1
|
Karat BG, DeKraker J, Hussain U, Köhler S, Khan AR. Mapping the macrostructure and microstructure of the in vivo human hippocampus using diffusion MRI. Hum Brain Mapp 2023; 44:5485-5503. [PMID: 37615057 PMCID: PMC10543110 DOI: 10.1002/hbm.26461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023] Open
Abstract
The hippocampus is classically divided into mesoscopic subfields which contain varying microstructure that contribute to their unique functional roles. It has been challenging to characterize this microstructure with current magnetic resonance based neuroimaging techniques. In this work, we used diffusion magnetic resonance imaging (dMRI) and a novel surface-based approach in the hippocampus which revealed distinct microstructural distributions of neurite density and dispersion, T1w/T2w ratio as a proxy for myelin content, fractional anisotropy, and mean diffusivity. We used the neurite orientation dispersion and density imaging (NODDI) model optimized for grey matter diffusivity to characterize neurite density and dispersion. We found that neurite dispersion was highest in the cornu ammonis (CA) 1 and subiculum subfields which likely captures the large heterogeneity of tangential and radial fibres, such as the Schaffer collaterals, perforant path, and pyramidal neurons. Neurite density and T1w/T2w were highest in the subiculum and CA3 and lowest in CA1, which may reflect known myeloarchitectonic differences between these subfields. Using a simple logistic regression model, we showed that neurite density, dispersion, and T1w/T2w measures were separable across the subfields, suggesting that they may be sensitive to the known variability in subfield cyto- and myeloarchitecture. We report macrostructural measures of gyrification, thickness, and curvature that were in line with ex vivo descriptions of hippocampal anatomy. We employed a multivariate orthogonal projective non-negative matrix factorization (OPNNMF) approach to capture co-varying regions of macro- and microstructure across the hippocampus. The clusters were highly variable along the medial-lateral (proximal-distal) direction, likely reflecting known differences in morphology, cytoarchitectonic profiles, and connectivity. Finally, we show that by examining the main direction of diffusion relative to canonical hippocampal axes, we could identify regions with stereotyped microstructural orientations that may map onto specific fibre pathways, such as the Schaffer collaterals, perforant path, fimbria, and alveus. These results highlight the value of combining in vivo dMRI with computational approaches for capturing hippocampal microstructure, which may provide useful features for understanding cognition and for diagnosis of disease states.
Collapse
Affiliation(s)
- Bradley G. Karat
- Robarts Research Institute, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience Graduate ProgramUniversity of Western OntarioLondonOntarioCanada
| | - Jordan DeKraker
- Robarts Research Institute, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | | | - Stefan Köhler
- Department of PsychologyUniversity of Western OntarioLondonOntarioCanada
| | - Ali R. Khan
- Robarts Research Institute, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
2
|
Lenz M, Eichler A, Kruse P, Galanis C, Kleidonas D, Andrieux G, Boerries M, Jedlicka P, Müller U, Deller T, Vlachos A. The Amyloid Precursor Protein Regulates Synaptic Transmission at Medial Perforant Path Synapses. J Neurosci 2023; 43:5290-5304. [PMID: 37369586 PMCID: PMC10359033 DOI: 10.1523/jneurosci.1824-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Abstract
Brain-derived neurotrophic factor (BDNF) gene delivery to the entorhinal cortex is a candidate for treatment of Alzheimer’s disease (AD) to reduce neurodegeneration that is associated with memory loss. Accurate targeting of the entorhinal cortex in AD is complex due to the deep and atrophic state of this brain region. Using MRI-guided methods with convection-enhanced delivery, we were able to accurately and consistently target AAV2-BDNF delivery to the entorhinal cortex of non-human primates. 86 ± 3% of transduced cells in the targeted regions co-localized with the neuronal marker NeuN. The volume of AAV2-BDNF (3×108 vg/μl) infusion linearly correlated with the number of BDNF labeled cells and the volume (mm3) of BDNF immunoreactivity in the entorhinal cortex. BDNF is normally trafficked to the hippocampus from the entorhinal cortex; in these experiments, we also found that BDNF immunoreactivity was elevated in the hippocampus following therapeutic BDNF vector delivery to the entorhinal cortex, achieving growth factor distribution through key memory circuits. These findings indicate that MRI-guided infusion of AAV2-BDNF to the entorhinal cortex of the non-human primate results in safe and accurate targeting and distribution of BDNF to both the entorhinal cortex and the hippocampus. These methods are adaptable to human clinical trials.
Collapse
|
4
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
5
|
Wolf JA, Johnson BN, Johnson VE, Putt ME, Browne KD, Mietus CJ, Brown DP, Wofford KL, Smith DH, Grady MS, Cohen AS, Cullen DK. Concussion Induces Hippocampal Circuitry Disruption in Swine. J Neurotrauma 2017; 34:2303-2314. [PMID: 28298170 PMCID: PMC5510797 DOI: 10.1089/neu.2016.4848] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hippocampal-dependent deficits in learning and memory formation are a prominent feature of traumatic brain injury (TBI); however, the role of the hippocampus in cognitive dysfunction after concussion (mild TBI) is unknown. We therefore investigated functional and structural changes in the swine hippocampus following TBI using a model of head rotational acceleration that closely replicates the biomechanics and neuropathology of closed-head TBI in humans. We examined neurophysiological changes using a novel ex vivo hippocampal slice paradigm with extracellular stimulation and recording in the dentate gyrus and CA1 occurring at 7 days following non-impact inertial TBI in swine. Hippocampal neurophysiology post-injury revealed reduced axonal function, synaptic dysfunction, and regional hyperexcitability at one week following even "mild" injury levels. Moreover, these neurophysiological changes occurred in the apparent absence of intra-hippocampal neuronal or axonal degeneration. Input-output curves demonstrated an elevated excitatory post-synaptic potential (EPSP) output for a given fiber volley input in injured versus sham animals, suggesting a form of homeostatic plasticity that manifested as a compensatory response to decreased axonal function in post-synaptic regions. These data indicate that closed-head rotational acceleration-induced TBI, the common cause of concussion in humans, may induce significant alterations in hippocampal circuitry function that have not resolved at 7 days post-injury. This circuitry dysfunction may underlie some of the post-concussion symptomatology associated with the hippocampus, such as post-traumatic amnesia and ongoing cognitive deficits.
Collapse
Affiliation(s)
- John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Victoria E. Johnson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary E. Putt
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D. Browne
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Constance J. Mietus
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel P. Brown
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Kathryn L. Wofford
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Douglas H. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M. Sean Grady
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Talani G, Biggio F, Licheri V, Locci V, Biggio G, Sanna E. Isolation Rearing Reduces Neuronal Excitability in Dentate Gyrus Granule Cells of Adolescent C57BL/6J Mice: Role of GABAergic Tonic Currents and Neurosteroids. Front Cell Neurosci 2016; 10:158. [PMID: 27378855 PMCID: PMC4904037 DOI: 10.3389/fncel.2016.00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/30/2016] [Indexed: 01/03/2023] Open
Abstract
Early-life exposure to stress, by impacting on a brain still under development, is considered a critical factor for the increased vulnerability to psychiatric disorders and abuse of psychotropic substances during adulthood. As previously reported, rearing C57BL/6J weanling mice in social isolation (SI) from their peers for several weeks, a model of prolonged stress, is associated with a decreased plasma and brain levels of neuroactive steroids such as 3α,5α-THP, with a parallel up-regulation of extrasynaptic GABAA receptors (GABAAR) in dentate gyrus (DG) granule cells compared to group-housed (GH) mice. In the present study, together with the SI-induced decrease in plasma concentration of both progesterone and 3α,5α-THP, and an increase in THIP-stimulated GABAergic tonic currents, patch-clamp analysis of DG granule cells revealed a significant decrease in membrane input resistance and action potential (AP) firing rate, in SI compared to GH mice, suggesting that SI exerts an inhibitory action on neuronal excitability of these neurons. Voltage-clamp recordings of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) revealed a SI-associated decrease in frequency as well as a shift from paired-pulse (PP) depression to PP facilitation (PPF) of evoked EPSCs, indicative of a reduced probability of glutamate release. Daily administration of progesterone during isolation reverted the changes in plasma 3α,5α-THP as well as in GABAergic tonic currents and neuronal excitability caused by SI, but it had only a limited effect on the changes in the probability of presynaptic glutamate release. Overall, the results obtained in this work, together with those previously published, indicate that exposure of mice to SI during adolescence reduces neuronal excitability of DG granule cells, an effect that may be linked to the increased GABAergic tonic currents as a consequence of the sustained decrease in plasma and hippocampal levels of neurosteroids. All these changes may be consistent with cognitive deficits observed in animals exposed to such type of prolonged stress.
