC, Watts TH. Considerations for Choosing T Cell Assays during a Pandemic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:169-174. [PMID: 37399079 DOI: 10.4049/jimmunol.2300129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 07/05/2023]
Abstract
The appropriate immunosurveillance tools are foundational for the creation of therapeutics, vaccines, and containment strategies when faced with outbreaks of novel pathogens. During the COVID-19 pandemic, there was an urgent need to rapidly assess immune memory following infection or vaccination. Although there have been attempts to standardize cellular assays more broadly, methods for measuring cell-mediated immunity remain variable across studies. Commonly used methods include ELISPOT, intracellular cytokine staining, activation-induced markers, cytokine secretion assays, and peptide-MHC tetramer staining. Although each assay offers unique and complementary information on the T cell response, there are challenges associated with standardizing these assays. The choice of assay can be driven by sample size, the need for high throughput, and the information sought. A combination of approaches may be optimal. This review describes the benefits and limitations of commonly used methods for assessing T cell immunity across SARS-CoV-2 studies.
Collapse
Affiliation(s)
- Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
24
|
Ryu DK, Adhikari M, Choi DH, Jun KJ, Kim DH, Kim CR, Kang MK, Park DH. Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple. THE PLANT PATHOLOGY JOURNAL 2023; 39:52-61. [PMID: 36760049 PMCID: PMC9929174 DOI: 10.5423/ppj.oa.07.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is one of the major bacterial disease of apple and pear, causing enormous economic losses worldwide. Several control measures against E. amylovora have been reported till date, however, none of them have proved to be effective significantly against the pathogen. In this study, mechanisms of the copper-based control agents (CBCAs): copper oxychloride (COCHL), copper oxide (COX), copper hydroxide (CHY), copper sulfate basic (CSB), and tribasic copper sulfate (TCS) and their disease severity reduction efficacy against E. amylovora were analyzed. Bis-1,3-dibutylbarbituric acid trimethine oxonol, carboxyl fluorescein diacetate succinimidyl ester, and 5-cyano-2,3-ditolyl tetrazolium chloride staining were used to check the damage of membrane potential, cytoplasmic pHin, and respiration of CBCAs-treated E. amylovora, respectively. High disturbance in the membrane potential of E. amylovora was found under COX and COCHL treatments. Similarly, higher significant changes in the inner cytoplasmic pHin were observed under COX, COCHL, and TCS treatment. CHY and COCHL-treated E. amylovora showed a significant reduction in respiration. In vitro bioassay results revealed that CHY, CSB, and TCS at 2,000 ppm reduced the severity of fire blight both in pre- and post-treatment of CBCAs in immature apple fruits and seedlings. Overall, the most effective CBCAs against E. amylovora could be CHY at 2,000 ppm as its showed inhibition mechanisms and disease severity reduction.
Collapse
Affiliation(s)
- Duck Kyu Ryu
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
| | - Mahesh Adhikari
- Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Dong Hyuk Choi
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
| | - Kyung Jin Jun
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Do Hyoung Kim
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Chae Ryeong Kim
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Min Kyu Kang
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Duck Hwan Park
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
- Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
25
|
Ganesan N, Ronsmans S, Hoet P. Methods to Assess Proliferation of Stimulated Human Lymphocytes In Vitro: A Narrative Review. Cells 2023; 12:cells12030386. [PMID: 36766728 PMCID: PMC9913443 DOI: 10.3390/cells12030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The ability to monitor lymphocyte responses is critical for developing our understanding of the immune response in humans. In the current clinical setting, relying on the metabolic incorporation of [3H] thymidine into cellular DNA via a lymphocyte proliferation test (LPT) is the only method that is routinely performed to determine cell proliferation. However, techniques that measure DNA synthesis with a radioactive material such as [3H] thymidine are intrinsically more sensitive to the different stages of the cell cycle, which could lead to over-analyses and the subsequent inaccurate interpretation of the information provided. With cell proliferation assays, the output should preferably provide a direct and accurate measurement of the number of actively dividing cells, regardless of the stimuli properties or length of exposure. In fact, an ideal technique should have the capacity to measure lymphocyte responses on both a quantitative level, i.e., cumulative magnitude of lymphoproliferative response, and a qualitative level, i.e., phenotypical and functional characterization of stimulated immune cells. There are many LPT alternatives currently available to measure various aspects of cell proliferation. Of the nine techniques discussed, we noted that the majority of these LPT alternatives measure lymphocyte proliferation using flow cytometry. Across some of these alternatives, the covalent labelling of cells with a high fluorescence intensity and low variance with minimal cell toxicity while maximizing the number of detectable cell divisions or magnitude of proliferation was achieved. Herein, we review the performance of these different LPT alternatives and address their compatibility with the [3H] thymidine LPT so as to identify the "best" alternative to the [3H] thymidine LPT.
Collapse
Affiliation(s)
- Nirosha Ganesan
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
| | - Steven Ronsmans
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Clinic for Occupational and Environmental Medicine, Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
26
|
Pfister F, Alexiou C, Janko C. Cell Viability and Immunogenic Function of T Cells Loaded with Nanoparticles for Spatial Guidance in Magnetic Fields. Methods Mol Biol 2023; 2644:331-346. [PMID: 37142932 DOI: 10.1007/978-1-0716-3052-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immune cell therapies, such as adoptive T cell therapies, are an innovative and powerful treatment option for previously non-treatable diseases. Although immune cell therapies are thought to be very specific, there is still the danger of developing severe to life-threatening side effects due to the unspecific distribution of the cells throughout the body (on-target/off-tumor effects). A possible solution for the reduction of these side effects and the improvement of tumor infiltration is the specific targeting of the effector cells (e.g., T cells) to the desired destination (e.g., tumor region). This can be achieved by the magnetization of cells with superparamagnetic iron oxide nanoparticles (SPIONs) for spatial guidance via external magnetic fields. A prerequisite for the use of SPION-loaded T cells in adoptive T cell therapies is that cell viability and functionality after nanoparticle loading are preserved. Here, we demonstrate a protocol to analyze cell viability and functionality such as activation, proliferation, cytokine release, and differentiation at a single cell level using flow cytometry.
