1
|
Kang Y, Saito M, Toyoda H. Molecular, Morphological and Electrophysiological Differences between Alpha and Gamma Motoneurons with Special Reference to the Trigeminal Motor Nucleus of Rat. Int J Mol Sci 2024; 25:5266. [PMID: 38791305 PMCID: PMC11121624 DOI: 10.3390/ijms25105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of γMNs have remained unknown, while those of αMNs have been clarified in detail. Because of the larger size of αMNs compared to γMNs, blindly or even visually recorded MNs were mostly αMNs, as demonstrated with molecular markers recently. Subsequently, the research on αMNs has made great progress in classifying their subtypes based on the molecular markers and electrophysiological membrane properties, whereas only a few studies demonstrated the electrophysiological membrane properties of γMNs. In this review article, we provide an overview of the recent advances in research on the classification of αMNs and γMNs based on molecular markers and electrophysiological membrane properties, and discuss their functional implication and significance in motor control.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, Osaka 565-0871, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8544, Japan;
| | - Hiroki Toyoda
- Department of Oral Physiology, Graduate School of Dentistry, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Nishimura K, Ohta M, Saito M, Morita-Isogai Y, Sato H, Kuramoto E, Yin DX, Maeda Y, Kaneko T, Yamashiro T, Takada K, Oh SB, Toyoda H, Kang Y. Electrophysiological and Morphological Properties of α and γ Motoneurons in the Rat Trigeminal Motor Nucleus. Front Cell Neurosci 2018; 12:9. [PMID: 29416504 PMCID: PMC5787551 DOI: 10.3389/fncel.2018.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
The muscle contraction during voluntary movement is regulated by activities of α- and γ-motoneurons (αMNs and γMNs, respectively). The tension of jaw-closing muscles can be finely tuned over a wide range. This excellent function is likely to be achieved by the specific populations of αMNs innervating jaw-closing muscles. Indeed, we have recently demonstrated that in the rat dorsolateral trigeminal motor nucleus (dl-TMN), the size distribution of αMNs was bimodal and the population of smaller αMNs showed a size distribution similar to that of γMNs, by immunohistochemically identifying αMNs and γMNs based on the expressions of estrogen-related receptor gamma (Err3) and neuronal DNA binding protein NeuN together with ChAT. This finding suggests the presence of αMNs as small as γMNs. However, differences in the electrophysiological membrane properties between αMNs and γMNs remain unknown also in the dl-TMN. Therefore, in the present study, we studied the electrophysiological membrane properties of MNs in the dl-TMN of infant rats at postnatal days 7–12 together with their morphological properties using whole-cell current-clamp recordings followed by immunohistochemical staining with an anti-NeuN and anti-ChAT antibodies. We found that the ChAT-positive and NeuN-positive αMNs were divided into two subclasses: the first one had a larger cell body and displayed a 4-aminopyridine (4-AP)-sensitive current while the second one had a smaller cell body and displayed a less prominent 4-AP-sensitive current and a low-threshold spike, suitable for their orderly recruitment. We finally found that γMNs showing ChAT-positive and NeuN-negative immunoreactivities had smaller cell bodies and displayed an afterdepolarization mediated by flufenamate-sensitive cation current. It is suggested that these electrophysiological and morphological features of MNs in the dl-TMN are well correlated with the precise control of occlusion.