Collapse
Affiliation(s)
- Giuseppe Talani
- Institute of Neuroscience, National Research Council of Italy Monserrato, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato Italy
| | - Valentina Licheri
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato Italy
| | - Valentina Locci
- Department of Biomedical Science, University of Sassari Sassari, Italy
| | - Giovanni Biggio
- Institute of Neuroscience, National Research Council of ItalyMonserrato, Cagliari, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, MonserratoItaly
| | - Enrico Sanna
- Institute of Neuroscience, National Research Council of ItalyMonserrato, Cagliari, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, MonserratoItaly
| |
Collapse
|
7
|
Meyer M, Kienzler-Norwood F, Bauer S, Rosenow F, Norwood BA. Removing entorhinal cortex input to the dentate gyrus does not impede low frequency oscillations, an EEG-biomarker of hippocampal epileptogenesis. Sci Rep 2016; 6:25660. [PMID: 27160925 PMCID: PMC4861965 DOI: 10.1038/srep25660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/21/2016] [Indexed: 12/12/2022] Open
Abstract
Following prolonged perforant pathway stimulation (PPS) in rats, a seizure-free "latent period" is observed that lasts around 3 weeks. During this time, aberrant neuronal activity occurs, which has been hypothesized to contribute to the generation of an "epileptic" network. This study was designed to 1) examine the pathological network activity that occurs in the dentate gyrus during the latent period, and 2) determine whether suppressing this activity by removing the main input to the dentate gyrus could stop or prolong epileptogenesis. Immediately following PPS, continuous video-EEG monitoring was used to record spontaneous neuronal activity and detect seizures. During the latent period, low frequency oscillations (LFOs), occurring at a rate of approximately 1 Hz, were detected in the dentate gyrus of all rats that developed epilepsy. LFO incidence was apparently random, but often decreased in the hour preceding a spontaneous seizure. Bilateral transection of the perforant pathway did not impact the incidence of hippocampal LFOs, the latency to epilepsy, or hippocampal neuropathology. Our main findings are: 1) LFOs are a reliable biomarker of hippocampal epileptogenesis, and 2) removing entorhinal cortex input to the hippocampus neither reduces the occurrence of LFOs nor has a demonstrable antiepileptogenic effect.
Collapse
Affiliation(s)
- Martin Meyer
- Department of Neurology, Philipps University, Marburg Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Göthe University, Frankfurt am Main, Germany
| | - Friederike Kienzler-Norwood
- Department of Neurology, Philipps University, Marburg Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Göthe University, Frankfurt am Main, Germany
| | - Sebastian Bauer
- Department of Neurology, Philipps University, Marburg Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Göthe University, Frankfurt am Main, Germany
| | - Felix Rosenow
- Department of Neurology, Philipps University, Marburg Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Göthe University, Frankfurt am Main, Germany
| | - Braxton A. Norwood
- Department of Neurology, Philipps University, Marburg Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Göthe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Silkis IG. The contribution of dopamine to the functioning of the hippocampus during spatial learning (a hypothetical mechanism). NEUROCHEM J+ 2016. [DOI: 10.1134/s181971241601013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Sex-specific attentional deficits in adult vitamin D deficient BALB/c mice. Physiol Behav 2016; 157:94-101. [PMID: 26836278 DOI: 10.1016/j.physbeh.2016.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 11/23/2022]
Abstract
Epidemiological studies have shown an association between vitamin D deficiency and cognitive impairment. However, there is a paucity of preclinical data showing that vitamin D deficiency is a causal factor for impaired cognitive processing. The aim of this study was to assess two cognitive tasks, the 5 choice-serial reaction task and the 5 choice-continuous performance task in adult vitamin D (AVD) deficient BALB/c mice. Ten-week old male and female BALB/c mice were fed a control or vitamin D deficient diet for 10 weeks prior to, and during behavioural testing. We found sex-dependent impairments in attentional processing and showed that male AVD-deficient mice were less accurate, took longer to respond when making a correct choice and were more likely to make an omission, without a change in the motivation to collect reward. By contrast, female AVD-deficient mice had a reduced latency to collect reward, but no changes on any other measures compared to controls. Therefore, we have shown that in otherwise healthy adult mice, vitamin D deficiency led to mild cognitive impairment in male but not female mice and therefore this model will be useful for future investigations into unravelling the mechanism by which vitamin D affects the adult brain and cognitive function.
Collapse
|
10
|
Siman R, Cocca R, Dong Y. The mTOR Inhibitor Rapamycin Mitigates Perforant Pathway Neurodegeneration and Synapse Loss in a Mouse Model of Early-Stage Alzheimer-Type Tauopathy. PLoS One 2015; 10:e0142340. [PMID: 26540269 PMCID: PMC4634963 DOI: 10.1371/journal.pone.0142340] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer's disease (AD) that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses. Focal expression of human tau carrying a P301L mutation but not eGFP as a control in layer II of the lateral entorhinal cortex triggered rapid degeneration of these neurons, loss of lateral perforant pathway synapses in the dentate gyrus outer molecular layer, and activation of neuroinflammatory microglia and astroglia in the two locations. Chronic systemic rapamycin treatment partially inhibited phosphorylation of a mechanistic target of rapamycin substrate in brain and stimulated LC3 cleavage, a marker of autophagic flux. Compared with vehicle-treated controls, rapamycin protected against the tau-induced neuronal loss, synaptotoxicity, reactive microgliosis and astrogliosis, and activation of innate neuroimmunity. It did not alter human tau mRNA or total protein levels. Finally, rapamycin inhibited trans-synaptic transfer of human tau expression to the dentate granule neuron targets for the perforant pathway, likely by preventing the synaptic spread of the AAV vector in response to pathway degeneration. These results identify systemic rapamycin as a treatment that protects the entorhinal cortex and perforant pathway projection from tau-mediated neurodegeneration, axonal and synapse loss, and neuroinflammatory reactive gliosis. The findings support the potential for slowing the progression of AD by abrogating tau-mediated neurotoxicity at its earliest neuropathological stages.
Collapse
Affiliation(s)
- Robert Siman
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan Cocca
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yina Dong
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Smith CC, Smith LA, Bredemann TM, McMahon LL. 17β estradiol recruits GluN2B-containing NMDARs and ERK during induction of long-term potentiation at temporoammonic-CA1 synapses. Hippocampus 2015; 26:110-7. [PMID: 26190171 DOI: 10.1002/hipo.22495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/06/2022]
Abstract
When circulating 17β estradiol (E2) is elevated to proestrous levels, hippocampus-dependent learning and memory is enhanced in female rodents, nonhuman primates, and women due to heightened synaptic function at hippocampal synapses. We previously reported that proestrous-like levels of E2 administered to young adult ovariectomized (OVX) female rats increases the magnitude of LTP at CA3 Schaffer collateral (SC)-CA1 synapses only when dendritic spine density, the NMDAR/AMPAR ratio, and current mediated by GluN2B-containing NMDA receptors (NMDARs) are simultaneously increased. We also reported that this increase in GluN2B-mediated NMDAR current in area CA1 is causally related to the E2-induced increase in novel object recognition, tying together heightened synaptic function with improved learning and memory. In addition to SC inputs, innervation from the entorhinal cortex in the temporoammonic (TA) pathway onto CA1 distal dendrites in stratum lacunosum-moleculare is critical for spatial memory formation and retrieval. It is not known whether E2 modulates TA-CA1 synapses similarly to SC-CA1 synapses. Here, we report that 24 hours post-E2 injection, dendritic spine density on CA1 pyramidal cell distal dendrites and current mediated by GluN2B-containing NMDARs at TA-CA1 synapses is increased, similarly to our previous findings at SC-CA1 synapses. However, in contrast to SC-CA1 synapses, AMPAR transmission at TA-CA1 synapses is significantly increased, and there is no effect on the LTP magnitude. Pharmacological blockade of GluN2B-containing NMDARs or ERK activation, which occurs downstream of synaptic but not extrasynaptic GluN2B-containing NMDARs, attenuates the LTP magnitude only in slices from E2-treated rats. These data show that E2 recruits a causal role for GluN2B-containing NMDARs and ERK signaling in the induction of LTP, cellular mechanisms not required for LTP induction at TA-CA1 synapses in vehicle-treated OVX female rats.
Collapse
Affiliation(s)
- Caroline C Smith
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lindsey A Smith
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teruko M Bredemann
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lori L McMahon
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama.,Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
12
|
Pourbadie HG, Naderi N, Mehranfard N, Janahmadi M, Khodagholi F, Motamedi F. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology. PLoS One 2015; 10:e0117555. [PMID: 25689857 PMCID: PMC4331091 DOI: 10.1371/journal.pone.0117555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022] Open
Abstract
The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer's disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Mehranfard
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neurophysiology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Tantra M, Kröcher T, Papiol S, Winkler D, Röckle I, Jatho J, Burkhardt H, Ronnenberg A, Gerardy-Schahn R, Ehrenreich H, Hildebrandt H. St8sia2 deficiency plus juvenile cannabis exposure in mice synergistically affect higher cognition in adulthood. Behav Brain Res 2014; 275:166-75. [DOI: 10.1016/j.bbr.2014.08.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/25/2014] [Accepted: 08/30/2014] [Indexed: 12/23/2022]
|
14
|
Barnes SA, Sawiak SJ, Caprioli D, Jupp B, Buonincontri G, Mar AC, Harte MK, Fletcher PC, Robbins TW, Neill JC, Dalley JW. Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia. Int J Neuropsychopharmacol 2014; 18:pyu010. [PMID: 25552430 PMCID: PMC4368881 DOI: 10.1093/ijnp/pyu010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. METHODS Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. RESULTS Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. CONCLUSIONS These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Stephen J Sawiak
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Daniele Caprioli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Bianca Jupp
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Guido Buonincontri
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Adam C Mar
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Michael K Harte
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Paul C Fletcher
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Trevor W Robbins
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Jo C Neill
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Jeffrey W Dalley
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill).
| |
Collapse
|
15
|
Neese SL, Korol DL, Schantz SL. Voluntary exercise impairs initial delayed spatial alternation performance in estradiol treated ovariectomized middle-aged rats. Horm Behav 2013; 64:579-88. [PMID: 24013039 PMCID: PMC3855313 DOI: 10.1016/j.yhbeh.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 08/22/2013] [Indexed: 11/21/2022]
Abstract
Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long-Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions.