Collapse
Affiliation(s)
- Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Zhang L, Feng X, Shen Y, Wang Y, Liu Z, Ma Y, Gu Y, Guo G, Duan L, Lu L, Liang Y, Lawrence T, Huang R. A novel
ZsGreen
knock‐in melanoma cell line reveals the function of
CD11b
in tumor phagocytosis. Immunol Cell Biol 2022; 100:691-704. [DOI: 10.1111/imcb.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/26/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Xinyu Feng
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Yingzhuo Shen
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Yingbin Wang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Zhuangzhuang Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Institute of Psychiatry and Neuroscience Xinxiang Medical University Xinxiang China
| | - Yuang Ma
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Guo Guo
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Liangwei Duan
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Institute of Psychiatry and Neuroscience Xinxiang Medical University Xinxiang China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Institute of Psychiatry and Neuroscience Xinxiang Medical University Xinxiang China
| | - Toby Lawrence
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Centre for Inflammation Biology and Cancer Immunology, Cancer Research UK King's Health Partners Centre, School of Immunology and Microbial Sciences King's College London London UK
| | - Rong Huang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine Xinxiang Medical University Xinxiang China
| |
Collapse
|
28
|
Lee EH, Lee SW, Seo Y, Deng YH, Lim YJ, Kwon HB, Park K, Kong H, Kim MJ. Manganese Oxide Nanozyme-Doped Diatom for Safe and Efficient Treatment of Peri-Implantitis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27634-27650. [PMID: 35638645 PMCID: PMC11445715 DOI: 10.1021/acsami.2c05166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peri-implantitis is a major cause of dental implant failure. Bacterial biofilm contamination on the implant induces surrounding bone resorption and soft tissue inflammation, leading to severe deterioration of oral health. However, conventional biofilm removal procedures, such as mechanical decontamination and antiseptic application, are not effective enough to induce reosseointegration on decontaminated implant surfaces. This is due to (1) incomplete decontamination of the biofilm from inaccessible areas and (2) physicochemical alteration of implant surfaces caused by decontamination procedures. Herein, a safe and effective therapeutic approach for peri-implantitis is developed, which involves decontamination of implant-bound biofilms using the kinetic energy of microsized oxygen bubbles generated from the catalytic reaction between hydrogen peroxide (H2O2) and manganese oxide (MnO2) nanozyme sheet-doped silica diatom microparticles (Diatom Microbubbler, DM). Rapidly moving microsized DM particles are able to penetrate narrow spaces between implant screws, exerting just the right amount of force to entirely destroy biofilms without harming the surrounding mucosa or implant surfaces, as opposed to conventional antiseptics such as chlorhexidine or 3% H2O2 when used alone. Consequently, decontamination with DM facilitates successful reosseointegration on the peri-implantitis-affected implant surface. In summary, our new DM-based therapeutic approach will become a promising alternative to resolve clinically challenging aspects of peri-implantitis.
Collapse
Affiliation(s)
- Eun-Hyuk Lee
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, South Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, South Korea
| | - Yongbeom Seo
- Department of Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Department of Pathobiology, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-Heng Deng
- Department of Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Department of Pathobiology, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Young-Jun Lim
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, South Korea
| | - Ho-Beom Kwon
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, South Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, South Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Department of Pathobiology, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Myung-Joo Kim
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, South Korea
| |
Collapse
|
29
|
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, Müller S, Turley SJ, Brekken RA. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 2022; 40:656-673.e7. [PMID: 35523176 PMCID: PMC9197998 DOI: 10.1016/j.ccell.2022.04.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022]
Abstract
Recent studies have identified a unique cancer-associated fibroblast (CAF) population termed antigen-presenting CAFs (apCAFs), characterized by the expression of major histocompatibility complex class II molecules, suggesting a function in regulating tumor immunity. Here, by integrating multiple single-cell RNA-sequencing studies and performing robust lineage-tracing assays, we find that apCAFs are derived from mesothelial cells. During pancreatic cancer progression, mesothelial cells form apCAFs by downregulating mesothelial features and gaining fibroblastic features, a process induced by interleukin-1 and transforming growth factor β. apCAFs directly ligate and induce naive CD4+ T cells into regulatory T cells (Tregs) in an antigen-specific manner. Moreover, treatment with an antibody targeting the mesothelial cell marker mesothelin can effectively inhibit mesothelial cell to apCAF transition and Treg formation induced by apCAFs. Taken together, our study elucidates how mesothelial cells may contribute to immune evasion in pancreatic cancer and provides insight on strategies to enhance cancer immune therapy.
