1
|
Sex dependent alterations in mitochondrial electron transport chain proteins following neonatal rat cerebral hypoxic-ischemia. J Bioenerg Biomembr 2016; 48:591-598. [PMID: 27683241 DOI: 10.1007/s10863-016-9678-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022]
Abstract
Males are more susceptible to brain mitochondrial bioenergetic dysfunction following neonatal cerebral hypoxic-ischemia (HI) than females. Mitochondrial biogenesis has been implicated in the cellular response to HI injury, but sex differences in biogenesis following HI have not been described. We tested the hypothesis that mitochondrial biogenesis or the expression of mitochondrial electron transport chain (ETC) proteins are differentially stimulated in the brains of 8 day old male and female rats one day following HI, and promoted by treatment with acetyl-L-carnitine (ALCAR). There were no sex differences in mitochondrial mass, as reflected by the ratio of mitochondrial to nuclear DNA (mtDNA/nDNA) and citrate synthase enzyme activity present one day following HI or sham surgery. There was an increase in mtDNA/nDNA, however, in the hypoxic and ischemic (ipsilateral) hemisphere after HI in both male and female brains at one day post-injury, which was suppressed by ALCAR. Citrate synthase activity was increased in the ipsilateral hemisphere of ALCAR treated male and female brain. Most importantly, the levels of representative mitochondrial proteins present in ETC complexes I, II and IV increased substantially one day following HI in female, but not male brain. This sex difference is consistent with the increase in the mitochondrial biogenesis-associated transcription factor NRF-2/GABPα following HI in females, in contrast to the decrease observed with males. In conclusion, the female sex-selective increase in ETC proteins following HI may at least partially explain the relative female resilience to mitochondrial respiratory impairment and neuronal death that occur after HI.
Collapse
|
2
|
Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 2014; 47:173-88. [PMID: 25293493 DOI: 10.1007/s10863-014-9583-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.
Collapse
Affiliation(s)
- Tyler G Demarest
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | |
Collapse
|
3
|
Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:3018-28. [PMID: 25245478 DOI: 10.1016/j.bbamcr.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 11/22/2022]
Abstract
Neuronal activity is highly dependent on energy metabolism. Nuclear respiratory factor 2 (NRF-2) tightly couples neuronal activity and energy metabolism by transcriptionally co-regulating all 13 subunits of an important energy-generating enzyme, cytochrome c oxidase (COX), as well as critical subunits of excitatory NMDA receptors. AMPA receptors are another major class of excitatory glutamatergic receptors that mediate most of the fast excitatory synaptic transmission in the brain. They are heterotetrameric proteins composed of various combinations of GluA1-4 subunits, with GluA2 being the most common one. We have previously shown that GluA2 (Gria2) is transcriptionally regulated by nuclear respiratory factor 1 (NRF-1) and specificity protein 4 (Sp4), which also regulate all subunits of COX. However, it was not known if NRF-2 also couples neuronal activity and energy metabolism by regulating subunits of the AMPA receptors. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate the expression of Gria2, but not of Gria1, Gria3, or Gria4 genes in neurons. By regulating the GluA2 subunit of the AMPA receptor, NRF-2 couples energy metabolism and neuronal activity at the transcriptional level through a concurrent and parallel mechanism with NRF-1 and Sp4.
Collapse
|
4
|
Sharma NL, Massie CE, Butter F, Mann M, Bon H, Ramos-Montoya A, Menon S, Stark R, Lamb AD, Scott HE, Warren AY, Neal DE, Mills IG. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Res 2014; 42:6256-69. [PMID: 24753418 PMCID: PMC4041454 DOI: 10.1093/nar/gku281] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Naomi L Sharma
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Department of Urology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Charlie E Massie
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Falk Butter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Helene Bon
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Antonio Ramos-Montoya
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Suraj Menon
- Department of Bioinformatics, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Rory Stark
- Department of Bioinformatics, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alastair D Lamb
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Helen E Scott
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anne Y Warren
- Department of Pathology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - David E Neal
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Department of Urology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Prostate Cancer Research Group, Centre for Molecular Medicine (Norway), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Gaustadalleen 21, Oslo N-0349, Norway Department of Cancer Prevention and Department of Urology, Oslo University Hospital, Oslo N-0349, Norway
| |
Collapse
|
5
|
Priya A, Johar K, Nair B, Wong-Riley MTT. Specificity protein 4 (Sp4) regulates the transcription of AMPA receptor subunit GluA2 (Gria2). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1196-206. [PMID: 24576410 DOI: 10.1016/j.bbamcr.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are important glutamatergic receptors mediating fast excitatory synaptic transmission in the brain. The regulation of the four subunits of AMPA receptors, GluA1-4, is poorly understood. Excitatory synaptic transmission is highly energy-demanding, and this energy is derived mainly from the oxidative pathway. Recently, we found that specificity factor regulates all subunits of cytochrome c oxidase (COX), a critical energy-generating enzyme. COX is also regulated by nuclear respiratory factor 1 (NRF-1), which transcriptionally controls the Gria2 (GluA2) gene of AMPA receptors. The goal of the present study was to test our hypothesis that Sp-factors (Sp1, Sp3, and/or Sp4) also regulate AMPA subunit genes. If so, we wish to determine if Sp-factors and NRF-1 function via a complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel mechanism. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, we found that Sp4, but not Sp1 or Sp3, regulates the Gria2, but not Gria1, 3, or 4, subunit gene of the AMPA receptor in a concurrent and parallel manner with NRF-1. Thus, Sp4 and NRF-1 both mediate the tight coupling between neuronal activity and energy metabolism at the transcriptional level.