Collapse
Affiliation(s)
- Steven L Neese
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, USA; Department of Psychology and Neuroscience, Baldwin Wallace University, USA.
| | | | | |
Collapse
|
16
|
A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap. Neurobiol Aging 2013; 34:1891-901. [PMID: 23434040 DOI: 10.1016/j.neurobiolaging.2013.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/01/2023]
Abstract
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease.
Collapse
|
17
|
Dassie E, Andrews MR, Bensadoun JC, Cacquevel M, Schneider BL, Aebischer P, Wouters FS, Richardson JC, Hussain I, Howlett DR, Spillantini MG, Fawcett JW. Focal expression of adeno-associated viral-mutant tau induces widespread impairment in an APP mouse model. Neurobiol Aging 2012; 34:1355-68. [PMID: 23273572 DOI: 10.1016/j.neurobiolaging.2012.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 10/03/2012] [Accepted: 11/22/2012] [Indexed: 12/28/2022]
Abstract
Adeno-associated virus serotype 6 (AAV6) viral vectors encoding mutant and normal tau were used to produce focal tau pathology. Two mutant forms of tau were used; the P301S tau mutation is associated with neurofibrillary tangle formation in humans, and the 3PO mutation leads to rapid tau aggregation and is associated with pathogenic phosphorylation and cytotoxicity in vitro. We show that adeno-associated viral injection into entorhinal cortex of normal and tau knockout animals leads to local overexpression of tau, and the presence of human tau in axons projecting to and emanating from the entorhinal cortex. Starting at 2 months and increasing by 6 months post-injection neurons expressing mutant tau developed hyperphosphorylated tau pathology, in addition to dystrophic neurites. There was neuronal loss in tau-expressing regions, which was similar in normal and in TASTPM mice injected with mutant tau. There was neuroinflammation around plaques, and in regions expressing mutant tau. We saw no evidence that mutant tau had affected amyloid-beta pathology or vice versa. Morris water maze behavioral tests demonstrated mild memory impairment attributable to amyloid-beta pathology at 2 and 4 months, with severe impairment at 6 months in animals receiving adeno-associated viral-3PO. Therefore, TASTPM mice injected with mutant tau displayed many of the main features characteristic of human Alzheimer's disease patients and might be used as a model to test new drugs to ameliorate clinical features of Alzheimer's disease.
Collapse
Affiliation(s)
- Elisa Dassie
- Department of Clinical Neurosciences, Cambridge University Centre for Brain Repair, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inverardi F, Chikhladze M, Donzelli A, Moroni RF, Regondi MC, Pennacchio P, Zucca I, Corradini I, Braida D, Sala M, Franceschetti S, Frassoni C. Cytoarchitectural, behavioural and neurophysiological dysfunctions in the BCNU-treated rat model of cortical dysplasia. Eur J Neurosci 2012; 37:150-62. [PMID: 23095101 DOI: 10.1111/ejn.12032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/27/2022]
Abstract
Cortical dysplasias (CDs) include a spectrum of cerebral lesions resulting from cortical development abnormalities during embryogenesis that lead to cognitive disabilities and epilepsy. The experimental model of CD obtained by means of in utero administration of BCNU (1-3-bis-chloroethyl-nitrosurea) to pregnant rats on embryonic day 15 mimics the histopathological abnormalities observed in many patients. The aim of this study was to investigate the behavioural, electrophysiological and anatomical profile of BCNU-treated rats in order to determine whether cortical and hippocampal lesions can directly lead to cognitive dysfunction. The BCNU-treated rats showed impaired short-term working memory but intact long-term aversive memory, whereas their spontaneous motor activity and anxiety-like response were normal. The histopathological and immunohistochemical analyses, made after behavioural tests, revealed the disrupted integrity of neuronal populations and connecting fibres in hippocampus and prefrontal and entorhinal cortices, which are involved in memory processes. An electrophysiological evaluation of the CA1 region of in vitro hippocampal slices indicated a decrease in the efficiency of excitatory synaptic transmission and impaired paired pulse facilitation, but enhanced long-term potentiation (LTP) associated with hyperexcitability in BCNU-treated rats compared with controls. The enhanced LTP, associated with hyperexcitability, may indicate a pathological distortion of long-term plasticity. These findings suggest that prenatal developmental insults at the time of peak cortical neurogenesis can induce anatomical abnormalities associated with severe impairment of spatial working memory in adult BCNU-treated rats and may help to clarify the pathophysiological mechanisms of cognitive dysfunction that is often associated with epilepsy in patients with CD.
Collapse
Affiliation(s)
- Francesca Inverardi
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abela AR, Dougherty SD, Fagen ED, Hill CJR, Chudasama Y. Inhibitory Control Deficits in Rats with Ventral Hippocampal Lesions. Cereb Cortex 2012; 23:1396-409. [DOI: 10.1093/cercor/bhs121] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Neese SL, Schantz SL. Testosterone impairs the acquisition of an operant delayed alternation task in male rats. Horm Behav 2012; 61:57-66. [PMID: 22047777 PMCID: PMC3308684 DOI: 10.1016/j.yhbeh.2011.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
The current study examined the effects of gonadectomy (GDX) and subsequent testosterone treatment of male Long-Evans rats on an operant variable delay spatial alternation task (DSA). Gonadally-intact rats (intact-B), GDX rats receiving implants that delivered a physiological level of testosterone (GDX-T), and GDX rats receiving blank implants (GDX-B) were tested for 25 sessions on a DSA task with variable inter-trial delays ranging from 0 to 18 s. Acquisition of the DSA task was found to be enhanced following GDX in a time and delay dependent manner. Both the GDX-T and the intact-B rats had lower performance accuracies across delays initially, relative to GDX-B rats, and this deficit persisted into subsequent testing sessions at longer delays. The GDX-T and intact-B rats also had a tendency to commit more perseverative errors during the early testing sessions, with both groups persisting in pressing a lever which had not been associated with reinforcement for at least two consecutive trials. However, both the GDX-T and intact-B groups were able to achieve performance accuracy similar to that of the GDX-B rats by the final sessions of testing. Overall, these results suggest that castration of adult male rats enhances their acquisition of an operant DSA task.
Collapse
Affiliation(s)
- Steven L Neese
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA.
| | | |
Collapse
|
21
|
Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini PP. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J Neurosci 2011; 31:15397-406. [PMID: 22031886 PMCID: PMC3224083 DOI: 10.1523/jneurosci.2196-11.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/10/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022] Open
Abstract
Neurological insults during development are associated with later impairments in learning and memory. Although remedial training can help restore cognitive function, the neural mechanisms of this recovery in memory systems are largely unknown. To examine this issue, we measured electrophysiological oscillatory activity in the hippocampus (both CA3 and CA1) and prefrontal cortex of adult rats that had experienced repeated seizures in the first weeks of life, while they were remedially trained on a delayed-nonmatch-to-sample memory task. Seizure-exposed rats showed initial difficulties learning the task but performed similarly to control rats after extra training. Whole-session analyses illustrated enhanced theta power in all three structures while seizure rats learned response tasks before the memory task. While performing the memory task, dynamic oscillation patterns revealed that prefrontal cortex theta power was increased among seizure-exposed rats. This enhancement appeared after the first memory-training steps using short delays and plateaued at the most difficult steps, which included both short and long delays. Further, seizure rats showed enhanced CA1-prefrontal cortex theta coherence in correct trials compared with incorrect trials when long delays were imposed, suggesting increased hippocampal-prefrontal cortex synchrony for the task in this group when memory demand was high. Seizure-exposed rats also showed heightened gamma power and coherence among all three structures during the trials. Our results demonstrate the first evidence of hippocampal-prefrontal enhancements following seizures in early development. Dynamic compensatory changes in this network and interconnected circuits may underpin cognitive rehabilitation following other neurological insults to higher cognitive systems.
Collapse
Affiliation(s)
- Jonathan K. Kleen
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| | - Edie X. Wu
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| | - Gregory L. Holmes
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| | - Rod C. Scott
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
- UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Pierre-Pascal Lenck-Santini
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire 03755, and
| |
Collapse
|
22
|
Yakushev I, Schreckenberger M, Müller MJ, Schermuly I, Cumming P, Stoeter P, Gerhard A, Fellgiebel A. Functional implications of hippocampal degeneration in early Alzheimer's disease: a combined DTI and PET study. Eur J Nucl Med Mol Imaging 2011; 38:2219-27. [PMID: 21792570 DOI: 10.1007/s00259-011-1882-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Hypometabolism of the posterior cingulate cortex (PCC) in early Alzheimer's disease (AD) is thought to arise in part due to AD-specific neuronal damage to the hippocampal formation. Here, we explored the association between microstructural alterations within the hippocampus and whole-brain glucose metabolism in subjects with AD, also in relation to episodic memory impairment. METHODS Twenty patients with early AD (Mini-Mental State Examination 25.7 ± 1.7) were studied with [(18)F]fluorodeoxyglucose (FDG) positron emission tomography and diffusion tensor imaging. Episodic memory performance was assessed using the free delayed verbal recall task (DVR). Voxel-wise relative FDG uptake was correlated to diffusivity indices of the hippocampus, followed by extraction of FDG uptake values from significant clusters. Linear regression analysis was performed to test for unique contributions of diffusivity and metabolic indices in the prediction of memory function. RESULTS Diffusivity in the left anterior hippocampus negatively correlated with FDG uptake primarily in the left anterior hippocampus, parahippocampal gyrus and the PCC (p < 0.005). The same correlation pattern was found for right hippocampal diffusivity (p < 0.05). In linear regression analysis, left anterior hippocampal diffusivity and FDG uptake from the PCC cluster were the only significant predictors for performance on DVR, together explaining 60.6% of the variance. We found an inverse association between anterior hippocampal diffusivity and PCC glucose metabolism, which was in turn strongly related to episodic memory performance in subjects with early AD. CONCLUSION These findings support the diaschisis hypothesis of AD and implicate a dysfunction of structures along the hippocampal output pathways as a significant contributor to the genesis of episodic memory impairment.