Collapse
Affiliation(s)
- Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | | | - Debolina Ganguly
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Raghav Chandra
- Department of Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Gilbert Murimwa
- Department of Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Steven Wright
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Xiaowu Gu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Ravikanth Maddipati
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | | | | | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Koutník J, Klepsch V, Pommermayr M, Thuille N, Baier G, Siegmund K. A MLR-Based Approach to Analyze Regulators of T Lymphocyte Activation In Vivo. Int J Mol Sci 2022; 23:5337. [PMID: 35628145 PMCID: PMC9140849 DOI: 10.3390/ijms23105337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Depending on the context, robust and durable T lymphocyte activation is either desirable, as in the case of anti-tumor responses, or unwanted, in cases of autoimmunity when chronic stimulation leads to self-tissue damage. Therefore, reliable in vivo models are of great importance to identify and validate regulatory pathways of T lymphocyte activation. Here, we describe an in vivo mixed-lymphocyte-reaction (MLR) approach, which is based on the so-called parent-into-F1 (P → F1) mouse model in combination with the congenic marker CD45.1/2 and cell proliferation dye-labeling. This setup allows us to track adoptively transferred allogenic CD4+ and CD8+ T lymphocytes and analyze their phenotype as well as the proliferation by flow cytometry in the blood and spleen. We could show hypo-reactive responses of T lymphocytes isolated from knockout mice with a known defect in T lymphocyte activation. Thus, this MLR-based in vivo model provides the opportunity to analyze positive regulators of T cell responses under physiological conditions of polyclonal T lymphocyte activation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerstin Siegmund
- Institute of Cell Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.K.); (V.K.); (M.P.); (N.T.); (G.B.)
| |
Collapse
|
31
|
Díaz-Hernández ME, Galván-Hernández CI, Marín-Llera JC, Camargo-Sosa K, Bustamante M, Wischin S, Chimal-Monroy J. Activation of the WNT-BMP-FGF Regulatory Network Induces the Onset of Cell Death in Anterior Mesodermal Cells to Establish the ANZ. Front Cell Dev Biol 2021; 9:703836. [PMID: 34820367 PMCID: PMC8606791 DOI: 10.3389/fcell.2021.703836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The spatiotemporal control of programmed cell death (PCD) plays a significant role in sculpting the limb. In the early avian limb bud, the anterior necrotic zone (ANZ) and the posterior necrotic zone are two cell death regions associated with digit number reduction. In this study, we evaluated the first events triggered by the FGF, BMP, and WNT signaling interactions to initiate cell death in the anterior margin of the limb to establish the ANZ. This study demonstrates that in a period of two to 8 h after the inhibition of WNT or FGF signaling or the activation of BMP signaling, cell death was induced in the anterior margin of the limb concomitantly with the regulation of Dkk, Fgf8, and Bmp4 expression. Comparing the gene expression profile between the ANZ and the undifferentiated zone at 22HH and 25HH and between the ANZ of 22HH and 25HH stages correlates with functional programs controlled by the regulatory network FGF, BMP, and WNT signaling in the anterior margin of the limb. This work provides novel insights to recognize a negative feedback loop between FGF8, BMP4, and DKK to control the onset of cell death in the anterior margin of the limb to the establishment of the ANZ.
Collapse
Affiliation(s)
- Martha Elena Díaz-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Claudio Iván Galván-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Karen Camargo-Sosa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Marcia Bustamante
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Sabina Wischin
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| |
Collapse
|
32
|
Ozawa T, Ijichi T, Shiraishi M. Measurement of canine blood microparticles by flow cytometry: effect of anticoagulants and staining reagents. J Vet Med Sci 2021; 83:1786-1789. [PMID: 34615844 PMCID: PMC8636874 DOI: 10.1292/jvms.21-0448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microparticles (MPs) are released from budding plasma membranes into body fluids. The use of flow cytometry for the measurement of MP in canines has not been standardized. In this fundamental study, we compared the effect of anticoagulant agents, such as acid-citrate-dextrose (ACD) and heparin on the measurement of canine MPs in platelet-free plasma (PFP) using flow cytometry. In addition, we used annexin V, carboxyfluorescein succinimidyl ester (CFSE), or calcein tetraacetoxymethyl ester (calcein-AM), and explored the characteristics of the staining reagents in MP detection using flow cytometry. We were able to measure canine MPs in PFP prepared from ACD-anticoagulated blood using flow cytometry, in which the highest positive rate for fluorescent staining was observed when CFSE was used.
Collapse
Affiliation(s)
- Tsuyoshi Ozawa
- Department of Veterinary Physiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Takashi Ijichi
- Department of Veterinary Physiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mitsuya Shiraishi
- Department of Veterinary Physiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
33
|
Jiang Z, Generoso SF, Badia M, Payer B, Carey LB. A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Comput Biol 2021; 17:e1009582. [PMID: 34762642 PMCID: PMC8610284 DOI: 10.1371/journal.pcbi.1009582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific. By performing RNA sequencing on cells sorted by their proliferation rate, this study identifies a gene expression signature capable of predicting proliferation rates in diverse eukaryotic cell types and species. This signature, applied to single-cell RNA sequencing data from embryos of the roundworm C. elegans, reveals lineage-specific proliferation differences during development. In contrast to the universality of the proliferation signature, mitochondria and metabolism related genes show a high degree of cell-type specificity; mouse pluripotent stem cells (mESCs) and differentiated cells (fibroblasts) exhibit opposite relations between mitochondria state and proliferation. Furthermore, we identified a slow proliferating subpopulation of mESCs with higher expression of pluripotency genes. Finally, we show that fast and slow proliferating subpopulations are differentially sensitive to mitochondria inhibitory drugs in different cell types. Highlights:
A FACS-based method to determine the transcriptomes of fast and slow proliferating subpopulations. A universal proliferation-correlated transcriptional signature indicates high protein synthesis and degradation in fast proliferating cells across cell types and species. Applied to scRNA-seq, the expression signature predicts the global proliferation slowdown during C. elegans development. Mitochondria membrane potential predicts proliferation rate in a cell-type specific manner, with ETC complex III inhibitor having distinct effects on fibroblasts vs mESCs.