Collapse
Affiliation(s)
- Anusha Priya
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kaid Johar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Bindu Nair
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
6
|
Priya A, Johar K, Wong-Riley MTT. Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:48-58. [PMID: 23085505 DOI: 10.1016/j.bbamcr.2012.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/13/2012] [Accepted: 10/14/2012] [Indexed: 11/19/2022]
Abstract
Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level.
Collapse
Affiliation(s)
- Anusha Priya
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
7
|
Johar K, Priya A, Wong-Riley MTT. Regulation of Na(+)/K(+)-ATPase by nuclear respiratory factor 1: implication in the tight coupling of neuronal activity, energy generation, and energy consumption. J Biol Chem 2012; 287:40381-90. [PMID: 23048038 DOI: 10.1074/jbc.m112.414573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND NRF-1 regulates mediators of neuronal activity and energy generation. RESULTS NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. CONCLUSION NRF-1 functionally regulates mediators of energy consumption in neurons. SIGNIFICANCE NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
Collapse
Affiliation(s)
- Kaid Johar
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
8
|
Wong-Riley MTT. Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:283-304. [PMID: 22729863 DOI: 10.1007/978-1-4614-3573-0_12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transport chain, without which oxidative metabolism cannot be carried to completion. It is one of only four unique, bigenomic proteins in mammalian cells. The holoenzyme is made up of three mitochondrial-encoded and ten nuclear-encoded subunits in a 1:1 stoichiometry. The ten nuclear subunit genes are located in nine different chromosomes. The coordinated regulation of such a multisubunit, multichromosomal, bigenomic enzyme poses a challenge. It is especially so for neurons, whose mitochondria are widely distributed in extensive dendritic and axonal processes, resulting in the separation of the mitochondrial from the nuclear genome by great distances. Neuronal activity dictates COX activity that reflects protein amount, which, in turn, is regulated at the transcriptional level. All 13 COX transcripts are up- and downregulated by neuronal activity. The ten nuclear COX transcripts and those for Tfam and Tfbms important for mitochondrial COX transcripts are transcribed in the same transcription factory. Bigenomic regulation of all 13 transcripts is mediated by nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2). NRF-1, in addition, also regulates critical neurochemicals of glutamatergic synaptic transmission, thereby ensuring the tight coupling of energy metabolism and neuronal activity at the molecular level in neurons.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
9
|
Kim H, Kim SY, Nam S, Ronnett GV, Han HS, Moon C, Kim Y. Direct measurement of extracellular electrical signals from mammalian olfactory sensory neurons in planar triode devices. Analyst 2012; 137:2047-53. [PMID: 22434037 DOI: 10.1039/c2an16205a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An artificial nose was developed to mimic aspects of sensory transduction of the peripheral mammalian olfactory system. We directly cultured and differentiated rat olfactory sensory neurons (OSNs) on indium-tin oxide electrodes of planar triode substrates without a coupling agent. Direct voltage (~50 μV) and current (~250 nA) signals were measured simultaneously when OSNs on the planar triode substrates were exposed to odorant mixtures. The response signals were sensitive to the concentration of the odorant mixture, with a typical lifetime, shape, and adaptation profile as seen in responses upon repeated stimulation in vivo. We found that the rising time to the peak current was ~161 ms, while the signal back to baseline was in 1.8 s, which are in agreement with the natural intracellular electrophysiological responses. These results provide the first evidence that mature OSNs grown in a planar triode device are able to detect direct electrophysiological responses to odorants.
Collapse
Affiliation(s)
- Hwajeong Kim
- Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 2011; 88:204-19. [PMID: 20393586 DOI: 10.1139/y09-135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondria are unique cellular organelles that contain their own genome and, in conjunction with the nucleus, are able to transcribe and translate genes encoding components of the electron transport chain (ETC). To do so, the mitochondria must communicate with the nucleus via the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), which are produced as a byproduct of aerobic respiration within the mitochondria. Mitochondrial signaling is proposed to be altered in cancer cells, where the mitochondria are frequently found to harbor mutations within their genome and display altered functional characteristics leading to increased glycolysis. As signaling molecules, ROS oxidize and inhibit MAPK phosphatases resulting in enhanced proliferation and survival, an effect particularly advantageous to cancer cells. In terms of transcriptional regulation, ROS affect the phosphorylation, activation, oxidation, and DNA binding of transcription factors such as AP-1, NF-kappaB, p53, and HIF-1alpha, leading to changes in target gene expression. Increased ROS production by defective cancer cell mitochondria also results in the upregulation of the transcription factor Ets-1, a factor that has been increasingly associated with aggressive cancers.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
11
|
The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro 2010; 2:e00034. [PMID: 20517466 PMCID: PMC2874871 DOI: 10.1042/an20100005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/09/2010] [Accepted: 04/21/2010] [Indexed: 12/21/2022] Open
Abstract
Preserving mitochondrial mass, bioenergetic functions and ROS (reactive oxygen species) homoeostasis is key to neuronal differentiation and survival, as mitochondria produce most of the energy in the form of ATP to execute and maintain these cellular processes. In view of our previous studies showing that NeuroD6 promotes neuronal differentiation and survival on trophic factor withdrawal, combined with its ability to stimulate the mitochondrial biomass and to trigger comprehensive antiapoptotic and molecular chaperone responses, we investigated whether NeuroD6 could concomitantly modulate the mitochondrial biomass and ROS homoeostasis on oxidative stress mediated by serum deprivation. In the present study, we report a novel role of NeuroD6 as a regulator of ROS homoeostasis, resulting in enhanced tolerance to oxidative stress. Using a combination of flow cytometry, confocal fluorescence microscopy and mitochondrial fractionation, we found that NeuroD6 sustains mitochondrial mass, intracellular ATP levels and expression of specific subunits of respiratory complexes upon oxidative stress triggered by withdrawal of trophic factors. NeuroD6 also maintains the expression of nuclear-encoded transcription factors, known to regulate mitochondrial biogenesis, such as PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α), Tfam (transcription factor A, mitochondrial) and NRF-1 (nuclear respiratory factor-1). Finally, NeuroD6 triggers a comprehensive antioxidant response to endow PC12-ND6 cells with intracellular ROS scavenging capacity. The NeuroD6 effect is not limited to the classic induction of the ROS-scavenging enzymes, such as SOD2 (superoxide dismutase 2), GPx1 (glutathione peroxidase 1) and PRDX5 (peroxiredoxin 5), but also to the recently identified powerful ROS suppressors PGC-1α, PINK1 (phosphatase and tensin homologue-induced kinase 1) and SIRT1. Thus our collective results support the concept that the NeuroD6–PGC-1α–SIRT1 neuroprotective axis may be critical in co-ordinating the mitochondrial biomass with the antioxidant reserve to confer tolerance to oxidative stress.