Collapse
Affiliation(s)
- Igor Yakushev
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM. Impaired attention in the 3xTgAD mouse model of Alzheimer's disease: rescue by donepezil (Aricept). J Neurosci 2011; 31:3500-7. [PMID: 21368062 PMCID: PMC3066152 DOI: 10.1523/jneurosci.5242-10.2011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/09/2010] [Accepted: 01/06/2011] [Indexed: 01/11/2023] Open
Abstract
Several mouse models of Alzheimer's disease (AD) with abundant β-amyloid and/or aberrantly phosphorylated tau develop memory impairments. However, multiple non-mnemonic cognitive domains such as attention and executive control are also compromised early in AD individuals. Currently, it is unclear whether mutations in the β-amyloid precursor protein (APP) and tau are sufficient to cause similar, AD-like attention deficits in mouse models of the disease. To address this question, we tested 3xTgAD mice (which express APPswe, PS1M146V, and tauP301L mutations) and wild-type control mice on a newly developed touchscreen-based 5-choice serial reaction time test of attention and response control. The 3xTgAD mice attended less accurately to short, spatially unpredictable stimuli when the attentional demand of the task was high, and also showed a general tendency to make more perseverative responses than wild-type mice. The attentional impairment of 3xTgAD mice was comparable to that of AD patients in two aspects: first, although 3xTgAD mice initially responded as accurately as wild-type mice, they subsequently failed to sustain their attention over the duration of the task; second, the ability to sustain attention was enhanced by the cholinesterase inhibitor donepezil (Aricept). These findings demonstrate that familial AD mutations not only affect memory, but also cause significant impairments in attention, a cognitive domain supported by the prefrontal cortex and its afferents. Because attention deficits are likely to affect memory encoding and other cognitive abilities, our findings have important consequences for the assessment of disease mechanisms and therapeutics in animal models of AD.
Collapse
Affiliation(s)
- Carola Romberg
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, Palop JJ, Masliah E, Mucke L. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 2010; 68:428-41. [PMID: 21040845 PMCID: PMC3050043 DOI: 10.1016/j.neuron.2010.10.020] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2010] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is one of the earliest affected, most vulnerable brain regions in Alzheimer's disease (AD), which is associated with amyloid-β (Aβ) accumulation in many brain areas. Selective overexpression of mutant amyloid precursor protein (APP) predominantly in layer II/III neurons of the EC caused cognitive and behavioral abnormalities characteristic of mouse models with widespread neuronal APP overexpression, including hyperactivity, disinhibition, and spatial learning and memory deficits. APP/Aβ overexpression in the EC elicited abnormalities in synaptic functions and activity-related molecules in the dentate gyrus and CA1 and epileptiform activity in parietal cortex. Soluble Aβ was observed in the dentate gyrus, and Aβ deposits in the hippocampus were localized to perforant pathway terminal fields. Thus, APP/Aβ expression in EC neurons causes transsynaptic deficits that could initiate the cortical-hippocampal network dysfunction in mouse models and human patients with AD.
Collapse
Affiliation(s)
- Julie A. Harris
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Laure Verret
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Brian Halabisky
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Myo T. Thwin
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Patricia Hamto
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Eliezer Masliah
- Departments of Neurosciences, University of California, San Diego, San Diego, CA 92093, USA
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Higgins GA, Breysse N, Undzys E, Kuo C, Joharchi N, Derksen DR, Xin T, Isaac M, Slassi M. The anti-epileptic drug lacosamide (Vimpat) has anxiolytic property in rodents. Eur J Pharmacol 2009; 624:1-9. [PMID: 19818346 DOI: 10.1016/j.ejphar.2009.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/10/2009] [Accepted: 09/28/2009] [Indexed: 01/04/2023]
Abstract
Lacosamide ((R)-2-acetamido-N-benzyl-3-methoxypropionamide; formerly harkoseride, SPM 927; Vimpat), has been recently approved by US and European regulatory authorities for use as add-on therapy for partial-onset seizures in adults. Because a number of anti-epileptic drugs are used to treat conditions beyond epilepsy, including anxiety, in the present study we investigated the anxiolytic potential of lacosamide in a conditioned emotional response (CER) model in rat, and the mouse marble burying assay. In each test lacosamide produced a significant effect consistent with anxiolysis, i.e. lacosamide increased suppression ratio in the CER test, and reduced the number of marbles buried in the marble burying assay. The doses necessary for an anxiolytic effect were higher than those necessary for efficacy in seizure tests conducted in the same species. For example in the mouse, the lacosamide oral ED(50) in the maximal electroshock seizure (MES) and 6 Hz tests was 5.3 and 9.6 mg/kg respectively, and the minimal effective dose in the marble burying assay was 30 mg/kg. In both seizure and anxiety tests, the (S)-enantiomer of lacosamide was inactive suggesting a similar mechanism of action, possibly use-dependent inhibition of sodium channel function (Errington et al., 2008). Efficacy in the CER model was equivalent to diazepam and pregabalin (Lyrica). In tests of side-effects, lacosamide had no effect on choice accuracy in the delayed match to position task of working memory, although at the 30 mg/kg dose, response rates and response latencies were significantly affected. In sum, the present results identify for the first time, an anxiolytic potential of lacosamide.
Collapse
Affiliation(s)
- Guy A Higgins
- NPS Pharmaceuticals, 101 College Street, Toronto, ON M5G 0A3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Coutureau E, Di Scala G. Entorhinal cortex and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:753-61. [PMID: 19376185 DOI: 10.1016/j.pnpbp.2009.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Understanding the function of the entorhinal cortex (EC) has been an important subject over the years, not least because of its cortical intermediary to and from the hippocampus proper, and because of electrophysiological advances which have started to reveal the physiology in behaving animals. Clearly, a lot more needs to be done but is clear to date that EC is not merely a throughput station providing all hippocampal subfields with sensory information, but that processing within EC contributes significantly to attention, conditioning, event and spatial cognition possibly by compressing representations that overlap in time. These are transmitted to the hippocampus, where they are differentiated again and returned to EC. Preliminary evidence for such a role, but also their possible pitfalls are summarised.
Collapse
Affiliation(s)
- Etienne Coutureau
- Centre de Neurosciences Intégratives et Cognitives, UMR 5228 CNRS, Universités de Bordeaux 1 & 2, Avenue des Facultés, 33405 Talence, France
| | | |
Collapse
|
27
|
Fletcher PJ, Chambers JW, Rizos Z, Chintoh AF. Effects of 5-HT depletion in the frontal cortex or nucleus accumbens on response inhibition measured in the 5-choice serial reaction time test and on a DRL schedule. Behav Brain Res 2009; 201:88-98. [DOI: 10.1016/j.bbr.2009.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 10/21/2022]
|
28
|
Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 2009; 122:150-202. [PMID: 19269307 DOI: 10.1016/j.pharmthera.2009.02.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Cognitive deficits in schizophrenia are among the core symptoms of the disease, correlate with functional outcome, and are not well treated with current antipsychotic therapies. In order to bring together academic, industrial, and governmental bodies to address this great 'unmet therapeutic need', the NIMH sponsored the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. Through careful factor analysis and consensus of expert opinion, MATRICS identified seven domains of cognition that are deficient in schizophrenia (attention/vigilance, working memory, reasoning and problem solving, processing speed, visual learning and memory, verbal learning and memory, and social cognition) and recommended a specific neuropsychological test battery to probe these domains. In order to move the field forward and outline an approach for translational research, there is a need for a "preclinical MATRICS" to develop a rodent test battery that is appropriate for drug development. In this review, we outline such an approach and review current rodent tasks that target these seven domains of cognition. The rodent tasks are discussed in terms of their validity for probing each cognitive domain as well as a brief overview of the pharmacology and manipulations relevant to schizophrenia for each task.
