1
|
Fortier-Lebel N, Nakajima T. Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion. Neuroscientist 2024:10738584241263758. [PMID: 39041460 DOI: 10.1177/10738584241263758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.
Collapse
Affiliation(s)
- Nicolas Fortier-Lebel
- Département de neurosciences, Département de médecine, Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, Canada
| | - Toshi Nakajima
- Department of Physiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
2
|
Lowe KA, Zinke W, Cosman JD, Schall JD. Frontal eye fields in macaque monkeys: prefrontal and premotor contributions to visually guided saccades. Cereb Cortex 2022; 32:5083-5107. [PMID: 35176752 PMCID: PMC9989351 DOI: 10.1093/cercor/bhab533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal spiking was sampled from the frontal eye field (FEF) and from the rostral part of area 6 that reaches to the superior limb of the arcuate sulcus, dorsal to the arcuate spur when present (F2vr) in macaque monkeys performing memory-guided saccades and visually guided saccades for visual search. Neuronal spiking modulation in F2vr resembled that in FEF in many but not all respects. A new consensus clustering algorithm of neuronal modulation patterns revealed that F2vr and FEF contain a greater variety of modulation patterns than previously reported. The areas differ in the proportions of visuomotor neuron types, the proportions of neurons discriminating a target from distractors during visual search, and the consistency of modulation patterns across tasks. However, between F2vr and FEF we found no difference in the magnitude of delay period activity, the timing of the peak discharge rate relative to saccades, or the time of search target selection. The observed similarities and differences between the 2 cortical regions contribute to other work establishing the organization of eye fields in the frontal lobe and may help explain why FEF in monkeys is identified within granular prefrontal area 8 but in humans is identified within agranular premotor area 6.
Collapse
Affiliation(s)
- Kaleb A Lowe
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Wolf Zinke
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Joshua D Cosman
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Jeffrey D Schall
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| |
Collapse
|
3
|
Variable Interhemispheric Asymmetry in Layer V of the Supplementary Motor Area following Cervical Hemisection in Adult Macaque Monkeys. eNeuro 2020; 7:ENEURO.0280-20.2020. [PMID: 32917794 PMCID: PMC7548435 DOI: 10.1523/eneuro.0280-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 01/13/2023] Open
Abstract
Motor cortical areas from both hemispheres play a role during functional recovery after a unilateral spinal cord injury (SCI). However, little is known about the morphologic and phenotypical differences that a SCI could trigger in corticospinal (CS) neurons of the ipsilesional and contralesional hemisphere. Using an SMI-32 antibody which specifically labeled pyramidal neurons in cortical Layers V, we investigated the impact of a unilateral cervical cord lesion on the rostral part (F6) and caudal part (F3) of the supplementary motor area (SMA) in both hemispheres of eight adult macaque monkeys compared with four intact control monkeys. We observed in F3 (but not in F6) interindividual variable and adaptive interhemispheric asymmetries of SMI-32-positive Layer V neuronal density and dendritic arborization, which are strongly correlated with the extent of the SCI as well as the duration of functional recovery, but not with the extent (percentage) of functional recovery.
Collapse
|
4
|
Ninomiya T, Inoue KI, Hoshi E, Takada M. Layer specificity of inputs from supplementary motor area and dorsal premotor cortex to primary motor cortex in macaque monkeys. Sci Rep 2019; 9:18230. [PMID: 31796773 PMCID: PMC6890803 DOI: 10.1038/s41598-019-54220-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/26/2019] [Indexed: 11/23/2022] Open
Abstract
The primate frontal lobe processes diverse motor information in parallel through multiple motor-related areas. For example, the supplementary motor area (SMA) is mainly involved in internally-triggered movements, whereas the premotor cortex (PM) is highly responsible for externally-guided movements. The primary motor cortex (M1) deals with both aspects of movements to execute a single motor behavior. To elucidate how the cortical motor system is structured to process a variety of information, the laminar distribution patterns of signals were examined between SMA and M1, or PM and M1 in macaque monkeys by using dual anterograde tract-tracing. Dense terminal labeling was observed in layers 1 and upper 2/3 of M1 after one tracer injection into SMA, another tracer injection into the dorsal division of PM resulted in prominent labeling in the deeper portion of layer 2/3. Weaker labeling was also visible in layer 5 in both cases. On the other hand, inputs from M1 terminated in both the superficial and the deep layers of SMA and PM. The present data indicate that distinct types of motor information are arranged in M1 in a layer-specific fashion to be orchestrated through a microcircuit within M1.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan. .,Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, 102-0076, Japan. .,Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, 102-0076, Japan
| | - Eiji Hoshi
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, 102-0076, Japan.,Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.,Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, 102-0076, Japan
| |
Collapse
|
5
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Goulas A, Stiers P, Hutchison RM, Everling S, Petrides M, Margulies DS. Intrinsic functional architecture of the macaque dorsal and ventral lateral frontal cortex. J Neurophysiol 2017; 117:1084-1099. [PMID: 28003408 PMCID: PMC5340881 DOI: 10.1152/jn.00486.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/17/2016] [Indexed: 11/22/2022] Open
Abstract
Investigations of the cellular and connectional organization of the lateral frontal cortex (LFC) of the macaque monkey provide indispensable knowledge for generating hypotheses about the human LFC. However, despite numerous investigations, there are still debates on the organization of this brain region. In vivo neuroimaging techniques such as resting-state functional magnetic resonance imaging (fMRI) can be used to define the functional circuitry of brain areas, producing results largely consistent with gold-standard invasive tract-tracing techniques and offering the opportunity for cross-species comparisons within the same modality. Our results using resting-state fMRI from macaque monkeys to uncover the intrinsic functional architecture of the LFC corroborate previous findings and inform current debates. Specifically, within the dorsal LFC, we show that 1) the region along the midline and anterior to the superior arcuate sulcus is divided in two areas separated by the posterior supraprincipal dimple, 2) the cytoarchitectonically defined area 6DC/F2 contains two connectional divisions, and 3) a distinct area occupies the cortex around the spur of the arcuate sulcus, updating what was previously proposed to be the border between dorsal and ventral motor/premotor areas. Within the ventral LFC, the derived parcellation clearly suggests the presence of distinct areas: 1) an area with a somatomotor/orofacial connectional signature (putative area 44), 2) an area with an oculomotor connectional signature (putative frontal eye fields), and 3) premotor areas possibly hosting laryngeal and arm representations. Our results illustrate in detail the intrinsic functional architecture of the macaque LFC, thus providing valuable evidence for debates on its organization.NEW & NOTEWORTHY Resting-state functional MRI is used as a complementary method to invasive techniques to inform current debates on the organization of the macaque lateral frontal cortex. Given that the macaque cortex serves as a model for the human cortex, our results help generate more fine-tuned hypothesis for the organization of the human lateral frontal cortex.