Collapse
Key Words
- AD, Alzheimer’s disease
- AM, acetoxymethyl ester
- COX, cytochrome c oxidase
- DAPI, 4′,6-diamidino-2-phenylindole
- DIC, differential interference contrast
- Drp1, dynamin-related protein 1
- ETC, electron transfer chain
- GABP-α, GA-binding protein-α
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFP, green fluorescent protein
- GPx1, glutathione peroxidase 1
- HSP, heat-shock protein
- MMP, mitochondrial membrane potential
- MTG, MitoTracker® Green
- MTR, MitoTracker® Red
- Mfn2, mitofusin 2
- Mg-Gr, Magnesium Green
- NRF, nuclear respiratory factor
- NT-PGC-1α, N-terminal-truncated PGC-1α
- NeuroD family
- OPA1, optic atrophy 1
- OXPHOS, oxidative phosphorylation
- PDL, poly-d-lysine
- PGC-1α, peroxisome-proliferator-activated receptor γ co-activator-1α
- PINK1, phosphatase and tensin homologue-induced kinase 1
- PRDX5, peroxiredoxin 5
- ROS, reactive oxygen species
- SIRT1
- SOD, superoxide dismutase
- Tfam, transcription factor A, mitochondrial
- WGA, wheatgerm agglutinin
- bHLH, basic helix–loop–helix
- mitochondria
- mtDNA, mitochondrial DNA
- neuronal survival
- reactive oxygen species (ROS)
- transcriptional co-regulator peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α)
Collapse
|
12
|
Yu L, Yang SJ. AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 2010; 169:23-38. [PMID: 20438809 DOI: 10.1016/j.neuroscience.2010.04.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 11/17/2022]
Abstract
Nuclear respiratory factor 1 (NRF-1) is one of the key transcription factors implicated in mitochondrial biogenesis by activating the transcription of mitochondrial transcription factor A (mtTFA) and subunit genes of respiratory enzymes. NRF-1 transactivation activity can be enhanced by interaction with transcription coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). The expression of PGC-1alpha, NRF-1 and mtTFA in neurons is known to be tightly regulated by neuronal activity. However, the coupling signaling mechanism is poorly understood. Here, we use primary cultures of rat visual cortical neurons and a rat model of monocular deprivation (MD) to investigate whether AMP-activated protein kinase (AMPK) is implicated in mediating activity-dependent regulation of PGC-1alpha and NRF-1 expression in neurons. We find that KCl depolarization rapidly activates AMPK and significantly increases PGC-1alpha, NRF-1, and mtTFA levels with increased ATP production in neuron cultures. Similarly, pharmacological activation of AMPK with 5'-aminoimidazole-4-carboxamide riboside (AICAR) or resveratrol also markedly increases PGC-1alpha and NRF-1 mRNA levels in neuron cultures. All these effects can be completely blocked by an AMPK inhibitor, Compound C. Conversely, 1 week of MD significantly reduces AMPK phosphorylation and activity, dramatically down-regulates PGC-1alpha and NRF-1 expression in deprived primary visual cortex. Administration of resveratrol in vivo significantly activates AMPK activity and attenuates the effects of MD on mitochondria by significant increase in PGC-1alpha and NRF-1 levels, mitochondria amount, and coupled respiration. These results strongly indicate that AMPK is an essential upstream mediator that couples neuronal activity to mitochondrial energy metabolism by regulation of PGC-1alpha-NRF-1 pathway in neurons.
Collapse
Affiliation(s)
- L Yu
- Department of Pathology, Xi Jing Hospital, 4th Military Medical University, Xi'an, Shaanxi 710032, PR China
| | | |
Collapse
|
13
|
Liang HL, Dhar SS, Wong-Riley MTT. p38 mitogen-activated protein kinase and calcium channels mediate signaling in depolarization-induced activation of peroxisome proliferator-activated receptor gamma coactivator-1alpha in neurons. J Neurosci Res 2010; 88:640-9. [PMID: 19774670 DOI: 10.1002/jnr.22222] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) coactivates a number of transcription factors critical for mitochondrial biogenesis. Previously, we found that the expression of PGC-1alpha is governed by neuronal activity, but the signaling mechanism is poorly understood. The present study aimed at testing our hypothesis that depolarizing activation of PGC-1alpha in neurons is mediated by p38 mitogen-activated protein kinase (MAPK) and calcium channels. Cultured primary neurons and N2a cells were depolarized with 20 mM KCl for varying times, and increases in PGC-1alpha mRNA and protein levels were found after 0.5 and 1 hr of stimulation, respectively. These levels returned to those of controls after the withdrawal of KCl. Significantly, 15 min of KCl stimulation induced an up-regulation of both p38 MAPK and phosphorylated p38 MAPK that were suppressed by 30 min of pretreatment with SB203580, a blocker of p38 MAPK that also blocked the up-regulation of PGC-1alpha by KCl. Likewise, 30 min of pretreatment with nifedipine, a calcium channel blocker, also prevented the up-regulation of PGC-1alpha mRNA and proteins by KCl. Furthermore, a knockdown of p38 MAPK with small interference hairpin RNA significantly suppressed PGC-1alpha mRNA and protein levels. Our results indicate that both p38 MAPK and calcium play important roles in mediating signaling in depolarization-induced activation of PGC-1alpha at the protein and message levels in neurons.