Collapse
Affiliation(s)
- Zhisheng Jiang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Serena F. Generoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Badia
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| | - Lucas B. Carey
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (BP); (LBC)
| |
Collapse
|
34
|
Cai P, Cai Q, He F, Huang Y, Tian C, Wu X, Wang C, Xiao B. Flexibility of Microcystis Overwintering Strategy in Response to Winter Temperatures. Microorganisms 2021; 9:microorganisms9112278. [PMID: 34835404 PMCID: PMC8619829 DOI: 10.3390/microorganisms9112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Microcystis is one of the most common bloom-forming cyanobacteria in freshwater ecosystems throughout the world. However, the underlying life history mechanism and distinct temporal dynamics (inter- and intra-annual) of Microcystis populations in different geographical locations and lakes remain unclear but is critical information needed for the development of robust prediction, prevention, and management strategies. Perennial observations indicate that temperature may be the key factor driving differences in the overwintering strategy. This study quantitatively compared the overwintering abilities of Microcystis aeruginosa (Ma) in both the water column and sediments under a gradient of overwintering water temperatures (i.e., 4, 8, and 12 °C) using the death and proliferation rates of Ma. The results show that the dynamics of the Microcystis overwintering strategy were significantly affected by water temperatures. At 4 and 8 °C, Ma mainly overwintered in sediments and disappeared from the water column after exposure to low temperatures for a long duration, although some Microcystis cells can overwinter in the water column for short durations at low temperatures. At 12 °C, most Ma can overwinter in the water column. Rising temperatures promoted the proliferation of pelagic Ma but accelerated the death of benthic Ma. With warmer winter temperatures, pelagic Microcystis might become the primary inoculum sources in the spring. Our study highlights the overwintering strategy flexibility in explaining temporal dynamics differences of Microcystis among in geographical locations and should be considered in the context of global warming.
Collapse
Affiliation(s)
- Pei Cai
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.C.); (Q.C.); (C.T.); (X.W.); (B.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qijia Cai
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.C.); (Q.C.); (C.T.); (X.W.); (B.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng He
- Research Academy of Plateau Lake Dianchi, Kunming 671500, China; (F.H.); (Y.H.)
| | - Yuhong Huang
- Research Academy of Plateau Lake Dianchi, Kunming 671500, China; (F.H.); (Y.H.)
| | - Cuicui Tian
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.C.); (Q.C.); (C.T.); (X.W.); (B.X.)
| | - Xingqiang Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.C.); (Q.C.); (C.T.); (X.W.); (B.X.)
| | - Chunbo Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.C.); (Q.C.); (C.T.); (X.W.); (B.X.)
- Correspondence:
| | - Bangding Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.C.); (Q.C.); (C.T.); (X.W.); (B.X.)
| |
Collapse
|
35
|
Verdi V, Bécot A, van Niel G, Verweij FJ. In vivo imaging of EVs in zebrafish: New perspectives from "the waterside". FASEB Bioadv 2021; 3:918-929. [PMID: 34761174 PMCID: PMC8565201 DOI: 10.1096/fba.2021-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
To harmoniously coordinate the activities of all its different cell types, a multicellular organism critically depends on intercellular communication. One recently discovered mode of intercellular cross-talk is based on the exchange of "extracellular vesicles" (EVs). EVs are nano-sized heterogeneous lipid bilayer vesicles enriched in a variety of biomolecules that mediate short- and long-distance communication between different cells, and between cells and their environment. Numerous studies have demonstrated important aspects pertaining to the dynamics of their release, their uptake, and sub-cellular fate and roles in vitro. However, to demonstrate these and other aspects of EV biology in a relevant, fully physiological context in vivo remains challenging. In this review we analyze the state of the art of EV imaging in vivo, focusing in particular on zebrafish as a promising model to visualize, study, and characterize endogenous EVs in real-time and expand our understanding of EV biology at cellular and systems level.
Collapse
Affiliation(s)
- Vincenzo Verdi
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Anaïs Bécot
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| | - Guillaume van Niel
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
- Groupe Hospitalier Universitaire (GHU) Paris Paris France
| | - Frederik J Verweij
- INSERM U1266 Institut de Psychiatrie et Neurosciences de Paris Paris France
| |
Collapse
|
36
|
Wang A, Weldrick PJ, Madden LA, Paunov VN. Enhanced clearing of Candida biofilms on a 3D urothelial cell in vitro model using lysozyme-functionalized fluconazole-loaded shellac nanoparticles. Biomater Sci 2021; 9:6927-6939. [PMID: 34528638 DOI: 10.1039/d1bm01035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Candida urinary tract biofilms are increasingly witnessed in nosocomial infections due to reduced immunity of patients and the hospital ecosystem. The indwelling devices utilized to support patients with urethral diseases that connect the unsterilized external environment with the internal environment of the patient are another significant source of urinary tract biofilm infections. Recently, nanoparticle (NP)-associated therapeutics have gained traction in a number of areas, including fighting antibiotic-resistant bacterial biofilm infection. However, most studies on nanotherapeutic delivery have only been carried out in laboratory settings rather than in clinical trials due to the lack of precise in vitro and in vivo models for testing their efficiency. Here we develop a novel biofilm-infected 3D human urothelial cell culture model to test the efficiency of nanoparticle (NP)-based antifungal therapeutics. The NPs were designed based on shellac cores, loaded with fluconazole and coated with the cationic enzyme lysozyme. Our formulation of 0.2 wt% lysozyme-coated 0.02 wt% fluconazole-loaded 0.2 wt% shellac NPs, sterically stabilised by 0.25 wt% poloxamer 407, showed an enhanced efficiency in removing Candida albicans biofilms formed on 3D layer of urothelial cell clusteroids. The NP formulation exhibited low toxicity to urothelial cells. This study provides a reliable in vitro model for Candida urinary tract biofilm infections, which could potentially replace animal models in the testing of such antifungal nanotechnologies. The reproducibility and availability of a well-defined biofilm-infected 3D urothelial cell culture model give valuable insights into the formation and clearing of fungal biofilms and could accelerate the clinical use of antifungal nanotherapeutics.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Paul J Weldrick