Collapse
|
29
|
The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol 2008; 154:1166-81. [PMID: 18469850 DOI: 10.1038/bjp.2008.147] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The histamine H3 receptor, first described in 1983 as a histamine autoreceptor and later shown to also function as a heteroreceptor that regulates the release of other neurotransmitters, has been the focus of research by numerous laboratories as it represents an attractive drug target for a number of indications including cognition. The purpose of this review is to acquaint the reader with the current understanding of H3 receptor localization and function as a modulator of neurotransmitter release and its effects on cognitive processes, as well as to provide an update on selected H3 antagonists in various states of preclinical and clinical advancement. Blockade of centrally localized H3 receptors by selective H3 receptor antagonists has been shown to enhance the release of neurotransmitters such as histamine, ACh, dopamine and norepinephrine, among others, which play important roles in cognitive processes. The cognitive-enhancing effects of H3 antagonists across multiple cognitive domains in a wide number of preclinical cognition models also bolster confidence in this therapeutic approach for the treatment of attention deficit hyperactivity disorder, Alzheimer's disease and schizophrenia. However, although a number of clinical studies examining the efficacy of H3 receptor antagonists for a variety of cognitive disorders are currently underway, no clinical proof of concept for an H3 receptor antagonist has been reported to date. The discovery of effective H3 antagonists as therapeutic agents for the novel treatment of cognitive disorders will only be accomplished through continued research efforts that further our insights into the functions of the H3 receptor.
Collapse
|
30
|
Vago DR, Kesner RP. Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 2008; 189:273-83. [PMID: 18313770 DOI: 10.1016/j.bbr.2008.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/11/2007] [Accepted: 01/08/2008] [Indexed: 11/28/2022]
Abstract
Subregional analyses of the hippocampus suggest CA1-dependent memory processes rely heavily upon interactions between the CA1 subregion and entorhinal cortex. There is evidence that the direct perforant path (pp) projection to CA1 is selectively modulated by dopamine while having little to no effect on the Schaffer collateral (SC) projection to CA1. The current study takes advantage of this pharmacological dissociation to demonstrate that local infusion of the non-selective dopamine agonist, apomorphine (10, 15 microg), into the CA1 subregion of awake animals produces impairments in working memory at intermediate (5 min), but not short-term (10 s) delays within a delayed non-match-to-place task on a radial arm maze. Sustained impairments were also found in a novel context with similar object-space relationships. Infusion of apomorphine into CA1 is also shown here to produce deficits in spatial, but not non-spatial novelty detection within an object exploration paradigm. In contrast, apomorphine produces no behavioral deficits when infused into the CA3 subregion or overlying cortex. These behavioral studies are supported by previous electrophysiological data that demonstrate local infusion of the same doses of apomorphine significantly modifies evoked responses in the distal dendrites of CA1 following angular bundle stimulation, but produces no significant effects in the proximal dendritic layer following stimulation of the SC. These results support a modulatory role for dopamine in EC-CA1, but not CA3-CA1 circuitry, and suggest the possibility of a fundamental role for EC-CA1 synaptic transmission in terms of detection of spatial novelty, and intermediate-term, but not short-term spatial working memory or object-novelty detection.
Collapse
Affiliation(s)
- David R Vago
- University of Utah, Department of Psychology, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
31
|
Vago DR, Bevan A, Kesner RP. The role of the direct perforant path input to the CA1 subregion of the dorsal hippocampus in memory retention and retrieval. Hippocampus 2008; 17:977-87. [PMID: 17604347 PMCID: PMC3057091 DOI: 10.1002/hipo.20329] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subregional analyses of the hippocampus have suggested a selective role for the CA1 subregion in intermediate/long-term spatial memory and consolidation, but not short-term acquisition or encoding processes. It remains unclear how the direct cortical projection to CA1 via the perforant path (pp) contributes to these CA1-dependent processes. It has been suggested that dopamine selectively modulates the pp projection to CA1 while having little to no effect on the Schaffer collateral (SC) projection to CA1. This series of behavioral and electrophysiological experiments takes advantage of this pharmacological dissociation to demonstrate that the direct pp inputs to CA1 are critical in CA1-dependent intermediate-term retention and retrieval function. Here we demonstrate that local infusion of the nonselective dopamine agonist, apomorphine (10, 15 microg), into the CA1 subregion of awake animals produces impairments in between-day retention and retrieval, sparing within-day encoding of a modified Hebb-Williams maze and contextual conditioning of fear. In contrast, apomorphine produces no deficits when infused into the CA3 subregion. To complement the behavioral analyses, electrophysiological data was collected. In anesthetized animals, local infusion of the same doses of apomorphine significantly modifies evoked responses in the distal dendrites of CA1 following angular bundle stimulation, but produces no significant effects in the more proximal dendritic layer following stimulation of the SC. These results support a modulatory role for dopamine in the EC-CA1, but not CA3-CA1 circuitry, and suggest the possibility of a more fundamental role for EC-CA1 synaptic transmission in terms of intermediate-term, but not short-term spatial memory.
Collapse
Affiliation(s)
| | | | - Raymond P. Kesner
- Correspondence to: Raymond P. Kesner, Department of Psychology, University of Utah, 380 South, 1530 E, Rm. 502, Salt Lake City, UT 84112, USA.,
| |
Collapse
|
32
|
Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health. Brain 2007; 131:409-24. [PMID: 18077465 DOI: 10.1093/brain/awm299] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate that physostigmine can improve both stimulus- and attention-dependent responses in functionally affected extrastriate and frontoparietal regions in AD, while perturbing the normal pattern of responses in many of the same regions in healthy controls.
Collapse
Affiliation(s)
- Paul Bentley
- Wellcome Centre for Neuroimaging at UCL, London WC1N 3BG, UK.
| | | | | |
Collapse
|
33
|
Shimazaki T, Kaku A, Chaki S. Blockade of the metabotropic glutamate 2/3 receptors enhances social memory via the AMPA receptor in rats. Eur J Pharmacol 2007; 575:94-7. [PMID: 17727837 DOI: 10.1016/j.ejphar.2007.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 10/23/2022]
Abstract
The present study examined the role of mGlu(2/3) receptors in short-term social memory using the social recognition paradigm in rats in which an adult rat is exposed to the same juvenile rat in two successive interactions. Intraperitoneal administration of the mGlu(2/3) receptor antagonist MGS0039 (0.3-3 mg/kg) or the ampakine CX546 (0.3-3 mg/kg) significantly and dose-dependently reduced the adult rat's social investigation of the same juvenile rat during the second encounter which occurred 120 min after the first encounter, indicating that both MGS0039 and CX546 enhanced social recognition. Pretreatment with the AMPA receptor antagonist NBQX (0.1-1 mg/kg, s.c.) significantly attenuated the effects of MGS0039 (3 mg/kg, i.p.) in the social recognition test. These results suggest that the mGlu(2/3) receptor blockade increases social recognition memory, presumably through stimulation of the AMPA receptor.
Collapse
Affiliation(s)
- Toshiharu Shimazaki
- Medicinal Pharmacology Laboratory, Medical Research Laboratories, Taisho Pharmaceutical Co, Saitama, Saitama, Japan
| | | | | |
Collapse
|
34
|
Velísková J, Velísek L. Beta-estradiol increases dentate gyrus inhibition in female rats via augmentation of hilar neuropeptide Y. J Neurosci 2007; 27:6054-63. [PMID: 17537977 PMCID: PMC6672257 DOI: 10.1523/jneurosci.0366-07.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 05/02/2007] [Accepted: 05/05/2007] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus filters incoming activity into the hippocampus proper. It plays a role in learning and memory and in pathological states such as epilepsy. Some of hilar interneurons of the dentate gyrus express neuropeptide Y (NPY), which modulates granule cell activity. A subpopulation of the NPY-expressing inhibitory interneurons is sensitive to seizure-induced damage. Pretreatment with beta-estradiol in ovariectomized rats protects hilar interneurons against seizure-induced injury, including the NPY-containing damage-sensitive subpopulation. Here, we demonstrate that beta-estradiol enhances NPY expression within the hilar interneurons. In vitro paired-pulse stimulation of the mixed perforant path revealed beta-estradiol-induced augmentation of granule cell network inhibition, which at interstimulus intervals between 200 and 300 ms (corresponding to approximately 3-5 Hz) was NPY sensitive and involved Y1 receptors, whereas it was insensitive to GABA(B) or metabotropic glutamate receptor antagonists. Additionally, beta-estradiol pretreatment attenuated propagation of low-frequency (3.3 or 5 Hz) burst activity through the dentate gyrus. Scavenging endogenous NPY by intracerebroventricular administration of anti-NPY antibody accelerated kainic acid-induced seizure onset and increased seizure-induced neuronal damage in the hilus compared with rats treated with beta-estradiol alone. Together, we show that beta-estradiol upregulates hilar NPY and that this leads to enhancement in dentate gyrus inhibition of incoming frequencies between 3 and 5 Hz. Such frequencies are similar to the discharge frequencies recorded during seizure initiation in some patients with epilepsy. Thus, beta-estradiol-induced NPY-sensitive filtering of 3-5 Hz frequencies may be an important regulator of incoming seizure activity, but it could also serve a physiological purpose in modulating information flow into the hippocampus proper.