Collapse
Affiliation(s)
- Kayo Nishimura
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masahiro Ohta
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Removable Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mitsuru Saito
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yukako Morita-Isogai
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hajime Sato
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dong Xu Yin
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yoshinobu Maeda
- Department of Removable Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kenji Takada
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Saito M, Toyoda H, Kawakami S, Sato H, Bae YC, Kang Y. Capsaicin induces theta-band synchronization between gustatory and autonomic insular cortices. J Neurosci 2012; 32:13470-87. [PMID: 23015437 PMCID: PMC6621365 DOI: 10.1523/jneurosci.5906-11.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022] Open
Abstract
In the insular cortex, the primary gustatory area caudally adjoins the primary autonomic area that is involved in visceral sensory-motor integration. However, it has not been addressed whether neural activity in the gustatory insula (Gu-I) is coordinated with that in the autonomic insula (Au-I). We have demonstrated that TRPV1 activation in Gu-I induces theta-band synchronization between Gu-I and Au-I in rat slice preparations. Electron-microscopic immunohistochemistry revealed that TRPV1 immunoreactivity was much higher in Gu-I than in Au-I, and was mostly detected in dendritic spines receiving asymmetrical synapses. Whole-cell voltage-clamp recordings revealed that, in Gu-I, capsaicin-induced currents in layer 3 (L3) pyramidal cells (PCs) displayed no apparent desensitization, while those in layer 5 (L5) PCs displayed Ca(2+)-dependent desensitization, suggesting that L3 and L5 PCs respond differentially to TRPV1 activation. Voltage-sensitive dye imaging demonstrated that TRPV1 activation in Gu-I can alter an optical response with a monophasic and columnar temporospatial pattern evoked within Gu-I into an oscillatory one extending over Gu-I and Au-I. Power and cross-power spectral analyses of optical responses revealed theta-band synchronization between Gu-I and Au-I. Whole-cell current-clamp recordings demonstrated that such theta-band waves were mediated by sustained rhythmic firings at 4 and 8 Hz in L3 and L5 PCs, respectively. These results strongly suggested that theta-band oscillatory neural coordination between Gu-I and Au-I was induced by two distinct TRPV1-mediated theta-rhythm firings in L3 and L5 PCs in Gu-I. This network coordination induced by TRPV1 activation could be responsible for autonomic responses to tasting and ingesting spicy foods.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shinpei Kawakami
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- Nourishment Function Laboratory, Health Care Division, Morinaga & Company, Ltd., Yokohama, Kanagawa 230-8504, Japan, and
| | - Hajime Sato
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Whalley BJ, Stephens GJ, Constanti A. Investigation of the effects of the novel anticonvulsant compound carisbamate (RWJ-333369) on rat piriform cortical neurones in vitro. Br J Pharmacol 2009; 156:994-1008. [PMID: 19226287 PMCID: PMC2697724 DOI: 10.1111/j.1476-5381.2008.00110.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/13/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. EXPERIMENTAL APPROACH Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. KEY RESULTS Carisbamate (50-400 micromol x L(-1)) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150-400 micromol x L(-1) carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl(-) loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100-400 micromol x L(-1)) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl(-) conductance. Lidocaine (40-320 micromol x L(-1)) mimicked carisbamate, implying similar modes of action. Carisbamate (300-600 micromol x L(-1)) had no effect on spontaneous GABA(A) miniature inhibitory postsynaptic currents and at lower concentrations (50-200 micromol x L(-1)) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. CONCLUSIONS AND IMPLICATIONS Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl(-) conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.
Collapse
Affiliation(s)
- B J Whalley
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK.
| | | | | |
Collapse
|
5
|
Classification of the spike sequences by distinguishing their sources of temporal correlations. ARTIFICIAL LIFE AND ROBOTICS 2007. [DOI: 10.1007/s10015-007-0423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Komendantov AO, Trayanova NA, Tasker JG. Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. J Comput Neurosci 2007; 23:143-68. [PMID: 17484044 PMCID: PMC2837924 DOI: 10.1007/s10827-007-0024-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/27/2007] [Accepted: 02/07/2007] [Indexed: 01/08/2023]
Abstract
Magnocellular neuroendocrine cells (MNCs) of the hypothalamus synthesize the neurohormones vasopressin and oxytocin, which are released into the blood and exert a wide spectrum of actions, including the regulation of cardiovascular and reproductive functions. Vasopressin- and oxytocin-secreting neurons have similar morphological structure and electrophysiological characteristics. A realistic multicompartmental model of a MNC with a bipolar branching structure was developed and calibrated based on morphological and in vitro electrophysiological data in order to explore the roles of ion currents and intracellular calcium dynamics in the intrinsic electrical MNC properties. The model was used to determine the likely distributions of ion conductances in morphologically distinct parts of the MNCs: soma, primary dendrites and secondary dendrites. While reproducing the general electrophysiological features of MNCs, the model demonstrates that the differential spatial distributions of ion channels influence the functional expression of MNC properties, and reveals the potential importance of dendritic conductances in these properties.