Collapse
Affiliation(s)
- Huan Ling Liang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
14
|
Marín-García J. Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol 2009; 52:120-30. [PMID: 19857604 DOI: 10.1016/j.vph.2009.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria have been central in the development of some of the most important ideas in modern biology. Since the discovery that mitochondria have its own DNA and specific mutations and deletions were found in association with neuromuscular and heart diseases, as well as in aging, an extraordinary number of publications have followed, and the term mitochondrial medicine was coined. Recently, it has been found that thyroid hormone (TH) stimulates cardiac mitochondrial biogenesis increasing myocardial mitochondrial mass, mitochondrial respiration, oxidative phosphorylation (OXPHOS), enzyme activities, mitochondrial protein synthesis (by stimulation in a T3-dependent manner), cytochrome, phospholipid and mtDNA content. Also, TH therapy may modulate cardiac mitochondrial protein-import apparatus. To identify the sequence of events, molecules and signaling pathways that is activated by TH affecting mitochondrial structure, biogenesis and function further research is warranted.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA.
| |
Collapse
|
15
|
Dhar SS, Liang HL, Wong-Riley MTT. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1604-13. [PMID: 19615412 DOI: 10.1016/j.bbamcr.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/12/2009] [Accepted: 07/06/2009] [Indexed: 12/21/2022]
Abstract
Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.
Collapse
Affiliation(s)
- Shilpa S Dhar
- Department of Cell Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
16
|
Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 2009; 29:483-92. [PMID: 19144849 DOI: 10.1523/jneurosci.3704-08.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity and energy metabolism are tightly coupled processes. Regions high in neuronal activity, especially of the glutamatergic type, have high levels of cytochrome c oxidase (COX). Perturbations in neuronal activity affect the expressions of COX and glutamatergic NMDA receptor subunit 1 (NR1). The present study sought to test our hypothesis that the coupling extends to the transcriptional level, whereby NR1 and possibly other NR subunits and COX are coregulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), which regulates all COX subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutations, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Grin 1 (NR1), Grin 2b (NR2b) and COX subunit genes, but not of Grin2a and Grin3a genes. These transcripts were upregulated by KCl and downregulated by tetrodotoxin (TTX) in cultured primary neurons. However, silencing of NRF-1 with small interference RNA blocked the upregulation of Grin1, Grin2b, and COX induced by KCl, and overexpression of NRF-1 rescued these transcripts that were suppressed by TTX. NRF-1 binding sites on Grin1 and Grin2b genes are also highly conserved among mice, rats, and humans. Thus, NRF-1 is an essential transcription factor critical in the coregulation of NR1, NR2b, and COX, and coupling exists at the transcriptional level to ensure coordinated expressions of proteins important for synaptic transmission and energy metabolism.
Collapse
|
17
|
Eun SY, Woo IS, Jang HS, Jin H, Kim MY, Kim HJ, Lee JH, Chang KC, Kim JH, Seo HG. Identification of cytochrome c oxidase subunit 6A1 as a suppressor of Bax-induced cell death by yeast-based functional screening. Biochem Biophys Res Commun 2008; 373:58-63. [DOI: 10.1016/j.bbrc.2008.05.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
|
18
|
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88:611-38. [PMID: 18391175 DOI: 10.1152/physrev.00025.2007] [Citation(s) in RCA: 1173] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARalpha, ERRalpha, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
19
|
Dhar SS, Ongwijitwat S, Wong-Riley MTT. Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 2007; 283:3120-3129. [PMID: 18077450 DOI: 10.1074/jbc.m707587200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c oxidase (COX) is one of only four bigenomic proteins in mammalian cells, having ten subunits encoded in the nuclear genome and three in the mitochondrial DNA. The mechanism of its bigenomic control is not well understood. The ten nuclear subunits are on different chromosomes, and the possibility of their coordinate regulation by the same transcription factor(s) deserves serious consideration. The present study tested our hypothesis that nuclear respiratory factor 1 (NRF-1) serves such a role in subunit coordination. Following in silico analysis of murine nuclear-encoded COX subunit promoters, electrophoretic mobility shift and supershift assays indicated NRF-1 binding to all ten promoters. In vivo chromatin immunoprecipitation assays also showed NRF-1 binding to all ten promoters in murine neuroblastoma cells. Site-directed mutagenesis of putative NRF-1 binding sites confirmed the functionality of NRF-1 binding on all ten COX promoters. These sites are highly conserved among mice, rats, and humans. Silencing of NRF-1 with RNA interference reduced all ten COX subunit mRNAs and mRNAs of other genes involved in mitochondrial biogenesis. We conclude that NRF-1 plays a significant role in coordinating the transcriptional regulation of all ten nuclear-encoded COX subunits in neurons. Moreover, NRF-1 is known to activate mitochondrial transcription factors A and B, thereby indirectly regulating the expressions of the three mitochondrial-encoded COX subunits. Thus, NRF-1 and our previously described NRF-2 prove to be the two key bigenomic coordinators for transcriptional regulation of all cytochrome c oxidase subunits in neurons. Possible interactions between the NRFs will be investigated in the future.