Collapse
Affiliation(s)
- Jana Velísková
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine and the Einstein/Montefiore Comprehensive Epilepsy Management Center, Bronx, New York 10461, USA.
| | | |
Collapse
|
35
|
Tomazini FM, Reimer A, Albrechet-Souza L, Brandão ML. Opposite effects of short- and long-duration isolation on ultrasonic vocalization, startle and prepulse inhibition in rats. J Neurosci Methods 2006; 153:114-20. [PMID: 16313968 DOI: 10.1016/j.jneumeth.2005.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/14/2005] [Accepted: 10/13/2005] [Indexed: 11/22/2022]
Abstract
Housing conditions change the sensorimotor gating and the emotional state of rats. The prepulse inhibition (PPI) is a reduction in the startle reflex to loud sounds when they are preceded by acoustic stimuli of low-intensity, and this test has been considered to be a useful measurement of the functioning of sensory gating in animals and man. Rats reared under conditions of isolation from the time of weaning, but not for 1 week at adult age, display clear deficits in prepulse inhibition and in sensorimotor gating. Ultrasound vocalizations (USVs) at 20-24kHz are the usual defensive responses of rats exposed to threatening conditions such as novel situations. The amount of emissions of ultrasound vocalizations at these frequencies depends on whether the aversive stimuli are presented either alone or in combination. Given this background we evaluated the prepulse inhibition and the emission of ultrasound vocalizations in response to novelty in rats isolated for 1 day or 2 weeks and compared the results to those in grouped rats. We also examined whether the anxiolytic agent midazolam (0.5 and 1.0mg/kg) could reverse the effects of isolation under the experimental conditions used. Rats isolated for 1 day showed a significant increase in the number and duration of USVs together with an enhancement in the startle response to loud sounds, which were antagonized in a dose-dependent manner by midazolam. On the other hand, 2-week isolation had the effect of reducing the number of USVs emitted at 20-24kHz without changing the startle response. The PPI was not changed by isolation, irrespective of the duration of isolation (1 day or 2 weeks). The results suggest that 1 day and 2 weeks of isolation have opposite effects on the emotional state of the animals. While short periods of isolation cause an anxiolytic-sensitive enhancement of the defensive responses, longer periods tend to reduce the defensive reaction of the animals to aversive stimuli. Based on these results, this work presents a novel method for induction of two different modes of defensive response, which are proposed to be mediated by separate neural substrates in rats. Also, isolation from 1 day to 2 weeks has no effect on the expression of prepulse inhibition and, by extension, on the functioning of the sensory gating.
Collapse
Affiliation(s)
- Fernanda Mariana Tomazini
- Laboratorio de Psicobiologia, FFCLRP, Campus USP, Av. Bandeirantes 3900, 14049-901 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
36
|
Greco B, Carli M. Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: Relation to anxiolytic-like phenotype. Behav Brain Res 2006; 169:325-34. [PMID: 16529827 DOI: 10.1016/j.bbr.2006.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/23/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide (NPY) Y2 receptors play an important role in some anxiety-related and stress-related behaviours in mice. Changes in the level of anxiety can affect some cognitive functions such as memory, attention and inhibitory response control. We investigated the effects of NPY Y2 receptor deletion (Y2(-/-)) in mice on visual attention and response control using the five-choice serial reaction time (5-CSRT) task in which accuracy of detection of a brief visual stimulus across five spatial locations may serve as a valid behavioural index of attentional functioning. Anticipatory and perseverative responses provide a measure of inhibitory response control. During training, the Y2(-/-) mice had lower accuracy (% correct), and made more anticipatory responses. At stimulus durations of 2 and 4s the Y2(-/-) were as accurate as the Y2(+/+) mice but still more impulsive than Y(+/+). At stimulus durations of 0.25 and 0.5s both groups performed worse but the Y2(-/-) mice made significantly fewer correct responses than the Y2(+/+) controls. The anxiolytic drug diazepam at 2mg/kg IP greatly increased the anticipatory responding of Y2(-/-) mice compared to Y2(+/+). The anxiogenic inverse benzodiazepine agonist, FG 7142, at 10mg/kg IP reduced the anticipatory responding of Y2(-/-) but not Y2(+/+) mice. These data suggest that NPY Y2 receptors make an important contribution to mechanisms controlling attentional functioning and "impulsivity". They also show that "impulsivity" of NPY Y2(-/-) mice may depend on their level of anxiety. These findings may help in understanding the pathophysiology of stress disorders and depression.
Collapse
Affiliation(s)
- Barbara Greco
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri", via Eritrea 62, 20157 Milano, Italy
| | | |
Collapse
|
37
|
Wrenn CC, Turchi JN, Schlosser S, Dreiling JL, Stephenson DA, Crawley JN. Performance of galanin transgenic mice in the 5-choice serial reaction time attentional task. Pharmacol Biochem Behav 2006; 83:428-40. [PMID: 16626795 DOI: 10.1016/j.pbb.2006.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/22/2006] [Accepted: 03/05/2006] [Indexed: 01/21/2023]
Abstract
The neuropeptide galanin impairs learning and memory in rodents. The mechanism underlying the cognitive effects of galanin may be related to inhibitory effects of galanin on cholinergic transmission. As cholinergic function is thought to modulate sustained attention, the present study examined whether galanin-overexpressing transgenic mice have impairments in sustained attention. Galanin transgenic (GAL-tg) mice and wild-type (WT) littermate controls were trained in a 5-choice serial reaction time task, modified to assess sustained attention. GAL-tg and WT mice performed similarly during acquisition with respect to accuracy, total omissions, and response speed. Attentional mechanisms were challenged by parametric changes including increased event rate, event asynchrony, or decreased stimulus duration. Singly, these challenges did not differentially affect performance between genotypes. Concurrent administration of these challenges, which represents an optimal test of sustained attention, also had similar effects on GAL-tg and WT mice. When stimulus discriminability was reduced by constant illumination of the house light, GAL-tg mice omitted more trials than WT mice, but other measures of performance did not differ by genotype. Moreover, intraventricular injection of galanin in WT mice did not affect sustained attention. These data indicate that previously reported learning and memory effects of galanin are not secondary to attentional dysfunction.
Collapse
Affiliation(s)
- Craige C Wrenn
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
38
|
McLaughlin PJ, Brown CM, Winston KM, Thakur G, Lu D, Makriyannis A, Salamone JD. The novel cannabinoid agonist AM 411 produces a biphasic effect on accuracy in a visual target detection task in rats. Behav Pharmacol 2005; 16:477-86. [PMID: 16148454 DOI: 10.1097/00008877-200509000-00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabinoid agonists have been shown to produce dose-related impairments in several measures of cognitive performance. However, it is unclear if low doses of cannabinoid CB1 agonists, or CB1 antagonists, can facilitate aspects of stimulus detection. The present study employed an operant procedure involving visual stimulus detection in rats. The task was found to be sensitive to the muscarinic acetylcholine antagonist scopolamine. The CB1 antagonist AM 251 did not affect stimulus detection processes across a broad range of doses. However, the novel CB1 agonist AM 411 produced a biphasic effect, with the two lowest doses (0.25 and 0.5 mg/kg) enhancing accuracy. AM 411 changed patterns of responding toward runs of consecutive errors on only one of the two levers. It produced a biphasic effect on consecutive errors on the lever associated with a higher level of errors, with decreases in errors following the lower doses (0.25 and 0.5 mg/kg) and increases following the highest dose (2.0 mg/kg). These effects were not accompanied by changes in measures of bias commonly used to uncover such patterns in rodent operant models of cognitive performance. In contrast to the cognitive impairment seen after administration of moderate to high doses of CB1 agonists, it appears that low doses of some CB1 agonists may be capable of enhancing stimulus detection processes.
Collapse
Affiliation(s)
- P J McLaughlin
- Department of Psychology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Nunes Mamede Rosa ML, Nobre MJ, Ribeiro Oliveira A, Brandão ML. Isolation-induced changes in ultrasonic vocalization, fear-potentiated startle and prepulse inhibition in rats. Neuropsychobiology 2005; 51:248-55. [PMID: 15905630 DOI: 10.1159/000085820] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Isolation causes important changes in the behavioral reactivity of rats to environmental stimuli. These changes include deficit in sensorimotor gating and altered fear-like responses to aversive stimuli. Measures of ultrasound vocalizations at 20-22 kHz when rats are exposed to threatening conditions, such as novelty, have been taken as a good measure of fear. The fear-potentiated startle to loud sounds and the prepulse inhibition tests have been considered reliable indicators of anxiety and attention impairments, respectively. Rats reared under conditions of isolation from weaning display clear deficits in prepulse inhibition. Taking into account that housing condition changes the emotional state of the animals, we evaluated in this work the performance of rats in the fear-potentiated startle test, prepulse inhibition and emission of ultrasound vocalizations to novelty when isolated for 10 days and after resocialization for 1 week in comparison to grouped rats. Isolated rats showed greater reactivity to loud sounds in the fear-potentiated startle test than grouped animals. They also emitted less ultrasound vocalizations at 20-22 kHz than grouped animals when exposed to a novel environment. In contrast to the well-known deficit in prepulse inhibition displayed by isolation-reared animals, in the present study isolation for 10 days caused a significant increase in prepulse inhibition. Resocialization was not able to counteract the effects of isolation in all three tests. The results suggest that the emotional state of the animals is altered by 10 days of isolation; they do not vocalize characteristically as grouped rats when submitted to novelty; unconditioned responses to loud sounds are enhanced and increased prepulse inhibition is shown rather than a deficit as largely documented in studies with isolation-reared animals. It is suggested that the assessment of the emotional state of the animals is a prerequisite in the evaluation of prepulse inhibition. The level of defensive reactivity displayed by isolated animals is crucial for the functioning of sensory gating and, by extension, to the expression of prepulse inhibition.