Collapse
|
7
|
Okamoto H, Isomura Y, Takada M, Fukai T. Temporal integration by stochastic recurrent network dynamics with bimodal neurons. J Neurophysiol 2007; 97:3859-67. [PMID: 17392417 DOI: 10.1152/jn.01100.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal integration of externally or internally driven information is required for a variety of cognitive processes. This computation is generally linked with graded rate changes in cortical neurons, which typically appear during a delay period of cognitive task in the prefrontal and other cortical areas. Here, we present a neural network model to produce graded (climbing or descending) neuronal activity. Model neurons are interconnected randomly by AMPA-receptor-mediated fast excitatory synapses and are subject to noisy background excitatory and inhibitory synaptic inputs. In each neuron, a prolonged afterdepolarizing potential follows every spike generation. Then, driven by an external input, the individual neurons display bimodal rate changes between a baseline state and an elevated firing state, with the latter being sustained by regenerated afterdepolarizing potentials. When the variance of background input and the uniform weight of recurrent synapses are adequately tuned, we show that stochastic noise and reverberating synaptic input organize these bimodal changes into a sequence that exhibits graded population activity with a nearly constant slope. To test the validity of the proposed mechanism, we analyzed the graded activity of anterior cingulate cortex neurons in monkeys performing delayed conditional Go/No-go discrimination tasks. The delay-period activities of cingulate neurons exhibited bimodal activity patterns and trial-to-trial variability that are similar to those predicted by the proposed model.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
8
|
Takekawa T, Aoyagi T, Fukai T. Synchronous and asynchronous bursting states: role of intrinsic neural dynamics. J Comput Neurosci 2007; 23:189-200. [PMID: 17387606 DOI: 10.1007/s10827-007-0027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 12/28/2006] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Brain signals such as local field potentials often display gamma-band oscillations (30-70 Hz) in a variety of cognitive tasks. These oscillatory activities possibly reflect synchronization of cell assemblies that are engaged in a cognitive function. A type of pyramidal neurons, i.e., chattering neurons, show fast rhythmic bursting (FRB) in the gamma frequency range, and may play an active role in generating the gamma-band oscillations in the cerebral cortex. Our previous phase response analyses have revealed that the synchronization between the coupled bursting neurons significantly depends on the bursting mode that is defined as the number of spikes in each burst. Namely, a network of neurons bursting through a Ca(2+)-dependent mechanism exhibited sharp transitions between synchronous and asynchronous firing states when the neurons exchanged the bursting mode between singlet, doublet and so on. However, whether a broad class of bursting neuron models commonly show such a network behavior remains unclear. Here, we analyze the mechanism underlying this network behavior using a mathematically tractable neuron model. Then we extend our results to a multi-compartment version of the NaP current-based neuron model and prove a similar tight relationship between the bursting mode changes and the network state changes in this model. Thus, the synchronization behavior couples tightly to the bursting mode in a wide class of networks of bursting neurons.
Collapse
Affiliation(s)
- Takashi Takekawa
- Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.
| | | | | |
Collapse
|
9
|
Fujiwara K, Fujiwara H, Tsukada M, Aihara K. Reproducing bursting interspike interval statistics of the gustatory cortex. Biosystems 2006; 90:442-8. [PMID: 17141404 DOI: 10.1016/j.biosystems.2006.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 11/25/2022]
Abstract
Cortical neurons in vivo generate highly irregular spike sequences. Recently, it was experimentally found that the local variation of interspike intervals, LV, is nearly constant for every spike sequence for the same neurons. On the contrary, the coefficient of variation, CV, varies over different spike sequences. Here, we first show that these characteristic features are also applicable in bursting spike sequences that are obtained from the rat gustatory cortex. Next, we show that the conventional leaky integrate-and-fire model does not fully account for reproducing these statistical features in data of real bursting spike sequences. We resolve this difficulty by proposing an alternative neuron model which is a reduction of the bursting neuron model involving the persistent sodium current. Our study implies that (1) the characteristic features of CV and LV are the results of the endogenous bursting and (2) the bursting behavior in the gustatory cortex is caused mainly by the persistent sodium current.