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU67RX, UK
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
37
|
Fortunato D, Mladenović D, Criscuoli M, Loria F, Veiman KL, Zocco D, Koort K, Zarovni N. Opportunities and Pitfalls of Fluorescent Labeling Methodologies for Extracellular Vesicle Profiling on High-Resolution Single-Particle Platforms. Int J Mol Sci 2021; 22:10510. [PMID: 34638850 PMCID: PMC8508895 DOI: 10.3390/ijms221910510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The relevance of extracellular vesicles (EVs) has grown exponentially, together with innovative basic research branches that feed medical and bioengineering applications. Such attraction has been fostered by the biological roles of EVs, as they carry biomolecules from any cell type to trigger systemic paracrine signaling or to dispose metabolism products. To fulfill their roles, EVs are transported through circulating biofluids, which can be exploited for the administration of therapeutic nanostructures or collected to intercept relevant EV-contained biomarkers. Despite their potential, EVs are ubiquitous and considerably heterogeneous. Therefore, it is fundamental to profile and identify subpopulations of interest. In this study, we optimized EV-labeling protocols on two different high-resolution single-particle platforms, the NanoFCM NanoAnalyzer (nFCM) and Particle Metrix ZetaView Fluorescence Nanoparticle Tracking Analyzer (F-NTA). In addition to the information obtained by particles' scattered light, purified and non-purified EVs from different cell sources were fluorescently stained with combinations of specific dyes and antibodies to facilitate their identification and characterization. Despite the validity and compatibility of EV-labeling strategies, they should be optimized for each platform. Since EVs can be easily confounded with similar-sized nanoparticles, it is imperative to control instrument settings and the specificity of staining protocols in order to conduct a rigorous and informative analysis.
Collapse
Affiliation(s)
| | - Danilo Mladenović
- HansaBioMed Life Sciences Ltd., 12618 Tallinn, Estonia; (D.M.); (F.L.); (K.-L.V.)
- School of Natural Sciences and Health, Tallinn University, 10120 Tallinn, Estonia;
| | | | - Francesca Loria
- HansaBioMed Life Sciences Ltd., 12618 Tallinn, Estonia; (D.M.); (F.L.); (K.-L.V.)
| | - Kadi-Liis Veiman
- HansaBioMed Life Sciences Ltd., 12618 Tallinn, Estonia; (D.M.); (F.L.); (K.-L.V.)
| | - Davide Zocco
- Exosomics SpA, 53100 Siena, Italy; (D.F.); (M.C.); (D.Z.)
- Cell and Gene Therapy Research and Development, Lonza Inc., Rockville, MD 20850, USA
| | - Kairi Koort
- School of Natural Sciences and Health, Tallinn University, 10120 Tallinn, Estonia;
| | - Natasa Zarovni
- Exosomics SpA, 53100 Siena, Italy; (D.F.); (M.C.); (D.Z.)
- HansaBioMed Life Sciences Ltd., 12618 Tallinn, Estonia; (D.M.); (F.L.); (K.-L.V.)
| |
Collapse
|
38
|
Abstract
The growth of solid tumours relies on an ever-increasing supply of oxygen and nutrients that are delivered via vascular networks. Tumour vasculature includes endothelial cell lined angiogenesis and the less common cancer cell lined vasculogenic mimicry (VM). To study and compare the development of vascular networks formed during angiogenesis and VM (represented here by breast cancer and pancreatic cancer cell lines) a number of in vitro assays were utilised. From live cell imaging, we performed a large-scale automated extraction of network parameters and identified properties not previously reported. We show that for both angiogenesis and VM, the characteristic network path length reduces over time; however, only endothelial cells increase network clustering coefficients thus maintaining small-world network properties as they develop. When compared to angiogenesis, the VM network efficiency is improved by decreasing the number of edges and vertices, and also by increasing edge length. Furthermore, our results demonstrate that angiogenic and VM networks appear to display similar properties to road traffic networks and are also subject to the well-known Braess paradox. This quantitative measurement framework opens up new avenues to potentially evaluate the impact of anti-cancer drugs and anti-vascular therapies. Fouladzadeh, Dorraki and colleagues investigate the development of angiogenic networks for in vitro cancer cell lines. They demonstrate that during the growth stages of vasculogenic mimicry, the number of edges and vertices decreases but the edge length increases resulting in improved network efficiency.
Collapse
|
39
|
Novel dual-fluorescent flow cytometric approach for quantification of macrophages infected with Leishmania infantum parasites. Parasitology 2021; 149:44-50. [PMID: 34488918 PMCID: PMC8862136 DOI: 10.1017/s0031182021001530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flow cytometry analysis emerges as an alternative methodology to microscopy for determination of the Leishmania-infection rates of macrophages. Various flow cytometric approaches have been established for the quantification of Leishmania parasites within host cells, labelled either directly fluorescent dyes or indirectly with fluorescently conjugated antibodies. Although these techniques allow accurate quantification of infection, they fail at detection of non-infected macrophages specifically. This study introduces a new flow cytometric approach for the determination of infection rates of macrophages infected by Leishmania infantum parasites. Prior to infection, J774A.1 macrophages and L. infantum promastigotes were stained separately with PKH26 and PKH67 dyes, respectively. Dual staining enabled detection of each cell type, where non-infected macrophages were also recorded for the quantification. Dual-PKH staining achieved high success in selective staining of promastigotes (99.71%) and macrophages (99.57%). The percentages of parasite-infected macrophages were determined for initial 1:2.5 and 1:10 infection ratios as 15.68 and 61.70%, respectively; indicating significant increase in infection rate parallel to the initial treatment ratio. These results demonstrated that the introduced dual-fluorescence flow cytometric approach can be successfully used as an accurate and rapid quantification method for L. infantum-infected macrophages and strengthens the hypothesis that flow cytometric approaches could replace conventional microscopic methodologies.