Collapse
Affiliation(s)
- Alexandros Goulas
- Max Planck Research Group Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany;
| | - Peter Stiers
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | | | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; and
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel S Margulies
- Max Planck Research Group Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J Neurosci 2014; 34:5355-69. [PMID: 24719113 DOI: 10.1523/jneurosci.5127-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated whether a frontal area that lacks granular layer IV, supplementary eye field, exhibits features of laminar circuitry similar to those observed in primary sensory areas. We report, for the first time, visually evoked local field potentials (LFPs) and spiking activity recorded simultaneously across all layers of agranular frontal cortex using linear electrode arrays. We calculated current source density from the LFPs and compared the laminar organization of evolving sinks to those reported in sensory areas. Simultaneous, transient synaptic current sinks appeared first in layers III and V followed by more prolonged current sinks in layers I/II and VI. We also found no variation of single- or multi-unit visual response latency across layers, and putative pyramidal neurons and interneurons displayed similar response latencies. Many units exhibited pronounced discharge suppression that was strongest in superficial relative to deep layers. Maximum discharge suppression also occurred later in superficial than in deep layers. These results are discussed in the context of the canonical cortical microcircuit model originally formulated to describe early sensory cortex. The data indicate that agranular cortex resembles sensory areas in certain respects, but the cortical microcircuit is modified in nontrivial ways.
Collapse
|
8
|
Wong C, Chabot N, Kok MA, Lomber SG. Modified Areal Cartography in Auditory Cortex Following Early- and Late-Onset Deafness. Cereb Cortex 2013; 24:1778-92. [DOI: 10.1093/cercor/bht026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Abstract
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Baizer JS, Paolone NA, Witelson SF. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 2011; 1382:45-56. [DOI: 10.1016/j.brainres.2011.01.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 12/25/2022]
|
11
|
Cruz-Rizzolo RJ, De Lima MAX, Ervolino E, de Oliveira JA, Casatti CA. Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey. BMC Neurosci 2011; 12:6. [PMID: 21232115 PMCID: PMC3030535 DOI: 10.1186/1471-2202-12-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms.
Collapse
Affiliation(s)
- Roelf J Cruz-Rizzolo
- Campus de Araçatuba, UNESP - Univ Estadual Paulista, Departamento de Ciências Básicas, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Belmalih A, Borra E, Contini M, Gerbella M, Rozzi S, Luppino G. Multimodal architectonic subdivision of the rostral part (area F5) of the macaque ventral premotor cortex. J Comp Neurol 2009; 512:183-217. [DOI: 10.1002/cne.21892] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Burish MJ, Stepniewska I, Kaas JH. Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus). J Comp Neurol 2008; 507:1151-68. [PMID: 18175349 DOI: 10.1002/cne.21596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the organization of frontoparietal cortex in the common marmoset (Callithrix jacchus) by using intracortical microstimulation and an architectonic analysis. Primary motor cortex (M1) was identified as an area that evoked visible movements at low levels of electric current and had a full body representation of the contralateral musculature. Primary motor cortex represented the contralateral body from hindlimb to face in a mediolateral sequence, with individual movements such as jaw and wrist represented in multiple nearby locations. Primary motor cortex was coextensive with an agranular area of cortex marked by a distinct layer V of large pyramidal cells that gradually decreased in size toward the rostral portion of the area and was more homogenous in appearance than other New World primates. In addition to M1, stimulation also evoked movements from several other areas of frontoparietal cortex. Caudal to primary motor cortex, area 3a was identified as a thin strip of cortex where movements could be evoked at thresholds similar to those in M1. Rostral to primary motor cortex, supplementary motor cortex and premotor areas responded to higher stimulation currents and had smaller layer V pyramidal cells. Other areas evoking movements included primary somatosensory cortex (area 3b), two lateral somatosensory areas (areas PV and S2), and a caudal somatosensory area. Our results suggest that frontoparietal cortex in marmosets is organized in a similar fashion to that of other New World primates.