Collapse
Affiliation(s)
- Shilpa S Dhar
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sakkapol Ongwijitwat
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
20
|
Meng H, Liang HL, Wong-Riley M. Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1alpha in cultured rat visual cortical neurons. Brain Res 2007; 1175:10-6. [PMID: 17870059 DOI: 10.1016/j.brainres.2007.07.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/20/2007] [Accepted: 07/31/2007] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (P<0.01). The heightened expression continued after 1 and 3 h of depolarizing treatment (P<0.01), but decreased from 5 h onward and returned to baseline level by 10 h. These results indicate that PGC-1alpha responds very early to increased neuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.
Collapse
Affiliation(s)
- Hui Meng
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
21
|
Zanotto E, Shah ZH, Jacobs HT. The bidirectional promoter of two genes for the mitochondrial translational apparatus in mouse is regulated by an array of CCAAT boxes interacting with the transcription factor NF-Y. Nucleic Acids Res 2006; 35:664-77. [PMID: 17179180 PMCID: PMC1802594 DOI: 10.1093/nar/gkl1037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genes for mitoribosomal protein S12 (Mrps12) and mitochondrial seryl-tRNA ligase (Sarsm and Sars2) are oppositely transcribed from a conserved promoter region of <200 bp in both human and mouse. Using a dual reporter vector we identified an array of 4 CCAAT box elements required for efficient transcription of the two genes in cultured mouse 3T3 cells, and for enforcing directionality in favour of Mrps12. Electrophoretic mobility shift assay (EMSA) and in vivo footprinting confirmed the importance of these promoter elements as sites of protein-binding, and EMSA supershift and chromatin immunoprecipitation (ChIP) assays identified NF-Y as the key transcription factor involved, revealing a common pattern of protein–DNA interactions in all tissues tested (liver, brain, heart, kidney and 3T3 cells). The inherently bidirectional activity of NF-Y makes it an especially suitable factor to govern promoters of this class, whose expression is linked to cell proliferation.
Collapse
Affiliation(s)
- Ernesto Zanotto
- Institute of Medical Technology & Tampere University Hospital, FI-33014 University of TampereFinland
| | - Zahid H. Shah
- Institute of Medical Technology & Tampere University Hospital, FI-33014 University of TampereFinland
| | - Howard T. Jacobs
- Institute of Medical Technology & Tampere University Hospital, FI-33014 University of TampereFinland
- Institute of Biomedical and Life Sciences, University of GlasgowGlasgow G12 8QQ, Scotland, UK
- To whom correspondence should be addressed. Tel: +35 8335517731; Fax: +35 832157710;
| |
Collapse
|
22
|
Cohen TV, Randall WR. The regulation of acetylcholinesterase by cis-elements within intron I in cultured contracting myotubes. J Neurochem 2006; 98:723-34. [PMID: 16787423 DOI: 10.1111/j.1471-4159.2006.03897.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The onset of spontaneous contraction in rat primary muscle cultures coincides with an increase in acetylcholinesterase (AChE) activity. In order to establish whether contractile activity modulates the rate of AChE transcript synthesis, and what elements of the gene are determinant, we examined the promoter and intron I in contracting muscle cultures. Ache genomic fragments attached to a luciferase reporter were transfected into muscle cultures that were either electrically stimulated or paralyzed with tetrodotoxin to enhance or inhibit contractions, respectively. Cultures transfected with intron I-containing constructs showed a 2-fold increase in luciferase activity following electrical stimulation, compared to tetrodotoxin treatment, suggesting that this region contains elements responding to contractile activity. Deleting a 780 bp distal region within intron I, containing an N-box element at +890 bp, or introducing a 2-bp mutation within its core sequence, eliminated the contraction-induced response. In contrast, mutating an N-box element at +822 bp had no effect on the response. Furthermore, co-transfecting a dominant negative GA-binding protein (GABP), a transcription factor known to selectively bind N-box elements, reduced the stimulation-mediated increase. Our results suggest that the N-box within intron I at +890 bp is a regulatory element important in the transcriptional response of Ache to contractile activity in muscle.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Department of Pharmacology and Experimental Therapeutics, School of Medicine University of Maryland, Baltimore, MD 21201-1559, USA
| | | |
Collapse
|
23
|
Yang SJ, Liang HL, Wong-Riley MTT. Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience 2006; 141:1181-92. [PMID: 16753268 DOI: 10.1016/j.neuroscience.2006.04.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/20/2006] [Accepted: 04/22/2006] [Indexed: 10/24/2022]
Abstract
Nuclear respiratory factor 1 is a transcription factor involved in the regulation of mitochondrial biogenesis by activating the transcription of subunit genes of cytochrome oxidase and other respiratory enzymes. Very little is known of its role in neurons. To determine if neuronal activity regulates nuclear respiratory factor 1 expression, cultured primary neurons from postnatal rat visual cortex were subjected to 20 mM KCl depolarizing treatment for 1, 3, 5, and 7 h, or exposed to 7 h of KCl followed by withdrawal for 1, 3, 5, and 7 h. Nuclear respiratory factor 1 expression was analyzed by immunoblots, immunocytochemistry, quantitative electron microscopy, real-time quantitative PCR, and in situ hybridization. Nuclear respiratory factor 1 protein was expressed at relatively low basal levels in both the nucleus, where it was associated primarily with euchromatin, and in the cytoplasm, where it was localized to free ribosomes and occasionally to the Golgi apparatus and the outer nuclear membrane. Depolarizing treatment progressively up-regulated both nuclear respiratory factor 1 protein and mRNA in a time-dependent manner, increasing above controls after 1 h and remaining high at 3, 5, and 7 h. Both nuclear and cytoplasmic mRNA levels increased with stimulation, and there was an apparent cytoplasmic-to-nuclear translocation of protein. Following the withdrawal of KCl, both nuclear respiratory factor 1 message and protein were significantly reduced after 1 h. The message returned to basal levels by 5 h and the protein by 7 h. These results strongly indicate that the expression and compartmental redistribution of nuclear respiratory factor 1 protein and mRNA in visual cortical neurons are dynamic processes tightly controlled by neuronal activity.