Collapse
|
40
|
Woolley ML, Ballard TM. Age-related impairments in operant DMTP performance in the PS2APP mouse, a transgenic mouse model of Alzheimer's disease. Behav Brain Res 2005; 161:220-8. [PMID: 15922048 DOI: 10.1016/j.bbr.2005.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 02/03/2005] [Accepted: 02/10/2005] [Indexed: 11/20/2022]
Abstract
One of the earliest signs of Alzheimer's disease (AD) is loss of memory for recent events. This deficit in short term memory has been characterised in mild/moderate AD patients as a delay-dependent deficit in a delayed matching to sample (DMTS) task. PS2APP mice co-expressing hPS2mut and hAPPswe exhibit a spatial-temporal elevation in brain amyloid deposition and inflammation associated with temporal cognitive decline. The aim of the current study was to train PS2APP mice (C57BL/6JxDBA/2 mixed background) and appropriate control mice (B6D2F1 background) in a rodent delayed response task, the delayed matching to position (DMTP) task, prior to the onset of plaque formation and subsequently at 2-4 monthly intervals to investigate the effect of aging and increasing plaque load on DMTP performance. At 5 months of age (baseline) DMTP performance was equivalent with both PS2APP and control mice demonstrating a working memory curve across increasing delay intervals of 1-24s. A comparison of PS2APP and control mice across ages revealed a selective age-related, delay-dependent, impairment on choice accuracy in PS2APP mice, consistent with the cognitive decline and temporal amyloidosis previously described for this mouse model. These data are also relevant for other conditional transgenic mouse models which allow time-sensitive induction or inhibition of gene expression such that mice can be trained to perform the task prior to activation or inactivation of the gene and tested thereafter.
Collapse
Affiliation(s)
- M L Woolley
- PRBD-N, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland.
| | | |
Collapse
|
41
|
Ruskin DN, Liu C, Dunn KE, Bazan NG, LaHoste GJ. Sleep deprivation impairs hippocampus-mediated contextual learning but not amygdala-mediated cued learning in rats. Eur J Neurosci 2004; 19:3121-4. [PMID: 15182321 DOI: 10.1111/j.0953-816x.2004.03426.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolonged sleep deprivation results in cognitive deficits. In rats, for example, sleep deprivation impairs spatial learning and hippocampal long-term potentiation. We tested the effects of sleep deprivation on learning in a Pavlovian fear conditioning paradigm, choosing a sleep deprivation paradigm in which REM sleep was completely prevented and non-REM sleep was strongly decreased. During conditioning, rats were given footshocks, either alone or paired with a tone, and tested 24 h later for freezing responses to the conditioning context, and to the tone in a novel environment. Whereas control animals had robust contextual learning in both background and foreground contextual conditioning paradigms, 72 h of sleep deprivation before conditioning dramatically impaired both types of contextual learning (by more than 50%) without affecting cued learning. Increasing the number of footshocks did not overcome the sleep deprivation-induced deficit. The results provide behavioural evidence that REM/non-REM sleep deprivation has neuroanatomically selective actions, differentially interfering with the neural systems underlying contextual learning (i.e. the hippocampus) and cued learning (i.e. the amygdala), and support the involvement of the hippocampus in both foreground and background contextual conditioning.
Collapse
Affiliation(s)
- David N Ruskin
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | | | | |
Collapse
|
42
|
Higgins GA, Ballard TM, Kew JNC, Richards JG, Kemp JA, Adam G, Woltering T, Nakanishi S, Mutel V. Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology 2004; 46:907-17. [PMID: 15081787 DOI: 10.1016/j.neuropharm.2004.01.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 01/05/2004] [Accepted: 01/19/2004] [Indexed: 11/18/2022]
Abstract
Atrophy of the medial temporal lobes, including the glutamatergic cortical-hippocampal circuitry, is an early event in Alzheimer's disease (AD) and probably contributes to the characteristic short-term mnemonic decline. Pharmacological strategies directly targeted to ameliorating this functional decline may represent a novel approach for the symptomatic treatment of AD. Presynaptic group II metabotropic glutamate receptors (i.e. mGlu2 and mGlu3) exert a powerful modulatory influence on the function of these pathways, in particular the perforant pathway. Using a combination of mGlu2 receptor knockout mice and the group II agonist LY354740, we show that activation of mGlu2 receptors produces a cognitive impairment, i.e. a delay-dependent deficit in delayed matching and non-matching to position, and impaired spatial learning in a Morris water maze. Conversely, a group II antagonist, LY341495, improved acquisition of spatial learning. LY354740 potently reduced field excitatory postsynaptic potentials in hippocampal slices from wild type but not mGlu2 receptor knockout mice. Taken together, these results suggest that activation of mGlu2 receptors evokes a powerful inhibitory effect on hippocampal synaptic transmission and mGlu2 agonists produce a cognitive deficit consistent with this change. Conversely, mGlu2 receptor antagonists may improve certain aspects of cognition and thus represent a novel approach for the symptomatic treatment of AD.
Collapse
Affiliation(s)
- Guy A Higgins
- Preclinical CNS Research, F. Hoffmann-La Roche Ltd., PRBD-N, 72/150, Grenzacherstrasse, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chudasama Y, Robbins TW. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 2004; 174:86-98. [PMID: 15071717 DOI: 10.1007/s00213-004-1805-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 01/11/2004] [Indexed: 11/25/2022]
Abstract
RATIONALE In schizophrenia, attentional disturbance is a core feature which may not only accompany the disorder, but may precede the onset of psychiatric symptoms. OBJECTIVES The five-choice serial reaction time task (5CSRTT) is a test of visuo-spatial attention that has been used extensively in rats for measuring the effects of systemic and central neurochemical manipulations on various aspects of attentional performance, including selective attention, vigilance and executive control. These findings are relevant to our understanding of the neural systems that may be compromised in patients with schizophrenia. METHODS The 5CSRTT is conducted in an operant chamber that has multiple response locations, in which brief visual stimuli can be presented randomly. Performance is maintained using food reinforcers to criterion levels of accuracy. Various aspects of performance are measured, including attentional accuracy and premature responding, especially under different attentional challenges. RESULTS The effects of systemic and intra-cerebral infusions of selective dopamine, serotonin and cholinergic receptor agents on the 5CSRTT are reviewed with a view to identifying attention-enhancing effects that may be relevant to the treatment of cognitive deficits in schizophrenia. In addition, some novel agents such as modafinil and histamine receptor agents are also considered. Examining the effects of selective neurochemical lesions helped define the neural locus of attentional effects. Similarly, findings from microdialysis studies helped identify the extracellular changes in neurotransmitters and their metabolites in freely moving rats during performance of the 5CSRTT. CONCLUSIONS The monoaminergic and cholinergic systems have independent but complementary roles in attentional function, as measured by the 5CSRTT. These functions are predominantly under the control of the prefrontal cortex and striatum. These conclusions are considered in the context of their application towards therapeutic approaches for attentional disturbances that are typically observed in schizophrenic patients.
Collapse
Affiliation(s)
- Y Chudasama
- National Institute of Mental Health, Building 49, Room 1B80, Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
44
|
Lee I, Kesner RP. Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 2004; 14:66-76. [PMID: 15058484 DOI: 10.1002/hipo.10167] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hippocampus is an essential neural structure for spatial memory. Computational models suggest that the CA3 subregion of the hippocampus plays an essential role in encoding and retrieval of spatial memory. The perforant path (PPCA3) and dentate gyrus (DG)-mediated mossy fibers (MFs) compose major afferent inputs into CA3. A possible functional dissociation between these afferent inputs was attempted using a simple navigation test (i.e., the modified Hebb-Williams maze). Behavioral testing was combined with electrolytic lesions of PPCA3 or neurotoxic lesions of the DG, to eliminate each afferent input into CA3. Lesions in either afferent input into CA3 affected learning of an effective navigational path on the maze. The contributions of the two CA3 afferent inputs, however, were different regarding encoding and retrieval of memory measured based on indices operationally defined for the behavioral paradigm (i.e., encoding, the number of errors reduced within a day; retrieval, the number of errors reduced between days). The DG-lesioned animals exhibited deficits regarding the encoding index, but not the retrieval index, whereas the PPCA3-lesioned rats displayed deficits regarding the retrieval index, but not the encoding index. The results suggest that the two major afferent inputs of CA3 may contribute differentially to encoding and retrieval of spatial memory.
Collapse
Affiliation(s)
- Inah Lee
- Department of Neurobiology and Anatomy, University of Texas Houston Medical School, Houston, Texas, USA
| | | |
Collapse
|
45
|
Le Pen G, Grottick AJ, Higgins GA, Moreau JL. Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 2003; 28:1799-809. [PMID: 12784101 DOI: 10.1038/sj.npp.1300208] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schizophrenia is characterized by severe abnormalities in cognition, including disordered attention. In the rat, neonatal ventral hippocampal (NVH) lesions induce behavioral abnormalities at adulthood thought to simulate some aspects of the symptomatology of schizophrenia. Here, we compared the effects of NVH and adult ventral hippocampal (AVH) lesions on attentional performance as assessed by the five-choice serial reaction time task (5-CSRTT). NVH-lesioned rats were slower to acquire the task than AVH-lesioned and control animals. When training was complete, NVH- and AVH-lesioned animals exhibited stable but disrupted performance under standard conditions, thus emphasizing an implication of VH in visual attentional processes. Variations in task parameters induced a significantly greater disruption in NVH- and AVH-lesioned groups as compared to controls. NVH-lesioned rats were also hyper-responsive to the disruptive effects of a high dose of phencyclidine (PCP) (3 mg/kg). In contrast, amphetamine (0.4-0.8 mg/kg) had a similar effect in control and VH-lesioned rats. Thus, NVH-lesioned rats were impaired in the acquisition of stable performance in the 5-CSRTT, and were hypersensitive to the cognitive-impairing effects of PCP.