Collapse
Affiliation(s)
- Kantaro Fujiwara
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
10
|
Abstract
Pyramidal cells in the mammalian neocortex can emit action potentials either as series of individual spikes or as distinct clusters of high-frequency bursts. However, why two different firing modes exist is largely unknown. In this study, we report that in layer V pyramidal cells of the rat somatosensory cortex, in vitro associations of EPSPs with spike bursts delayed by +10 msec led to long-term synaptic depression (LTD), whereas pairings with individual action potentials at the same delay induced long-term potentiation. EPSPs were evoked extracellularly in layer II-III and recorded intracellularly in layer V neurons with the whole-cell or nystatin-based perforated patch-clamp technique. Bursts were evoked with brief somatic current injections, resulting in three to four action potentials with interspike frequencies of approximately 200 Hz, characteristic of intrinsic burst firing. Burst-firing-associated LTD (Burst-LTD) was robust over a wide range of intervals between -100 and +200 msec, and depression was maximal (approximately 50%) for closely spaced presynaptic and postsynaptic events. Burst-LTD was associative and required concomitant activation of low voltage-activated calcium currents and metabotropic glutamate receptors. Conversely, burst-LTD was resistant to blockade of NMDA receptors or inhibitory synaptic potentials. Burst-LTD was also inducible at already potentiated synapses. We conclude that intrinsic burst firing represents a signal for resetting excitatory synaptic weights.
Collapse
Affiliation(s)
- Barbara Birtoli
- Institute of Physiology, University of Bern, Bern 3012, Switzerland
| | | |
Collapse
|
11
|
Russo E, Constanti A. Topiramate hyperpolarizes and modulates the slow poststimulus AHP of rat olfactory cortical neurones in vitro. Br J Pharmacol 2004; 141:285-301. [PMID: 14691058 PMCID: PMC1574203 DOI: 10.1038/sj.bjp.0705617] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 11/06/2003] [Indexed: 11/09/2022] Open
Abstract
1. The effects of the novel antiepileptic drug topiramate (TPM) were investigated in rat olfactory cortex neurones in vitro using a current/voltage clamp technique. 2. In 80% of recorded cells, bath application of TPM (20 microm) reversibly hyperpolarized and inhibited neuronal repetitive firing by inducing a slow outward membrane current, accompanied by a conductance increase. The response was reproducible after washout, and was most likely carried largely by K(+) ions, although other ionic conductances may also have contributed. 3. In 90% of cells, TPM (20 microm) also enhanced and prolonged the slow (Ca(2+)-dependent) poststimulus afterhyperpolarization (sAHP) and underlying slow outward tail current (sI(AHP)). This effect was due to a selective enhancement/prolongation of an underlying L-type Ca(2+) current that was blocked by nifedipine (20 microm); the TPM response was unlikely to involve an interaction at PKA-dependent phosphorylation sites. 4. The carbonic anhydrase (CA) inhibitor acetazolamide (ACTZ, 20 microm) and the poorly membrane permeant inhibitor benzolamide (BZ, 50 microm) both mimicked the membrane effects of TPM, in generating a slow hyperpolarization (slow outward current under voltage clamp) and sAHP enhancement. ACTZ and BZ occluded the effects of TPM in generating the outward current response, but were additive in producing the sAHP modulatory effect, suggesting different underlying response mechanisms. 5. In bicarbonate/CO(2)-free, HEPES-buffered medium, all the membrane effects of TPM and ACTZ were reproducible, therefore not dependent on CA inhibition. 6. We propose that both novel effects of TPM and ACTZ exerted on cortical neurones may contribute towards their clinical effectiveness as anticonvulsants.