Collapse
Affiliation(s)
- Mark J Burish
- Neuroscience Graduate Program and Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | |
Collapse
|
14
|
Abstract
Grasping an object requires processing visuospatial information about the extrinsic features (spatial location) and intrinsic features (size, shape, orientation) of the object. Accordingly, manual prehension has been subdivided into a reach component, guiding the hand toward the object on the basis of its extrinsic features, and a grasp component, preshaping the fingers around the center of mass of the object on the basis of its intrinsic features. In neural terms, this distinction has been linked to a dedicated dorsomedial "reaching" circuit and a dorsolateral "grasping" circuit that process extrinsic and intrinsic features, linking occipital areas via parietal regions with the dorsal and ventral premotor cortex, respectively. We have tested an alternative possibility, namely that the relative contribution of the two circuits is related to the degree of on-line control required by the prehension movement. We used dynamic causal modeling of functional magnetic resonance imaging time series to assess how parieto-frontal connectivity is modulated by planning and executing prehension movements toward objects of different size and width. This experimental manipulation evoked different movements, with different planning and execution phases for the different objects. Crucially, grasping large objects increased inter-regional couplings within the dorsomedial circuit, whereas grasping small objects increased the effective connectivity of a mainly dorsolateral circuit, with a degree of overlap between these circuits. These results argue against the presence of dedicated cerebral circuits for reaching and grasping, suggesting that the contributions of the dorsolateral and the dorsomedial circuits are a function of the degree of on-line control required by the movement.
Collapse
|
15
|
Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G. Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey. Brain Struct Funct 2007; 212:269-301. [PMID: 17899184 DOI: 10.1007/s00429-007-0158-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
The caudal part of the macaque ventrolateral prefrontal cortex (VLPF) is part of several functionally distinct domains. In the present study we combined a cyto- and a myeloarchitectonic approach with a chemoarchitectonic approach based on the distribution of SMI-32 and Calbindin immunoreactivity, to determine the number and extent of architectonically distinct areas occupying this region. Several architectonically distinct areas, completely or partially located in the caudal VLPF, were identified. Two areas are almost completely limited to the anterior bank of the inferior arcuate sulcus, a dorsal one-8/FEF-which extends also more dorsally and should represent the architectonic counterpart of the frontal eye field, and a ventral one-45B-which occupies the ventral half of the bank. Two other areas occupy the ventral prearcuate convexity cortex, a caudal one-area 8r-located just rostral to area 8/FEF and a rostral one-area 45A-which extends as far as the inferior frontal sulcus. Area 45A borders dorsally, in the proximity of the principal sulcus, with area 46 and, ventrally, with area 12. The present data show the existence of two distinct prearcuate convexity areas (8r and 45A), extending other architectonic subdivisions of the caudal VLPF and providing a new, multiarchitectonic frame of reference for this region. The present architectonic data, together with other functional and connectional data, suggest that areas 8/FEF, 45B and 8r are part of the oculomotor frontal cortex, while area 45A is a distinct entity of the VLPF domain involved in high-order processing of nonspatial information.
Collapse
Affiliation(s)
- Marzio Gerbella
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di Parma, Via Volturno 39, 43100, Parma, Italy
| | | | | | | | | |
Collapse
|
16
|
Remple MS, Reed JL, Stepniewska I, Kaas JH. Organization of frontoparietal cortex in the tree shrew (Tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. J Comp Neurol 2006; 497:133-54. [PMID: 16680767 DOI: 10.1002/cne.20975] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite extensive investigation of the motor cortex of primates, little is known about the organization of motor cortex in tree shrews, one of their closest living relatives. We investigated the organization of frontoparietal cortex in Belanger's tree shrews (Tupaia belangeri) by using intracortical microstimulation (ICMS), corticospinal tracing, and detailed histological analysis. The results provide evidence for the subdivision of tree shrew frontoparietal cortex into seven distinct areas (five are newly identified), including two motor fields (M1 and M2) and five somatosensory fields (3a, 3b, S2, PV, and SC). The types of movements evoked in M1 and M2 were similar, but M2 required higher currents to elicit movements and had few connections to the cervical spinal cord and distinctive cyto- and immunoarchitecture. The borders between M1 and the anterior somatosensory regions (3a and 3b) were identified primarily from histological analysis, because thresholds were similar between these regions, and differences in corticospinal neuron distribution were subtle. The caudal (SC) and lateral (S2 and PV) somatosensory fields were identified based on differences in architecture and distribution of corticospinal neurons. Myelin-dense modules were identified in lateral cortex, in the expected location of the oral, forelimb, and hindlimb representations of S2, and possibly PV. Evidence for a complex primate-like array of motor fields is lacking in tree shrews, but their motor cortex shares a number of basic features with that of primates, which are not found in more distantly related species, such as rats.