Collapse
|
40
|
Ugrin M, Dinic J, Jeremic S, Dragicevic S, Banovic Djeri B, Nikolic A. Bacterial Nanocellulose as a Scaffold for In Vitro Cell Migration Assay. NANOMATERIALS 2021; 11:nano11092322. [PMID: 34578638 PMCID: PMC8468300 DOI: 10.3390/nano11092322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Bacterial nanocellulose (BNC) stands out among polymers as a promising biomaterial due to its mechanical strength, hydrophilicity, biocompatibility, biodegradability, low toxicity and renewability. The use of scaffolds based on BNC for 3D cell culture has been previously demonstrated. The study exploited excellent properties of the BNC to develop an efficient and low-cost in vitro cell migration assay. The BNC scaffold was introduced into a cell culture 24 h after the SW480 cells were seeded, and cells were allowed to enter the scaffold within the next 24–48 h. The cells were stained with different fluorophores either before or after the introduction of the scaffold in the culture. Untreated cells were observed to enter the BNC scaffold in significant numbers, form clusters and retain a high viability after 48 h. To validate the assay’s usability for drug development, the treatments of SW480 cells were performed using aspirin, an agent known to reduce the migratory potential of this cell line in culture. This study demonstrates the application of BNC as a scaffold for cell migration testing as a low-cost alternative to commercial assays based on the Boyden chamber principle. The assay could be further developed for routine use in cancer research and anticancer drug development.
Collapse
Affiliation(s)
- Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Jelena Dinic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Bojana Banovic Djeri
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
- Correspondence:
| |
Collapse
|
41
|
Combined evaluation of proliferation and apoptosis to calculate IC 50 of VPA-induced PANC-1 cells and assessing its effect on the Wnt signaling pathway. Med Oncol 2021; 38:109. [PMID: 34357487 DOI: 10.1007/s12032-021-01560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly cancers. Since most patients develop resistance to conventional treatments, new approaches are in urgency. Valproic acid (VPA) was shown to induce apoptosis and reduce proliferation in PANC-1 cells. Wnt signaling pathway is known to be involved in apoptosis and PDAC onset. However, VPA-induced apoptosis and its impact on Wnt signaling in PDACs are not linked, yet. We aimed to calculate IC50 of VPA-induced PANC-1 cells by combined analyses of proliferation and apoptosis, while assessing its effect on Wnt signaling pathway. PANC-1 was induced with increased VPA doses and time points. Three independent proliferation and apoptosis assays were performed utilizing carboxyfluorescein succinimidyl ester and Annexin V/PI staining, respectively. Flow cytometry measurements were analyzed by CellQuest and NovoExpress. Taqman hydrolysis probes and SYBR Green PCR Mastermix were assessed in expression analyses of Wnt components utilizing 2-ΔΔCt method. Cell proliferation was inhibited by 50% at 2.5 mM VPA that evoked a significant apoptotic response. Among the screened Wnt components and target genes, only LEF1 exhibited significant four-fold upregulation at this concentration. In conclusion, cancer studies mostly utilize MTT or BrdU assays in estimating cell proliferation and calculating IC50 of drugs, which provided conflicting VPA dosages utilizing PANC-1 cells. Our novel combined approach enabled specific, accurate and reproducible IC50 calculation at single cell basis with no apparent effect on Wnt signaling components. Future studies are needed to clarify the role of LEF1 in this model.
Collapse
|
42
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
43
|
Spermatogonial Stem Cell Transplantation in Large Animals. Animals (Basel) 2021; 11:ani11040918. [PMID: 33805058 PMCID: PMC8064064 DOI: 10.3390/ani11040918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The spermatogonial stem cell (SSC) is the only adult stem cell in males to transmit genetic information to offspring. SSC transplantation (SSCT) is a laboratory technique to regenerate spermatogenesis in recipient males, thus can be used as a novel breeding tool to benefit animal production. Although successful SSCT in rodent models has been established, progress in realizing SSCT in large animals has been limited. Here we discuss what we learned in this area from past experiments and highlight possible directions in developing effective SSCT protocol in large animals. Abstract Spermatogonial stem cell transplantation (SSCT) can restore male fertility through transfer of germline between donor and recipient males. From an agricultural perspective, SSCT could be an important next-generation reproductive and breeding tool in livestock production. Current SSCT approaches in large animals remain inefficient and many technical details need further investigation. This paper reviews the current knowledge on SSCT in large animals, addressing (1) donor spermatogonial stem cell (SSC) preparation, (2) recipient male treatment, and (3) SSC injection, homing, and detection. The major studies showing unequivocal evidence of donor SSC-derived spermatogenesis in large animals (mainly in livestock for breeding purpose) are summarized to discuss the current status of the field and future directions.