Collapse
Affiliation(s)
- Emilio Russo
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| | - Andrew Constanti
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX
| |
Collapse
|
12
|
Aoyagi T, Takekawa T, Fukai T. Gamma rhythmic bursts: coherence control in networks of cortical pyramidal neurons. Neural Comput 2003; 15:1035-61. [PMID: 12803956 DOI: 10.1162/089976603765202659] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Much evidence indicates that synchronized gamma-frequency (20-70 Hz) oscillation plays a significant functional role in the neocortex and hippocampus. Chattering neuron is a possible neocortical pacemaker for the gamma oscillation. Based on our recent model of chattering neurons, here we study how gamma-frequency bursting is synchronized in a network of these neurons. Using a phase oscillator description, we first examine how two coupled chattering neurons are synchronized. The analysis reveals that an incremental change of the bursting mode, such as from singlet to doublet, always accompanies a rapid transition from antisynchronous to synchronous firing. The state transition occurs regardless of what changes the bursting mode. Within each bursting mode, the neuronal activity undergoes a gradual change from synchrony to antisynchrony. Since the sensitivity to Ca(2+) and the maximum conductance of Ca(2+)-dependent cationic current as well as the intensity of input current systematically control the bursting mode, these quantities may be crucial for the regulation of the coherence of local cortical activity. Numerical simulations demonstrate that the modulations of the calcium sensitivity and the amplitude of the cationic current can induce rapid transitions between synchrony and asynchrony in a large-scale network of chattering neurons. The rapid synchronization of chattering neurons is shown to synchronize the activities of regular spiking pyramidal neurons at the gamma frequencies, as may be necessary for selective attention or binding processing in object recognition.
Collapse
Affiliation(s)
- Toshio Aoyagi
- Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
13
|
Aoyagi T, Kang Y, Terada N, Kaneko T, Fukai T. The role of Ca2+-dependent cationic current in generating gamma frequency rhythmic bursts: modeling study. Neuroscience 2003; 115:1127-38. [PMID: 12453485 DOI: 10.1016/s0306-4522(02)00537-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fast rhythmic bursting pyramidal neuron or chattering neuron is a promising candidate for the pacemaker of coherent gamma-band (25-70 Hz) cortical oscillation. It, however, still remains to be clarified how the neuron generates such high-frequency bursts. Here, we demonstrate in a single-compartment model neuron that the fast rhythmic bursts (FRBs) can be achieved through Ca2+-activated channels in the entire gamma frequency range. In a previous in vitro study, a subset of rat cortical pyramidal cells displayed a long-lasting depolarizing afterpotential (DAP) following a plateau-type action potential when K+ conductances were suppressed with Cs+, and this DAP was found to be mediated by a Ca2+-dependent cationic current. This current appeared also suitable for producing a hump-like DAP, a characteristic of the chattering neurons, because of its reversal potential being approximately -40 mV. In the present theoretical study, we show that the enhancement of such a DAP leads to generation of doublet/triplet spikes seen during FRBs. The firing pattern during FRBs is primarily determined by a Ca2+-dependent cationic current and a small-conductance Ca2+-dependent potassium current, which are differentially activated by a biphasically decaying Ca2+ transient produced by fast buffering and a slow pump extrusion after each spike. With varying intensities of injected current pulses, the interburst frequencies of the FRBs range over the entire gamma frequency band (25-70 Hz) in our model, while the intraburst frequencies remain higher than 300 Hz. Our model suggests that FRBs are essentially generated in the soma, unlike the model based on a persistent sodium current, and that the alteration of Ca2+ sensitivity of Ca2+-dependent cationic current plays an essential role in controlling the FRB pattern.
Collapse
Affiliation(s)
- T Aoyagi
- Department of Applied Analysis and Complex Dynamical Systems, Kyoto University, Sakyoku, 606-8501, Kyoto, Japan
| | | | | | | | | |
Collapse
|
14
|
Yoshimura H, Sugai T, Onoda N, Segami N, Kato N. Synchronized population oscillation of excitatory synaptic potentials dependent of calcium-induced calcium release in rat neocortex layer II/III neurons. Brain Res 2001; 915:94-100. [PMID: 11578624 DOI: 10.1016/s0006-8993(01)02832-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the roles played by calcium-induced calcium release from ryanodine-sensitive calcium stores in induction of neocortical membrane potential oscillation by using caffeine, an agonist of ryanodine receptors. Intracellular recordings were made from neurons in layer II/III of rat visual cortex slices in a caffeine-containing medium. White matter stimulation initially evoked monophasic synaptic potentials. As low-frequency stimulation continued for over 10 min, an oscillating synaptic potential gradually became evoked, in which a paroxysmal depolarization shift was followed by a 8-10-Hz train of several depolarizing wavelets. This oscillating potential was not induced in a medium containing no caffeine with 2 or 0.5 mM [Mg2+](o). Under blockade of N-methyl-D-aspartate receptors, induction of this oscillating potential failed even with caffeine application. Experiments with the calcium store depletor, thapsigargin, revealed that this oscillating potential is induced in a manner dependent on intracellular calcium release. Dual intracellular recordings revealed that the oscillation was synchronized in pairs of layer II/III neurons. The oscillating potential was detectable by field potential recordings also, suggesting that the present oscillation seems to reflect a network property.