Collapse
Affiliation(s)
- Michael S Remple
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | | | |
Collapse
|
17
|
Gregoriou GG, Borra E, Matelli M, Luppino G. Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comp Neurol 2006; 496:422-51. [PMID: 16566007 DOI: 10.1002/cne.20933] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inferior parietal lobule (IPL) of the macaque monkey constitutes the largest part of Brodmann's area 7. Functional, connectional, and architectonic data have indicated that area 7 is comprised of several distinct sectors located in the lateral bank of the intraparietal sulcus and on the IPL cortical convexity. To date, however, attempts to parcellate the IPL based on architectonic criteria have been controversial, and correlation between anatomical and functional data has been inadequate. In the present study we aimed to determine the number and extent of cytoarchitectonically distinct areas occupying the IPL convexity. To this end, we studied the cytoarchitecture and myeloarchitecture of this region in 28 hemispheres of 17 macaque monkeys. Four distinct areas were identified at different rostrocaudal levels along the IPL convexity and were defined as PF, PFG, PG, and Opt, with area PF corresponding to the rostralmost area and area Opt to the caudalmost one. All areas extend dorsally up to the lateral bank of the intraparietal sulcus, for about 1-2 mm. Areas PF, PFG, and PG border ventrally on opercular areas, whereas area Opt extends ventrally into the dorsal bank of the superior temporal sulcus. Analysis of the distribution of SMI-32 immunoreactivity confirmed the proposed parcellation scheme. Some additional connectional data showed that the four areas project in a differential way to the premotor cortex. The present data challenge the current widely used subdivision of the IPL convexity into two areas, confirming, but also extending the subdivision originally proposed by Pandya and Seltzer.
Collapse
Affiliation(s)
- Georgia G Gregoriou
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Universita di Parma, Italy.
| | | | | | | |
Collapse
|
18
|
Fuentes-Santamaria V, Stein BE, McHaffie JG. Neurofilament proteins are preferentially expressed in descending output neurons of the cat the superior colliculus: A study using SMI-32. Neuroscience 2006; 138:55-68. [PMID: 16426768 DOI: 10.1016/j.neuroscience.2005.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 10/22/2005] [Accepted: 11/12/2005] [Indexed: 11/17/2022]
Abstract
Physiological studies indicate that the output neurons in the multisensory (i.e. intermediate and deep) laminae of the cat superior colliculus receive converging information from widespread regions of the neuraxis, integrate this information, and then relay the product to regions of the brainstem involved in the control of head and eye movements. Yet, an understanding of the neuroanatomy of these converging afferents has been hampered because many terminals contact distal dendrites that are difficult to label with the neurochemical markers generally used to visualize superior colliculus output neurons. Here we show that the SMI-32 antibody, directed at the non-phosphorylated epitopes of high molecular weight neurofilament proteins, is an effective marker for these superior colliculus output neurons. It is also one that can label their distal dendrites. Superior colliculus sections processed for SMI-32 revealed numerous labeled neurons with varying morphologies within the deep laminae. In contrast, few labeled neurons were observed in the superficial laminae. Neurons with large somata in the lateral aspects of the deep superior colliculus were particularly well labeled, and many of their secondary and tertiary dendrites were clearly visible. Injections of the fluorescent biotinylated dextran amine into the pontine reticular formation revealed that approximately 80% of the SMI-32 immunostained neurons also contained retrogradely transported biotinylated dextran amine, indicating that SMI-32 is a common cytoskeletal component expressed in descending output neurons. Superior colliculus output neurons also are known to express the calcium-binding protein parvalbumin, and many SMI-32 immunostained neurons also proved to be parvalbumin immunostained. These studies suggest that SMI-32 can serve as a useful immunohistochemical marker for detailing the somatic and dendritic morphology of superior colliculus output neurons and for facilitating evaluations of their input/output relationships.
Collapse
Affiliation(s)
- V Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | |
Collapse
|
19
|
Boussaoud D, Tanné-Gariépy J, Wannier T, Rouiller EM. Callosal connections of dorsal versus ventral premotor areas in the macaque monkey: a multiple retrograde tracing study. BMC Neurosci 2005; 6:67. [PMID: 16309550 PMCID: PMC1314896 DOI: 10.1186/1471-2202-6-67] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 11/25/2005] [Indexed: 11/10/2022] Open
Abstract
Background The lateral premotor cortex plays a crucial role in visually guided limb movements. It is divided into two main regions, the dorsal (PMd) and ventral (PMv) areas, which are in turn subdivided into functionally and anatomically distinct rostral (PMd-r and PMv-r) and caudal (PMd-c and PMv-c) sub-regions. We analyzed the callosal inputs to these premotor subdivisions following 23 injections of retrograde tracers in eight macaque monkeys. In each monkey, 2–4 distinct tracers were injected in different areas allowing direct comparisons of callosal connectivity in the same brain. Results Based on large injections covering the entire extent of the corresponding PM area, we found that each area is strongly connected with its counterpart in the opposite hemisphere. Callosal connectivity with the other premotor areas, the primary motor cortex, prefrontal cortex and somatosensory cortex varied from one area to another. The most extensive callosal inputs terminate in PMd-r and PMd-c, with PMd-r strongly connected with prefrontal cortex. Callosal inputs to PMv-c are more extensive than those to PMv-r, whose connections are restricted to its counterpart area. Quantitative analysis of labelled cells confirms these general findings, and allows an assessment of the relative strength of callosal inputs. Conclusion PMd-r and PMv-r receive their strongest callosal inputs from their respective counterpart areas, whereas PMd-c and PMv-c receive strong inputs from heterotopic areas as well (namely from PMd-r and PMv-r, respectively). Finally, PMd-r stands out as the lateral premotor area with the strongest inputs from the prefrontal cortex, and only the PMd-c and PMv-c receive weak callosal inputs from M1.