Collapse
Affiliation(s)
- S J Yang
- Department of Cell Biology, Neurobiology, and Anatomy Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
24
|
Liang HL, Wong-Riley MTT. Activity-dependent regulation of nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferator-activated receptor gamma coactivator-1 in neurons. Neuroreport 2006; 17:401-5. [PMID: 16514366 DOI: 10.1097/01.wnr.0000204980.98876.11] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear respiratory factor-1 and nuclear respiratory factor-2 activate the transcription of several respiratory chain enzymes and are prime candidates for bigenomic coordinated regulation of cytochrome oxidase subunit genes from the two genomes. Peroxisome proliferator-activated receptor gamma coactivator 1 is a proposed coactivator of nuclear respiratory factor-1 and nuclear respiratory factor-2-dependent transcription, but its significance and function in neurons are unknown. Our current study indicates that nuclear respiratory factor-1, nuclear respiratory factor-2, and peroxisome proliferator-activated receptor gamma coactivator-1 are expressed in rat visual cortical neurons, and that neuronal activity directly regulates the protein and mRNA expressions of these factors after functional inactivation in vivo and in vitro. Changes in peroxisome proliferator-activated receptor gamma coactivator-1 preceded those of nuclear respiratory factor-1 and nuclear respiratory factor-2, suggesting that it may be the prime sensor of neuronal activity and its energy demand.
Collapse
Affiliation(s)
- Huan Ling Liang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
25
|
Liang HL, Ongwijitwat S, Wong-Riley MTT. Bigenomic functional regulation of all 13 cytochrome c oxidase subunit transcripts in rat neurons in vitro and in vivo. Neuroscience 2006; 140:177-90. [PMID: 16542778 DOI: 10.1016/j.neuroscience.2006.01.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c oxidase is a multisubunit, bigenomically encoded inner mitochondrial membrane protein. Its enzymatic activity and amount in the brain vary with metabolic demands, but the precise regulation of all 13 subunits to form a functional holoenzyme in a 1:1 stoichiometry is not well understood. To determine if all 13 subunit transcripts were coordinately regulated by functional alteration in neurons, cultured primary neurons were depolarized by potassium chloride for 5-24 h, or tetrodotoxin inactivated for 2-6 days. In vivo studies were done on rats monocularly enucleated for 4 days to 2 weeks. Expressions of cytochrome c oxidase subunit mRNAs were measured by real-time quantitative polymerase chain reaction. Results showed that in vitro, all 13 transcripts were significantly up-regulated after 5 h of depolarizing stimulation. With tetrodotoxin blockade, however, the three mitochondrial-encoded transcripts were down-regulated earlier than the 10 nuclear ones (2 days versus 4 days). In vivo, all three mitochondrial-encoded subunit mRNAs were also down-regulated earlier than the nuclear ones in deprived visual cortex (4 days versus 1 week after monocular enucleation). Cytochrome c oxidase activity and protein levels were significantly decreased in parallel after 4 days of deprivation in vitro and 1 week in vivo. Our results are consistent with a coordinated mechanism of up-regulation of all 13 transcripts in response to functional stimulation, but an earlier and more severe down-regulation of the mitochondrial transcripts than the nuclear ones in response to functional deprivation. Thus, the mitochondrial subunits may play a more important role in regulating cytochrome c oxidase protein amount and activity in neurons. Our results also point to the need of all 13 subunits to form a functional holoenzyme.
Collapse
Affiliation(s)
- H L Liang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
26
|
Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MTT. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 2006; 374:39-49. [PMID: 16516409 DOI: 10.1016/j.gene.2006.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain, is a bigenomic enzyme with 13 subunits. The mechanism coordinating the transcription of these subunits is poorly understood. We investigated the role of nuclear respiratory factor-2 (NRF-2) in intragenomic regulation of nuclear COX genes. Vector-mediated short-hairpin RNA interference against NRF-2alpha reduced all 10 COX nuclear subunit mRNAs and mRNAs of other genes involved in mitochondrial function/biogenesis. NRF-2 binding site was necessary for the rat COX 4i1 promoter to down-regulate in response to decreased energy demands in primary neurons. Over-expression of NRF-2 protein prevented the down-regulation of transcriptional activity by TTX. Finally, NRF-2 binding sites in isolation were sufficient for modulating COX subunit 4i1 and 6A1 promoters' activity in response to decreased energy demand. These results indicate that NRF-2 is a vital part of a molecular mechanism that senses upstream energy signals and modulates COX transcriptional levels in mammalian cells.