Collapse
Affiliation(s)
- H Yoshimura
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 2001. [PMID: 11404402 DOI: 10.1523/jneurosci.21-12-04173.2001] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The generation of high-frequency spike bursts ("complex spikes"), either spontaneously or in response to depolarizing stimuli applied to the soma, is a notable feature in intracellular recordings from hippocampal CA1 pyramidal cells (PCs) in vivo. There is compelling evidence that the bursts are intrinsically generated by summation of large spike afterdepolarizations (ADPs). Using intracellular recordings in adult rat hippocampal slices, we show that intrinsic burst-firing in CA1 PCs is strongly dependent on the extracellular concentration of Ca(2+) ([Ca(2+)](o)). Thus, lowering [Ca(2+)](o) (by equimolar substitution with Mn(2+) or Mg(2+)) induced intrinsic bursting in nonbursters, whereas raising [Ca(2+)](o) suppressed intrinsic bursting in native bursters. The induction of intrinsic bursting by low [Ca(2+)](o) was associated with enlargement of the spike ADP. Low [Ca(2+)](o)-induced intrinsic bursts and their underlying ADPs were suppressed by drugs that reduce the persistent Na(+) current (I(NaP)), indicating that this current mediates the slow burst depolarization. Blocking Ca(2+)-activated K(+) currents with extracellular Ni(2+) or intracellular chelation of Ca(2+) did not induce intrinsic bursting. This and other evidence suggest that lowering [Ca(2+)](o) may induce intrinsic bursting by augmenting I(NaP). Because repetitive neuronal activity in the hippocampus is associated with marked decreases in [Ca(2+)](o), the regulation of intrinsic bursting by extracellular Ca(2+) may provide a mechanism for preferential recruitment of this firing mode during certain forms of hippocampal activation.
Collapse
|
16
|
Aoyagi T, Terada N, Kang Y, Kaneko T, Fukai T. A bursting mechanism of chattering neurons based on Ca2+-dependent cationic currents. Neurocomputing 2001. [DOI: 10.1016/s0925-2312(01)00540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Yoshimura H, Kato N. Diverse roles of intracellular cAMP in early synaptic modifications in the rat visual cortex. J Physiol 2000; 522 Pt 3:417-26. [PMID: 10713966 PMCID: PMC2269762 DOI: 10.1111/j.1469-7793.2000.t01-1-00417.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1999] [Accepted: 11/08/1999] [Indexed: 11/28/2022] Open
Abstract
1. The effects of increasing intracellular cAMP concentration were studied using photolysis of caged-cAMP in layer II/III neurons recorded intracellularly in visual cortex slices. The recorded neurons exhibited either after-hyperpolarization (AHP) or after-depolarization (ADP) in response to depolarizing current injection. Depending on which afterpotential appeared, the effects of photolysis differed. 2. In ADP-generating neurons, photolysis of caged-cAMP induced long-lasting depression of postsynaptic potentials (PSPs) evoked by grey matter (GM) stimulation, without altering the size of the ADP. In AHP-generating neurons, photolysis induced long-lasting potentiation of GM-evoked PSPs, with the size of the AHP reduced in the same time course. White matter (WM)-evoked PSPs showed no change. 3. Extracellular application of bromo-cAMP depressed both GM- and WM-evoked PSPs in ADP- and AHP-generating neurons. This depression may be due to presynaptic effects of cAMP, since photolysis-evoked postsynaptic increase in cAMP concentration never induced depression of PSPs in AHP-generating neurons. This depression was reversible but continued until bromo-cAMP was washed out, while ADP and AHP in the postsynaptic neurons were depressed only temporarily and returned to the pre-application level even in the continued presence of bromo-cAMP. 4. Bromo-cAMP was applied following photolysis of caged-cAMP. In the neurons in which the photolysis potentiated GM-evoked PSPs this potentiation was cancelled out by bromo-cAMP (depotentiation). In the other neurons, PSPs were depressed only reversibly. 5. Thus, a postsynaptic increase in cAMP concentration exerts more diverse effects on synaptic plasticity than thus far reported, depending on the difference in neuronal intrinsic excitability and probably on how much, or the way in which, cAMP concentration is increased.