Collapse
Affiliation(s)
- Driss Boussaoud
- Institut de Neurosciences Cognitives de la Méditerranée, INCM, UMR 6193, CNRS, Université de la Méditerranée, 31 Ch. Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Judith Tanné-Gariépy
- Institut de Neurosciences Cognitives de la Méditerranée, INCM, UMR 6193, CNRS, Université de la Méditerranée, 31 Ch. Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Thierry Wannier
- Unit of Physiology and Program in Neurosciences, Department of Medicine, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland
- Brain Research Institute, Dept. Neuromorphology, University and ETH Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Eric M Rouiller
- Unit of Physiology and Program in Neurosciences, Department of Medicine, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Luppino G, Ben Hamed S, Gamberini M, Matelli M, Galletti C. Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 2005; 21:3056-76. [PMID: 15978016 DOI: 10.1111/j.1460-9568.2005.04149.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anterior wall of the parieto-occipital sulcus (POs) of the macaque monkey, classically considered as part of Brodmann's area 19, contains two functionally distinct areas: a ventral, purely visual area, V6, and a dorsal area, V6A, containing visual neurons and neurons related to the control of arm movements. The aim of this study was to establish whether areas V6 and V6A, so far identified only on a functional basis, have a cytoarchitectonic counterpart. The cytoarchitectonic analysis of 13 hemispheres from ten macaque brains, cut along different planes of section, showed that the anterior wall of the POs contains three distinct areas. One is located in the ventralmost part of the wall, another in the dorsalmost part of the wall, and the third occupies an intermediate position. The ventralmost region displays architectonic features typical of the occipital cytoarchitectonic domain, whereas the two dorsal areas display architectonic features typical of the posterior parietal cortex. Analysis of myeloarchitecture and of the distribution of SMI-32 immunoreactivity confirmed the cytoarchitectonic parcellation. Correlation of cytoarchitectonic maps with functional and hodological data strongly suggests that the ventral region corresponds to area V6, whereas the other two regions correspond to different subsectors of V6A, here named V6Av and V6Ad, respectively. The present data are in line with electrophysiological and hodological data, which suggest that area V6 is a classic extrastriate area, whereas V6A is an area of the posterior parietal cortex. They also suggest that V6A includes two separate cortical subdivisions, a view supported by preliminary functional and hodological data that needs further confirmation.
Collapse
Affiliation(s)
- Giuseppe Luppino
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di Parma, Via Volturno 39, I-43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
21
|
Ashwell KWS, Zhang LL, Marotte LR. Cyto- and Chemoarchitecture of the Cortex of the Tammar Wallaby (Macropuseugenii): Areal Organization. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:114-36. [PMID: 15942162 DOI: 10.1159/000086230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
We have examined the cyto- and chemoarchitecture of the isocortex of a diprotodontid marsupial, the tammar wallaby (Macropus eugenii), using Nissl staining in combination with enzyme histochemical (acetylcholinesterase - AChE, NADPH-diaphorase - NADPHd, cytochrome oxidase) and immunohistochemical (non-phosphorylated neurofilament - SMI-32) markers. The primary sensory cortex showed distinctive patterns of reactivity in cytochrome oxidase, acetylcholinesterase and NADPH diaphorase. For example, in AChE material, S1 showed a heterogeneous appearance, with regions exhibiting a double layer of AChE activity (layers II and IV) adjacent to poorly reactive regions. In NADPHd preparations, activity in S1 was strongest in layers I to IV although, as in AChE material, there were consistent patches of reduced NADPHd activity which corresponded to poorly reactive regions in the AChE sections. Each of the primary sensory areas of the isocortex showed a different pattern of distribution of SMI-32+ neurons. In V1, SMI-32+ neurons were distributed in two layers (III and V) throughout the tangential extent of that region. In S1, SMI-32+ neurons were concentrated in layer V, but large and discrete patches within S1 had additional SMI-32+ neurons in layer III. In primary auditory cortex there was a dense band of SMI-32+ neurons in layer V, with only occasional labeled pyramidal neurons in layer III. In the secondary sensory areas (V2 and S2) SMI-32+ neurons were either distributed in layers III and V (V2) or solely within layer V (S2). The tangential and laminar distribution of Type I reactive NADPH diaphorase neurons in the tammar wallaby cortex was more like that seen in eutheria than in polyprotodontid metatheria.
Collapse
Affiliation(s)
- K W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of NSW, Sydney, Australia.
| | | | | |
Collapse
|
22
|
Morel A, Liu J, Wannier T, Jeanmonod D, Rouiller EM. Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey. Eur J Neurosci 2005; 21:1007-29. [PMID: 15787707 DOI: 10.1111/j.1460-9568.2005.03921.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The premotor cortex of macaque monkeys is currently subdivided into at least six different subareas on the basis of structural, hodological and physiological criteria. To determine the degree of divergence/convergence of thalamocortical projections to mesial [supplementary motor area (SMA)-proper and pre-SMA] and lateral (PMd-c, PMd-r, PMv-c and PMv-r) premotor (PM) subareas, quantitative analyses were performed on the distribution of retrograde labelling after multiple tracer injections in the same animal. The results demonstrate that all PM and SMA subareas receive common inputs from several thalamic nuclei, but the relative contribution of these nuclei to thalamocortical projections differs. The largest difference occurs between subareas of SMA, with much greater contribution from the mediodorsal (MD) and area X, and a smaller contribution from the ventral lateral anterior (VLa) and ventral part of the ventral lateral posterior (VLpv) to pre-SMA than to SMA-proper. In PM, differences between subareas are less pronounced; in particular, all receive a significant contribution from MD, the ventral anterior (VApc) and area X. However, there are clear gradients, such as increasing projections from MD to rostral, from VLa and VLpv to caudal, and from dorsal VLp (VLpd) to dorsal premotor subareas. Intralaminar nuclei provide widespread projections to all premotor subareas. The degree of overlap between thalamocortical projections varies among different PM and SMA subareas and different sectors of the thalamus. These variations, which correspond to different origin and topography of thalamocortical projections, are discussed in relation to functional organizations at thalamic and cortical levels.