Collapse
|
44
|
Neurothreads: Development of supportive carriers for mature dopaminergic neuron differentiation and implantation. Biomaterials 2021; 270:120707. [PMID: 33601130 DOI: 10.1016/j.biomaterials.2021.120707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
In this study we present the use of elastic macroporous cryogels for differentiation and transplantation of mature neurons. We develop a coating suitable for long-term neuronal culture, including stem cell differentiation, by covalent immobilization of neural adhesion proteins. In the context of cell therapy for Parkinson's disease, we show compatibility with established dopaminergic differentiation of both immortalized mesencephalic progenitors - LUHMES - and human embryonic stem cells (hESCs). We adjust structural properties of the biomaterial to create carriers - Neurothreads - favourable for cell viability during transplantation. Finally, we show feasibility of preservation of mature neurons, supported by Neurothreads, one month after in-vivo transplantation. Preliminary data suggests that the Neurothread approach could provide more mature and less proliferative cells in vivo.
Collapse
|
45
|
Cho J, Min HY, Lee HJ, Hyun SY, Sim JY, Noh M, Hwang SJ, Park SH, Boo HJ, Lee HJ, Hong S, Park RW, Shin YK, Hung MC, Lee HY. RGS2-mediated translational control mediates cancer cell dormancy and tumor relapse. J Clin Invest 2021; 131:136779. [PMID: 33393490 PMCID: PMC7773398 DOI: 10.1172/jci136779] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Slow-cycling/dormant cancer cells (SCCs) have pivotal roles in driving cancer relapse and drug resistance. A mechanistic explanation for cancer cell dormancy and therapeutic strategies targeting SCCs are necessary to improve patient prognosis, but are limited because of technical challenges to obtaining SCCs. Here, by applying proliferation-sensitive dyes and chemotherapeutics to non-small cell lung cancer (NSCLC) cell lines and patient-derived xenografts, we identified a distinct SCC subpopulation that resembled SCCs in patient tumors. These SCCs displayed major dormancy-like phenotypes and high survival capacity under hostile microenvironments through transcriptional upregulation of regulator of G protein signaling 2 (RGS2). Database analysis revealed RGS2 as a biomarker of retarded proliferation and poor prognosis in NSCLC. We showed that RGS2 caused prolonged translational arrest in SCCs through persistent eukaryotic initiation factor 2 (eIF2α) phosphorylation via proteasome-mediated degradation of activating transcription factor 4 (ATF4). Translational activation through RGS2 antagonism or the use of phosphodiesterase 5 inhibitors, including sildenafil (Viagra), promoted ER stress-induced apoptosis in SCCs in vitro and in vivo under stressed conditions, such as those induced by chemotherapy. Our results suggest that a low-dose chemotherapy and translation-instigating pharmacological intervention in combination is an effective strategy to prevent tumor progression in NSCLC patients after rigorous chemotherapy.
Collapse
Affiliation(s)
- Jaebeom Cho
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Ho Jin Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Seung Yeob Hyun
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Myungkyung Noh
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
| | - Su Jung Hwang
- College of Pharmacy, Inje University, Gimhae, Gyungnam, Republic of Korea
| | - Shin-Hyung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Hye-Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyungnam, Republic of Korea
| | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kee Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, and
| |
Collapse
|
46
|
Champagne-Jorgensen K, Jose TA, Stanisz AM, Mian MF, Hynes AP, Bienenstock J. Bacterial membrane vesicles and phages in blood after consumption of lacticaseibacillus rhamnosus JB-1. Gut Microbes 2021; 13:1993583. [PMID: 34747333 PMCID: PMC8583084 DOI: 10.1080/19490976.2021.1993583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/04/2023] Open
Abstract
Gut microbiota have myriad roles in host physiology, development, and immunity. Though confined to the intestinal lumen by the epithelia, microbes influence distal systems via poorly characterized mechanisms. Recent work has considered the role of extracellular vesicles in interspecies communication, but whether they are involved in systemic microbe-host interaction is unclear. Here, we show that distinctive nanoparticles can be isolated from mouse blood within 2.5 h of consuming Lacticaseibacillus rhamnosus JB-1. In contrast to blood nanoparticles from saline-fed mice, they reproduced lipoteichoic acid-mediated immune functions of the original bacteria, including activation of TLR2 and increased IL-10 expression by dendritic cells. Like the fed bacteria, they also reduced IL-8 induced by TNF in an intestinal epithelial cell line. Though enriched for host neuronal proteins, these isolated nanoparticles also contained proteins and viral (phage) DNA of fed bacterial origin. Our data strongly suggest that oral consumption of live bacteria rapidly leads to circulation of their membrane vesicles and phages and demonstrate a nanoparticulate pathway whereby beneficial bacteria and probiotics may systemically affect their hosts.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Neuroscience Graduate Program, McMaster University, Hamilton, Canada
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
| | - Tamina A. Jose
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Andrew M. Stanisz
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
| | - M. Firoz Mian
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
| | - Alexander P. Hynes
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Hamilton, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
47
|
Chodaczek G, Pagni PP, Christoffersson G, Ratliff SS, Toporkiewicz M, Wegrzyn AS, von Herrath M. The effect of Toll-like receptor stimulation on the motility of regulatory T cells. J Autoimmun 2021; 116:102563. [PMID: 33189487 DOI: 10.1016/j.jaut.2020.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Regulatory T cells (Tregs) have suppressive functions and play an important role in controlling inflammation and autoimmunity. The migratory capacity of Tregs determines their location and their location determines whether they inhibit the priming of naïve lymphocytes in lymphoid tissues or the effector phase of immune responses at inflamed sites. Tregs generated or expanded in vitro are currently being tested in clinics for the treatment of autoimmune disorders, however, little is known about the factors controlling their migration towards therapeutically relevant locations. In this study, we have modulated Treg dynamics using Toll-like receptor (TLR) agonists. Dynamic imaging with confocal and two-photon microscopy revealed that Tregs generated in vitro and stimulated with P3C (a TLR2 agonist) but not with R848 (a TLR7 agonist) or LPS (a TLR4 agonist) showed enhanced cell migration within splenic white pulp or draining lymph node when transferred into mice intravenously or into the footpad, respectively. In summary, our data demonstrate that Tregs are more motile in response to direct TLR stimulation in particular towards TLR2 signals. This may have implications for efficient clinical Treg induction protocols.