Collapse
Affiliation(s)
- Sakkapol Ongwijitwat
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | | | |
Collapse
|
27
|
Smith KT, Nicholls RD, Reines D. The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res 2006; 34:1205-15. [PMID: 16500891 PMCID: PMC1383620 DOI: 10.1093/nar/gkj521] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
FMR1 encodes an RNA-binding protein whose absence results in fragile X mental retardation. In most patients, the FMR1 gene is cytosine-methylated and transcriptionally inactive. NRF-1 and Sp1 are known to bind and stimulate the active, but not the methylated/silenced, FMR1 promoter. Prior analysis has implicated a CRE site in regulation of FMR1 in neural cells but the role of this site is controversial. We now show that a phospho-CREB/ATF family member is bound to this site in vivo. We also find that the histone acetyltransferases CBP and p300 are associated with active FMR1 but are lost at the hypoacetylated fragile X allele. Surprisingly, FMR1 is not cAMP-inducible and resides in a newly recognized subclass of CREB-regulated genes. We have also elucidated a role for NRF-2 as a regulator of FMR1 in vivo through a previously unrecognized and highly conserved recognition site in FMR1. NRF-1 and NRF-2 act additively while NRF-2 synergizes with CREB/ATF at FMR1's promoter. These data add FMR1 to the collection of genes controlled by both NRF-1 and NRF-2 and disfavor its membership in the immediate early response group of genes.
Collapse
Affiliation(s)
| | - Robert D. Nicholls
- Birth Defects Laboratories and Division of Medical Genetics, Department of Pediatrics, Children's Hospital of Pittsburgh3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Daniel Reines
- To whom correspondence should be addressed. Tel: +1 404 727 3361; Fax: +1 404 727 3452;
| |
Collapse
|
28
|
Chandrasekaran K, Liu LI, Hatanpää K, Shetty U, Mehrabian Z, Murray PD, Fiskum G, Rapoport SI. Chronic exposure of neural cells to elevated intracellular sodium decreases mitochondrial mRNA expression. Mitochondrion 2005; 1:141-50. [PMID: 16120274 DOI: 10.1016/s1567-7249(01)00010-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2000] [Revised: 03/21/2001] [Accepted: 03/29/2001] [Indexed: 12/30/2022]
Abstract
Regulation of expression of mitochondrial DNA- (mtDNA-) encoded genes of oxidative phosphorylation can occur rapidly in neural cells subjected to a variety of physiological and pathological conditions. However, the intracellular signal(s) involved in regulating these processes remain unknown. Using mtDNA-encoded cytochrome oxidase subunit III (COX III), we show that its mRNA expression in a differentiated rat pheochromocytoma cell line PC12S is decreased by chronic exposure to agents that increase intracellular sodium. Treatment of differentiated PC12S cells either with ouabain, an inhibitor of Na/K-ATPase, or with monensin, a sodium ionophore, decreased the steady-state levels of COX III mRNA by 50%, 3-4 h after addition of the drugs. No significant reduction in mtDNA-encoded 12S rRNA or nuclear DNA-encoded beta-actin mRNA were observed. Removal of the drugs restored the normal levels of COX III mRNA. Determination of half-lives of COX III mRNA, 12S rRNA, and beta-actin mRNA revealed a selective decrease in the half-life of COX III mRNA from 3.3 h in control cells to 1.6 h in ouabain-treated cells, and to 1 h in monensin-treated cells. These results suggest the existence of a mechanism of posttranscriptional regulation of mitochondrial gene expression that is independent of the energetic status of the cell and may operate under pathological conditions.
Collapse
Affiliation(s)
- K Chandrasekaran
- Department of Anesthesiology, University of Maryland School of Medicine, MSTF 5-34, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ongwijitwat S, Wong-Riley MTT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 2005; 360:65-77. [PMID: 16126350 DOI: 10.1016/j.gene.2005.06.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/22/2005] [Accepted: 06/03/2005] [Indexed: 11/23/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is a multi-subunit, bigenomically encoded inner mitochondrial membrane protein. Of the thirteen subunits, three are encoded in the mitochondrial genome and ten others are encoded in the nuclear genome. Transcriptional coordination of nuclear-encoded COX subunit genes is likely accomplished by transcription factors responding to upstream signals. Previous studies have found that nuclear-encoded COX subunit genes are under the control of specific transcription factors, such as nuclear respiratory factor 2 (NRF-2). However, it is not known if a single transcription factor binds to all ten of COX subunit promoters. In the current study, we identified in silico putative NRF-2 binding sites on all ten nuclear-encoded COX gene promoters in the rat genome. Chromatin immunoprecipitation assay showed that NRF-2 bound in vivo to six of the ten nuclear-encoded COX subunit promoters. Electrophoretic mobility supershift assays demonstrated binding of NRF-2 to the other four subunits, and promoter mutation study confirmed the functionality of these NRF-2 binding sites. Finally, transfection of dominant-negative constructs of NRF-2 proteins caused a significant reduction of COX expression. We conclude that NRF-2 is an important mediator of coordinated regulation of all ten nuclear-encoded COX subunit genes in neurons.