Collapse
Affiliation(s)
- Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, Sternwartstrasse 6, CH-8091 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Harkany T, Dobszay MB, Cayetanot F, Härtig W, Siegemund T, Aujard F, Mackie K. Redistribution of CB1 cannabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: A comparison between the gray mouse lemur (Microcebus murinus, primates) and rat. Neuroscience 2005; 135:595-609. [PMID: 16129564 DOI: 10.1016/j.neuroscience.2005.06.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/30/2022]
Abstract
Endocannabinoid signaling, mediated by presynaptic CB1 cannabinoid receptors on neurons, is fundamental for the maintenance of synaptic plasticity by modulating neurotransmitter release from axon terminals. In the rodent basal forebrain, CB1 cannabinoid receptor-like immunoreactivity is only harbored by a subpopulation of cholinergic projection neurons. However, endocannabinoid control of cholinergic output from the substantia innominata, coincident target innervation of cholinergic and CB1 cannabinoid receptor-containing afferents, and cholinergic regulation of endocannabinoid synthesis in the hippocampus suggest a significant cholinergic-endocannabinergic interplay. Given the functional importance of the cholinergic modulation of endocannabinoid signaling, here we studied CB1 cannabinoid receptor distribution in cholinergic basal forebrain territories and their cortical projection areas in a prosimian primate, the gray mouse lemur. Perisomatic CB1 cannabinoid receptor immunoreactivity was unequivocally present in non-cholinergic neurons of the olfactory tubercule, and in cholecystokinin-containing interneurons in layers 2/3 of the neocortex. Significantly, CB1 cannabinoid receptor-like immunoreactivity was localized to cholinergic perikarya in the magnocellular basal nucleus. However, cortical cholinergic terminals lacked detectable CB1 cannabinoid receptor levels. A dichotomy of CB1 cannabinoid receptor distribution in frontal (suprasylvian) and parietotemporal (subsylvian) cortices was apparent. In the frontal cortex, CB1 cannabinoid receptor-containing axons concentrated in layers 2/3 and layer 6, while layer 4 and layer 5 were essentially devoid of CB1 cannabinoid receptor immunoreactivity. In contrast, CB1 cannabinoid receptors decorated axons in all layers of the parietotemporal cortex with peak densities in layer 2 and layer 4. In the hippocampus, CB1 cannabinoid receptor-containing terminals concentrated around pyramidal cell somata and proximal dendrites in the CA1-CA3 areas, and granule cell dendrites in the molecular layer of the dentate gyrus. CB1 cannabinoid receptors frequently localized to inhibitory GABAergic terminals while leaving glutamatergic boutons unlabeled. Aging did not affect either the density or layer-specific distribution of CB1 cannabinoid receptor-immunoreactive processes. We concluded that organizing principles of CB1 cannabinoid receptor-containing neurons and their terminal fields within the basal forebrain are evolutionarily conserved between rodents and prosimian primates. In contrast, the areal expansion and cytoarchitectonic differentiation of neocortical subfields in primates is associated with differential cortical patterning of CB1 cannabinoid receptor-containing subcortical and intracortical afferents.
Collapse
Affiliation(s)
- T Harkany
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1:A1, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hassiotis M, Paxinos G, Ashwell KWS. Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 2004; 475:493-517. [PMID: 15236232 DOI: 10.1002/cne.20193] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have examined the topography of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, and nonphosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase (AChE) and NADPH diaphorase. Myelinated fibers terminating in layer IV of the cortex were abundant in the primary sensory cortical areas (areas S1, R, and PV of somatosensory cortex; primary visual cortex) as well as the frontal cortex. Parvalbumin immunoreactivity was particularly intense in the neuropil and somata of somatosensory regions (S1, R, and PV areas) but was poor in motor cortex. Immunoreactivity with the SMI-32 antibody was largely confined to a single sublayer of layer V pyramidal neurons in discrete subregions of the somatosensory, visual, and auditory cortices, as well as a large field in the frontal cortex (Fr1). Surprisingly, SMI-32 neurons were absent from the motor cortex. In AChE preparations, S1, R, V1, and A regions displayed intense reactivity in supragranular layers. Our findings indicate that there is substantial regional differentiation in the expanded frontal cortex of this monotreme. Although we agree with many of the boundaries identified by previous authors in this unusual mammal (Abbie [1940] J. Comp. Neurol. 72:429-467), we present an updated nomenclature for cortical areas that more accurately reflects findings from functional and chemoarchitectural studies.