Collapse
Affiliation(s)
- Grzegorz Chodaczek
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, USA; Bioimaging Laboratory, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland.
| | - Philippe P Pagni
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Agnieszka S Wegrzyn
- Bioimaging Laboratory, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | | |
Collapse
|
48
|
Belanger MC, Anbaei P, Dunn AF, Kinman AW, Pompano RR. Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Anal Chem 2020; 92:15255-15262. [PMID: 33201681 PMCID: PMC7864589 DOI: 10.1021/acs.analchem.0c03625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissues are an exciting frontier for bioanalytical chemistry, one in which spatial distribution is just as important as total content. Intact tissue preserves the native cellular and molecular organization and the cell-cell contacts found in vivo. Live tissue, in particular, offers the potential to analyze dynamic events in a spatially resolved manner, leading to fundamental biological insights and translational discoveries. In this Perspective, we provide a tutorial on the four fundamental challenges for the bioanalytical chemist working in living tissue samples as well as best practices for mitigating them. The challenges include (i) the complexity of the sample matrix, which contributes myriad interfering species and causes nonspecific binding of reagents; (ii) hindered delivery and mixing; (iii) the need to maintain physiological conditions; and (iv) tissue reactivity. This framework is relevant to a variety of methods for spatially resolved chemical analysis, including optical imaging, inserted sensors and probes such as electrodes, and surface analyses such as sensing arrays. The discussion focuses primarily on ex vivo tissues, though many considerations are relevant in vivo as well. Our goal is to convey the exciting potential of analytical chemistry to contribute to understanding the functions of live, intact tissues.
Collapse
Affiliation(s)
- Maura C. Belanger
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Austin F. Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Andrew W.L. Kinman
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| |
Collapse
|
49
|
Belanger MC, Zhuang M, Ball AG, Richey KH, DeRosa CA, Fraser CL, Pompano RR. Labelling primary immune cells using bright blue fluorescent nanoparticles. Biomater Sci 2020; 8:1897-1909. [PMID: 32026891 DOI: 10.1039/c9bm01572h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tracking cell movements is an important aspect of many biological studies. Reagents for cell tracking must not alter the biological state of the cell and must be bright enough to be visualized above background autofluorescence, a particular concern when imaging in tissue. Currently there are few reagents compatible with standard UV excitation filter sets (e.g. DAPI) that fulfill those requirements, despite the development of many dyes optimized for violet excitation (405 nm). A family of boron-based fluorescent dyes, difluoroboron β-diketonates, has previously served as bio-imaging reagents with UV excitation, offering high quantum yields and wide excitation peaks. In this study, we investigated the use of one such dye as a potential cell tracking reagent. A library of difluoroboron dibenzoylmethane (BF2dbm) conjugates were synthesized with biocompatible polymers including: poly(l-lactic acid) (PLLA), poly(ε-caprolactone) (PCL), and block copolymers with poly(ethylene glycol) (PEG). Dye-polymer conjugates were fabricated into nanoparticles, which were stable for a week at 37 °C in water and cell culture media, but quickly aggregated in saline. Nanoparticles were used to label primary splenocytes; phagocytic cell types were more effectively labelled. Labelling with nanoparticles did not affect cellular viability, nor basic immune responses. Labelled cells were more easily distinguished when imaged on a live tissue background than those labelled with a commercially available UV-excitable cytoplasmic labelling reagent. The high efficiency in terms of both fluorescence and cellular labelling may allow these nanoparticles to act as a short-term cell labelling strategy while wide excitation peaks offer utility across imaging and analysis platforms.
Collapse
Affiliation(s)
- Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA. and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Meng Zhuang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Alexander G Ball
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, Virginia 22903, USA and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kristen H Richey
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Christopher A DeRosa
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Cassandra L Fraser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA. and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
50
|
Tabachnick-Cherny S, Pinto S, Berko D, Curato C, Wolf Y, Porat Z, Karmona R, Tirosh B, Jung S, Navon A. Polyglutamine-Related Aggregates Can Serve as a Potent Antigen Source for Cross-Presentation by Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2583-2594. [PMID: 33067378 DOI: 10.4049/jimmunol.1901535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
Protective MHC class I-dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional APC, specifically dendritic cells. How stable proteins that rely on defective ribosomal proteins for direct presentation are captured for cell-to-cell transfer remains enigmatic. In this study, we address this issue using a combination of in vitro (C57BL/6-derived mouse cell lines) and in vivo (C57BL/6 mouse strains) approaches involving stable and unstable versions of OVA model Ags displaying defective ribosomal protein-dependent and -independent Ag presentation, respectively. Apoptosis, but not necrosis, of donor cells was found associated with robust global protein aggregate formation and captured stable proteins permissive for cross-presentation. Potency of aggregates to serve as Ag source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC class I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of dendritic cells to process stable protein aggregates.
Collapse
Affiliation(s)
- Shira Tabachnick-Cherny
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sivan Pinto
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dikla Berko
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Caterina Curato
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yochai Wolf
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Rotem Karmona
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Steffen Jung
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|