Collapse
Affiliation(s)
- H Yoshimura
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Japan
| | | |
Collapse
|
18
|
Okada T, Kang Y, Ohmori H. Li+ and muscarine cooperatively enhance the cationic tail current in rat cortical pyramidal cells. Eur J Neurosci 1999; 11:2397-402. [PMID: 10383629 DOI: 10.1046/j.1460-9568.1999.00657.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Li+ is known to facilitate the onset of status epilepticus induced by cholinergic stimulation, although the underlying mechanisms are not clear. Under whole-cell current clamp conditions with a CsCl-based internal solution, cortical pyramidal cells display a single plateau-spike followed by a slow depolarizing afterpotential (DAP) in response to injection of a short current pulse. However, the same current pulse generated a burst of plateau-spikes after application of Li+ (2 mM) and muscarine (10 microM). As similar bursts of plateau-spikes were generated through an enhancement of the slow DAP when [K+]o was raised (Kang et al. 1998), we have investigated the effects of Li+ and muscarine on the Ca2+-dependent cationic current underlying the slow DAP, measured as the slow tail current evoked after the offset of depolarizing voltage pulses. Muscarine enhanced the amplitudes of both early and late components of the slow tail current. This effect of muscarine was markedly potentiated by Li+, while Li+ by itself affected the slow tail current only slightly. Intracellular application of heparin (0.5-1 mg/mL) suppressed the effect of muscarine in the presence of Li+. These results suggest that inositol-trisphosphate-induced Ca2+ release is involved in the cooperative enhancement of the slow tail current, and this cooperation may be one of the mechanisms underlying facilitation of the onset of epilepsy induced by these agents.
Collapse
Affiliation(s)
- T Okada
- Department of Physiology, Faculty of Medicine, Kyoto University, 606 Japan
| | | | | |
Collapse
|
19
|
Haj-Dahmane S, Andrade R. Muscarinic receptors regulate two different calcium-dependent non-selective cation currents in rat prefrontal cortex. Eur J Neurosci 1999; 11:1973-80. [PMID: 10336666 DOI: 10.1046/j.1460-9568.1999.00612.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyramidal neurons of layer V in rat prefrontal cortex display a prominent fast afterdepolarization (fADP) and a muscarinic-induced slow afterdepolarization (sADP). We have shown previously that both of these ADPs are produced by the activation of calcium-dependent non-selective cation currents. In the present report we examine whether they represent two distinct currents. In most pyramidal neurons recorded with caesium gluconate-based intracellular solution, a calcium spike is followed by a fast decaying inward aftercurrent (IfADP). The decay of IfADP is monoexponential with a time constant (t) of approximately 35 ms. Administration of carbachol (10-30 microm) increases the time constant of this decay by approximately 80% and induces the appearance of a much slower inward aftercurrent (IsADP). IfADP recorded in control conditions and in the presence of carbachol increases linearly with membrane hyperpolarization. In contrast, the carbachol-induced IsADP decreases with membrane hyperpolarization. When the sodium driving force across the cell membrane was reduced, IfADP was found to reverse at around -40 mV whereas IsADP remain inward over the same voltage range tested. Finally, bath administration of flufenamic acid (100 microm-1 mm) selectively blocks the carbachol-induced IsADP without a significant effect on the amplitude of IfADP. These differences in the electrical and pharmacological properties of IfADP and IsADP suggest that they were mediated by two distinct non-selective cation currents.
Collapse
Affiliation(s)
- S Haj-Dahmane
- Department of Psychiatry and Behaviroural Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|