Collapse
Affiliation(s)
- Maria Hassiotis
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, New South Wales 2052, Australia
| | | | | |
Collapse
|
25
|
Sherwood CC, Holloway RL, Erwin JM, Hof PR. Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans. BRAIN, BEHAVIOR AND EVOLUTION 2004; 63:82-106. [PMID: 14685003 DOI: 10.1159/000075673] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 08/27/2003] [Indexed: 11/19/2022]
Abstract
This study presents a comparative stereologic investigation of neurofilament protein- and calcium-binding protein-immunoreactive neurons within the region of orofacial representation of primary motor cortex (Brodmann's area 4) in several catarrhine primate species (Macaca fascicularis, Papio anubis, Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens). Results showed that the density of interneurons involved in vertical interlaminar processing (i.e., calbindin- and calretinin-immunoreactive neurons) as well pyramidal neurons that supply heavily-myelinated projections (i.e., neurofilament protein-immunoreactive neurons) are correlated with overall neuronal density, whereas interneurons making transcolumnar connections (i.e., parvalbumin-immunoreactive neurons) do not exhibit such a relationship. These results suggest that differential scaling rules apply to different neuronal subtypes depending on their functional role in cortical circuitry. For example, cortical columns across catarrhine species appear to involve a similar conserved network of intracolumnar inhibitory interconnections, as represented by the distribution of calbindin- and calretinin-immunoreactive neurons. The subpopulation of horizontally-oriented wide-arbor interneurons, on the other hand, increases in density relative to other interneuron subpopulations in large brains. Due to these scaling trends, the region of orofacial representation of primary motor cortex in great apes and humans is characterized by a greater proportion of neurons enriched in neurofilament protein and parvalbumin compared to the Old World monkeys examined. These modifications might contribute to the voluntary dexterous control of orofacial muscles in great ape and human communication.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
26
|
Marconi B, Genovesio A, Giannetti S, Molinari M, Caminiti R. Callosal connections of dorso-lateral premotor cortex. Eur J Neurosci 2003; 18:775-88. [PMID: 12925004 DOI: 10.1046/j.1460-9568.2003.02807.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.
Collapse
Affiliation(s)
- B Marconi
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
27
|
Bourne JA, Rosa MGP. Laminar expression of neurofilament protein in the superior colliculus of the marmoset monkey (Callithrix jacchus). Brain Res 2003; 973:142-5. [PMID: 12729963 DOI: 10.1016/s0006-8993(03)02527-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The expression profile of the monoclonal antibody SMI-32 was examined in the superior colliculus of adult marmosets. This antibody recognises subunits of the non- and dephosphorylated neurofilament protein, labelling predominantly neuronal perikarya and dendrites. The densest cellular label was observed in the intermediate layers (primarily, the stratum griseum intermediale), consisting of large multi- or bipolar neurones which were preferentially located within cytochrome oxidase-rich regions. The morphological characteristics of neurones showing heavy staining resemble those of extrinsic projection cells, suggesting a correlation between neurofilament content and axonal length.
Collapse
Affiliation(s)
- James A Bourne
- Department of Physiology, School of Biomedical Sciences, P.O. Box 13F, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
28
|
Raos V, Franchi G, Gallese V, Fogassi L. Somatotopic organization of the lateral part of area F2 (dorsal premotor cortex) of the macaque monkey. J Neurophysiol 2003; 89:1503-18. [PMID: 12626625 DOI: 10.1152/jn.00661.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The somatotopy of the lateral part of dorsal premotor area F2 has been studied by means of intracortical microstimulation and single neuron recording. The results show that most of this sector of F2 is excitable with low-intensity currents (3-40 microA) and that intracortical microstimulation evokes forelimb and trunk movements. Both proximal and distal forelimb movements are evoked in similar percentages. The proximal and distal forelimb representations partially overlap. However, proximal movements tend to be located more medially (laterally to the superior precentral dimple), whereas distal movements tend to be located more laterally (medially to the spur of the arcuate sulcus). The somatotopic organization demonstrated with microstimulation is confirmed by the similar somatotopic organization of active movements and of somatosensory properties revealed by single-neuron recording. The excitability and somatotopic organization of the lateral part of area F2 are discussed in relation to previous electrophysiological and anatomical findings. The involvement of the distal forelimb representation of area F2 in programming and controlling reaching to grasp movements is suggested.
Collapse
Affiliation(s)
- Vassilis Raos
- Istituto di Fisiologia Umana, Dipartimento di Psicologia, Università di Parma, 43100 Parma, Italy
| | | | | | | |
Collapse
|
29
|
Morel A, Loup F, Magnin M, Jeanmonod D. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 2002; 443:86-103. [PMID: 11793349 DOI: 10.1002/cne.10096] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of the calcium-binding proteins calbindin-D28K (CB), parvalbumin (PV) and calretinin (CR), and of the nonphosphorylated neurofilament protein (with SMI-32) was investigated in the human basal ganglia to identify anatomofunctional territories. In the striatum, gradients of neuropil immunostaining define four major territories: The first (T1) includes all but the rostroventral half of the putamen and is characterized by enhanced matriceal PV and SMI-32 immunoreactivity (-ir). The second territory (T2) encompasses most part of the caudate nucleus (Cd) and rostral putamen (PuT), which show enhanced matriceal CB-ir. The third and fourth territories (T3 and T4) comprise rostroventral parts of Cd and PuT characterized by complementary patch/matrix distributions of CB- and CR-ir, and the accumbens nucleus (Acb), respectively. The latter is separated into lateral (prominently enhanced in CB-ir) and medial (prominently enhanced in CR-ir) subdivisions. In the pallidum, parallel gradients also delimit four territories, T1 in the caudal half of external (GPe) and internal (GPi) divisions, characterized by enhanced PV- and SMI-32-ir; T2 in their rostral half, characterized by enhanced CB-ir; and T3 and T4 in their rostroventral pole and in the subpallidal area, respectively, both expressing CB- and CR-ir but with different intensities. The subthalamic nucleus (STh) shows contrasting patterns of dense PV-ir (sparing only the most medial part) and low CB-ir. Expression of CR-ir is relatively low, except in the medial, low PV-ir, part of the nucleus, whereas SMI-32-ir is moderate across the whole nucleus. The substantia nigra is characterized by complementary patterns of high neuropil CB- and SMI-32-ir in pars reticulata (SNr) and high CR-ir in pars compacta (SNc) and in the ventral tegmental area (VTA). The compartmentalization of calcium-binding proteins and SMI-32 in the human basal ganglia, in particular in the striatum and pallidum, delimits anatomofunctional territories that are of significance for functional imaging studies and target selection in stereotactic neurosurgery.