Collapse
|
46
|
Abstract
The evidence for a role of apoptosis in the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and in the more acute conditions of cerebral ischemia, traumatic brain injury (TBI), and spinal cord injury (SCI) is reviewed with regard to potential intervention by means of small antiapoptotic molecules. In addition, the available animal models for these diseases are discussed with respect to their relevance for testing small antiapoptotic molecules in the context of what is known about the apoptotic pathways involved in the diseases and the models. The principal issues related to pharmacotherapy by apoptosis inhibition, i.e., functionality of rescued neurons and potential interference with physiologically occurring apoptosis, are pointed out. Finally, the properties of a number of small antiapoptotic molecules currently under clinical investigation are summarized. It is concluded that the evidence for a role of apoptosis at present is more convincing for PD and ALS than for AD. In PD, damage to dopaminergic neurons may occur through oxidative stress and/or mitochondrial impairment and culminate in activation of an apoptotic, presumably p53-dependent cascade; some neurons experiencing energy failure may not be able to complete apoptosis, end up in necrosis and give rise to inflammatory processes. These events are reasonably well reflected in some of the PD animal models, notably those involving 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone. In sporadic ALS, an involvement of pathways involving p53 and Bcl-2 family members appears possible if not likely, but is not established. The issue is important for the development of antiapoptotic compounds for the treatment of this disease because of differential involvement of p53 in different mutant superoxide dismutase (SOD) mice. Most debated is the role of apoptosis in AD; this implies that little is known about potentially involved pathways. Moreover, there is a lack of suitable animal models for compound evaluation. Apoptosis or related phenomena are likely involved in secondary cell death in cerebral ischemia, TBI, and SCI. Most of the pertinent information comes from animal experiments, which have provided some evidence for prevention of cell death by antiapoptotic treatments, but little for functional benefit. Much remains to be done in this area to explore the potential of antiapoptotic drugs. There is a small number of antiapoptotic compounds in clinical development. With some of them, evidence for maintenance of functionality of the rescued neurons has been obtained in some animal models, and the fact that they made it to phase II studies in patients suggests that interference with physiological apoptosis is not an obligatory problem. The prospect that small antiapoptotic molecules will have an impact on the therapy of neurodegenerative diseases, and perhaps also of ischemia and trauma, is therefore judged cautiously positively.
Collapse
Affiliation(s)
- Peter C Waldmeier
- Nervous System Research, Novartis Pharma Limited, WKL-125.607, CH-4002, Basel, Switzerland.
| |
Collapse
|
47
|
Abstract
Temporal lobe epilepsy (TLE) patients are frequently afflicted with deficits in spatial and other forms of declarative memory. This impairment is likely associated with the medial temporal lobe, which suffers widespread damage in the disease. Physiological and lesion studies, as well as examinations of the complex connectivity of the medial temporal lobe in animals and humans, have identified the entorhinal cortex (EC) as a key structure in the function and dysfunction of this brain region. Lesions in EC layer III, which normally provides monosynaptic input to area CA1 of the hippocampus, frequently occur in TLE and may be causally related to the memory impairments seen in the disease. Lesions that are initially largely restricted to EC layer III can be produced in rats by focal intra-entorhinal injections of 'indirect excitotoxins' such as aminooxyacetic acid or gamma-acetylenic GABA. These animals eventually show more extensive neurodegeneration in temporal lobe structures and, after a latent period, exhibit spontaneously recurring seizure activity. These progressive features, which may mimic events that occur in TLE, provide new opportunities to explore the role of the EC in memory deficits associated with TLE. These animals will also be useful for evaluating new treatment strategies that focus on the prevention of pathological events in the EC.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| | | |
Collapse
|
48
|
Higgins GA, Enderlin M, Fimbel R, Haman M, Grottick AJ, Soriano M, Richards JG, Kemp JA, Gill R. Donepezil reverses a mnemonic deficit produced by scopolamine but not by perforant path lesion or transient cerebral ischaemia. Eur J Neurosci 2002; 15:1827-40. [PMID: 12081663 DOI: 10.1046/j.1460-9568.2002.02018.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of these studies were threefold. Firstly, to further characterize the effect of perforant path transection on a test of short-term memory: delayed matching (or nonmatching)-to-position [D(N)MTP]. Secondly, to evaluate the effect of a transient cerebral ischaemia in the same task. Both surgical procedures were chosen as they produce a CNS lesion similar to that described in Alzheimer's Disease (AD). Thirdly, the effect of the acetylcholinesterase inhibitor, donepezil (Aricept(R), E2020), on the resulting cognitive impairment was studied. Perforant path transection produced a robust, delay-dependent impairment of choice accuracy in rats performing either a delayed matching- or nonmatching-to-position task. Sample latency was also reduced following lesion, yet the lesion-induced impairment was not affected by increasing the response requirement at the sample stage. An 11-min period of transient ischaemia (two-vessel occlusion model) resulted in almost complete loss of hippocampal CA1 pyramidal cells and a delay-dependent impairment in DMTP performance. However, unlike perforant path lesions, this deficit was unstable and declined in magnitude over the experimental period. Increasing the delay interval restored this deficit. Donepezil, at doses that robustly attenuated a scopolamine (0.06 mg/kg s.c.)-induced DMTP accuracy impairment in naïve, unoperated rats, had no effect against either lesion-induced impairment. The results are considered in terms of the effectiveness of acetylcholinesterase inhibitors in noncholinergic-based preclinical cognitive models.
Collapse
Affiliation(s)
- G A Higgins
- PRBN, F. Hoffmann La-Roche AG., Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Higgins GA, Kew JNC, Richards JG, Takeshima H, Jenck F, Adam G, Wichmann J, Kemp JA, Grottick AJ. A combined pharmacological and genetic approach to investigate the role of orphanin FQ in learning and memory. Eur J Neurosci 2002; 15:911-22. [PMID: 11906533 DOI: 10.1046/j.1460-9568.2002.01926.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a combination of the selective opioid receptor-like1 (ORL1) receptor agonist, Ro 64-6198, and orphanin FQ/nociceptin (OFQ/N) peptide knockout (KO) mice, the influence of OFQ/N on cognition has been studied in the rodent. In wild type, C57BL/6J mice, Ro 64-6198 (0.3-1 mg/kg i.p.) impaired the acquisition of spatial learning in the Morris water maze, although a mild neurological impairment was evident which complicated precise interpretation. In Lister hooded rats, Ro 64-6198 (6 mg/kg i.p.) produced delay dependent impairments in rats performing either a delayed matching or a delayed nonmatching to position task with only a modest (< 20%) effect on omissions - an effect consistent with a short-term memory impairment. Electrophysiological studies demonstrated an inhibitory effect of OFQ/N on LTP recorded from the CA1 region of wild type mice, but not in ORL1 receptor knockout mice. In contrast to the ORL1 agonist, mice deficient in the OFQ/N peptide showed some evidence of improved spatial learning, fear conditioning and passive avoidance retention. However, CA1 LTP was similar between OFQ/N peptide KO mice and wild type controls. Subsequent receptor radioautography studies demonstrated the presence of ORL1 receptors within various regions of the medial temporal lobe system: i.e. CA1, dentate gyrus molecular layer, subiculum, perirhinal cortex. Taken together, these results suggest a bi-directional effect of OFQ/N containing systems on aspects of cognitive behaviour, particularly those elements associated with hippocampal function. This is consistent with a likely modulatory role of OFQ/N on hippocampal and associated cortical circuitry.
Collapse
Affiliation(s)
- G A Higgins
- PRBN, F. Hoffmann-La Roche AG, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Burk JA, Mair RG. Effects of intralaminar thalamic lesions on sensory attention and motor intention in the rat: a comparison with lesions involving frontal cortex and hippocampus. Behav Brain Res 2001; 123:49-63. [PMID: 11377729 DOI: 10.1016/s0166-4328(01)00202-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A self-paced serial reaction task was developed to differentiate between the effects of intralaminar thalamic lesions on sensory attention and intentional motor function. Results were compared for hippocampal and frontal cortical lesions to test for the possible involvement of pathways involving these parts of the brain in any impairments associated with the thalamic lesion. Lesions of the intralaminar thalamic nuclei affected response latency without affecting accuracy. This increase in latency was unaffected by variations in stimulus duration, even though this manipulation had a substantial effect on response accuracy. Intralaminar lesions did not affect the response to distracting stimuli or to manipulations of stimulus salience. Thus it seems unlikely that the effects of intralaminar lesions on motor function were related to sensory loss or attentional dysfunction. Hippocampal lesions had no significant effect on any measure of performance. Frontal cortical lesions were associated with an increase in latency comparable to the intralaminar group and also affected the accuracy of responding to brief stimuli or under conditions of reduced stimulus salience. These results are discussed in light of evidence that lesions of the intralaminar nuclei affect functions mediated by anatomically related areas of frontal cortex and striatum.
Collapse
Affiliation(s)
- J A Burk
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|