Collapse
Affiliation(s)
- Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
30
|
Liu J, Morel A, Wannier T, Rouiller EM. Origins of callosal projections to the supplementary motor area (SMA): a direct comparison between pre-SMA and SMA-proper in macaque monkeys. J Comp Neurol 2002; 443:71-85. [PMID: 11793348 DOI: 10.1002/cne.10087] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The two subdivisions of the supplementary motor area (SMA), the pre-SMA (rostrally) and SMA-proper (caudally), exhibit distinct functional properties and clear differences with respect to their connectivity with the spinal cord, the thalamus, and other homolateral motor cortical areas. The goal of the present study was to establish in monkeys whether these subdivisions also differ with regard to their callosal connectivity. Two fluorescent retrograde tracers (Fast Blue and Diamidino Yellow) were injected in each animal, one in the pre-SMA and the second in the SMA-proper. Tracer injections in the pre-SMA or in SMA-proper resulted in significant numbers of labeled neurons in the opposite SMA, premotor cortex (PM), cingulate motor areas (CMA), and cingulate gyrus. Labeled neurons in M1 were rare, being observed only after injection in the SMA-proper. The two subdivisions of the SMA differed in the proportion of labeled neurons found across areas providing their callosal inputs. The SMA-proper receives about half of its callosal inputs from its counterpart in the other hemisphere (42-65% across monkeys). A comparable proportion of neurons was found in the pre-SMA after injection in the opposite pre-SMA (32-47%). The pre-SMA receives more callosal inputs from the rostral halves of the dorsal PM, the ventral PM, and the CMA than from their caudal halves. In addition, the pre-SMA, but not the SMA-proper, receives callosal inputs from the prefrontal cortex. The SMA-proper receives more callosal inputs from the caudal halves of the dorsal PM and ventral PM than from their rostral halves. The two subdivisions of the SMA receive callosal inputs from the same cortical areas (except the prefrontal cortex and M1), but they differ with respect to the quantitative contribution of each area of origin. In conclusion, quantitative data now support the notion that pre-SMA receives more transcallosal inputs than the SMA-proper.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | | | | | | |
Collapse
|
31
|
Kollias SS, Alkadhi H, Jaermann T, Crelier G, Hepp-Reymond MC. Identification of multiple nonprimary motor cortical areas with simple movements. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:185-95. [PMID: 11690615 DOI: 10.1016/s0165-0173(01)00094-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human cortex reportedly contains at least five nonprimary motor areas: in the frontolateral convexity, the dorsal and ventral premotor cortex (PMd and PMv), and in the frontomesial wall, the presupplementary and supplementary motor areas (pre-SMA and SMA), and the rostral, dorsal and ventral cingulate areas (CMAr, CMAd, and CMAv). Activation of these regions in neuroimaging studies has been generally associated either with the performance of complex motor tasks or with reorganization occurring with motor recovery in the presence of pathology. Recent evidence from neuroimaging studies suggests that the same areas are activated with well controlled simple movements in healthy subjects providing support to the observation that their contribution may be more quantitative rather than exclusively specific to a certain aspect of motor behaviour. An important consequence of this observation is that activation of multiple nonprimary motor areas during simple motor tasks should not be considered unique to patients with upper or lower motoneuron lesions but rather as a normal physiological process.
Collapse
Affiliation(s)
- S S Kollias
- Institute of Neuroradiology, University Hospital of Zurich, Frauenklinikstrasse 10, CH 8091, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Abstract
We tested whether neuronal activity in the dorsal premotor cortex (PMd) reflected the orientation of selective spatial attention, as opposed to the target of a reaching movement, eye position and saccade direction. These four spatial variables were dissociated in two tasks, which both required that a monkey attend to a robot's location in order to know when to make a movement. However, the target of the reaching movement varied; it was the robot's location in one task, but a different location in the other task. Eye position was recorded, but not explicitly controlled. Of 199 PMd neurons sampled, 19% had activity related to eye position, and an overlapping 11% were related to saccade direction (totaling 24% of the PMd sample). Of the 152 PMd neurons that lacked oculomotor relationships, approximately 20% reflected the orientation of selective spatial attention. Attentional tuning may account, at least in part, for gaze-independent receptive fields and visuospatial, target or goal relationships in tasks involving stimulus-response incompatibility.
Collapse
Affiliation(s)
- M A Lebedev
- Laboratory of Systems Neuroscience, National Institute of Mental Health, 49 Convent Drive, Bldg. 49, Room B1EE17, MSC 4401, Bethesda MD 20892-4401, USA.
| | | |
Collapse
|