Collapse
Affiliation(s)
- Sakkapol Ongwijitwat
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
30
|
Wong-Riley MTT, Yang SJ, Liang HL, Ning G, Jacobs P. Quantitative immuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex. Vis Neurosci 2005; 22:1-18. [PMID: 15842736 DOI: 10.1017/s0952523805221016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/07/2022]
Abstract
The macaque visual cortex is exquisitely organized into columns, modules, and streams, much of which can be correlated with its metabolic organization revealed by cytochrome oxidase (CO). Plasticity in the adult primate visual system has also been documented by changes in CO activity. Yet, the molecular mechanism of regulating this enzyme remains not well understood. Being one of only four bigenomic enzymes in mammalian cells, the transcriptional regulation of this enzyme necessitates a potential bigenomic coordinator. Nuclear respiratory factor 2 (NRF-2) or GA-binding protein is a transcription factor that may serve such a critical role. The goal of the present study was to determine if the two major subunits of NRF-2, 2alpha and 2beta, had distinct subcellular distribution in neurons of the rat and monkey visual cortex, if major metabolic neuronal types in the macaque exhibited different levels of the two subunits, and if they would respond differently to monocular impulse blockade. Quantitative immuno-electron microscopy was used. In both rats and monkeys, nuclear labeling of alpha and beta subunits was mainly over euchromatin rather than heterochromatin, consistent with their active participation in transcriptional activity. Cytoplasmic labeling was over free ribosomes, the Golgi apparatus, and occasionally the nuclear envelope, signifying sites of synthesis and possible posttranslational modifications. The density of both subunits was much higher in the nucleus than in the cytoplasm for all neurons examined, again indicating that their major sites of cellular action is in the nucleus.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | |
Collapse
|
31
|
Sakata JT, Crews D, Gonzalez-Lima F. Behavioral correlates of differences in neural metabolic capacity. ACTA ACUST UNITED AC 2005; 48:1-15. [PMID: 15708625 DOI: 10.1016/j.brainresrev.2004.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/21/2022]
Abstract
Cytochrome oxidase is a rate-limiting enzyme in oxidative phosphorylation, the major energy-synthesizing pathway used by the central nervous system, and cytochrome oxidase histochemistry has been extensively utilized to map changes in neural metabolism following experimental manipulations. However, the value of cytochrome oxidase activity in predicting behavior has not been analyzed. We argue that this endeavor is important because genetic composition and embryonic environment can engender differences in baseline neural metabolism in pertinent neural circuits, and these differences could represent differences in the degree to which specific behaviors are 'primed.' Here we review our studies in which differences in cytochrome oxidase activity and in behavior were studied in parallel. Using mammalian and reptilian models, we find that embryonic experiences that shape the propensity to display social behaviors also affect cytochrome oxidase activity in limbic brain areas, and elevated cytochrome oxidase activity in preoptic, hypothalamic, and amygdaloid nuclei correlates with heightened aggressive and sexual tendencies. Selective breeding regimes were used to create rodent genetic lines that differ in their susceptibility to display learned helplessness and in behavioral excitability. Differences in cytochrome oxidase activity in areas like the paraventricular hypothalamus, frontal cortex, habenula, septum, and hippocampus correlate with differences in susceptibility to display learned helplessness, and differences in activity in the dentate gyrus and perirhinal and posterior parietal cortex correlate with differences in hyperactivity. Thus, genetic and embryonic manipulations that engender specific behavioral differences produce specific neurometabolic profiles. We propose that knowledge of neurometabolic differences can yield valuable predictions about behavioral phenotype in other systems.
Collapse
Affiliation(s)
- Jon T Sakata
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
32
|
Ongwijitwat S, Wong-Riley MTT. Functional analysis of the rat cytochrome c oxidase subunit 6A1 promoter in primary neurons. Gene 2004; 337:163-71. [PMID: 15276212 DOI: 10.1016/j.gene.2004.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/04/2004] [Accepted: 04/26/2004] [Indexed: 11/16/2022]
Abstract
Cytochrome c oxidase (COX) is a multimeric enzyme consisting of 13 subunits that are encoded in both mitochondrial and nuclear genomes. We analyzed the promoter of the rat gene encoding the liver isoform of COX subunit VIa. Using transiently transfected primary neuronal cultures as a model system, we found that the basal promoter activity of this gene is localized to a region between positions -244 and +58 relative to the transcriptional start site. This region contains putative binding sites for the transcription factors Sp1, NRF-1, and NRF-2. Two of the NRF-2 sites in this basal promoter are organized in a tandem repeat. A deletion that disrupted this tandem repeat reduced transcription to approximately 25% of the basal level. Additional small deletion series and point mutation experiments confirmed the presence of two functional NRF-2 sites arranged in a tandem repeat, as well as a NRF-1 site and an Sp1 site. In vivo binding of NRF-2 to the rCOX6A1 promoter was confirmed with chromatin immunoprecipitation assay (ChIP). We conclude that Sp1, NRF-1, and NRF-2 are important in activating transcription of the rat COX6A1 gene.
Collapse
Affiliation(s)
- Sakkapol Ongwijitwat
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
33
|
Yang SJ, Liang HL, Ning G, Wong-Riley MTT. Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. Eur J Neurosci 2004; 19:1153-62. [PMID: 15016074 DOI: 10.1111/j.1460-9568.2004.03250.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear respiratory factor (NRF)-2 or GA-binding protein is a potential transcriptional, bigenomic coordinator of mitochondrial and nuclear-encoded subunits of cytochrome oxidase genes. It is composed of an alpha subunit that binds DNA and a beta subunit that has the transactivating domain. Previously, we found that the level of NRF-2 paralleled that of cytochrome oxidase under normal and functionally altered states. The goal of our present study was to increase the resolution to the ultrastructural level and to quantify changes before and after depolarizing stimulation. We used a pre-embedding immunogold-silver method for the two subunits of NRF-2 in cultured rat visual cortical neurons. NRF-2alpha and beta were normally located in both the nucleus and the cytoplasm. In the nucleus, both subunits were associated primarily with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, they were associated mainly with free ribosomes and occasionally with the Golgi apparatus and the outer membrane of the nuclear envelope. Labelling was not found in the mitochondria, confirming the specificity of the antibodies. Neuronal depolarization by KCl for 5 h induced a six- to seven-fold increase in the nuclear-to-cytoplasmic ratio of both subunits (P < 0.001) without increases in total labelling densities. These results strongly indicate that both NRF-2alpha and NRF-2beta respond to increased neuronal activity by translocating from the cytoplasm to the nucleus, where they engage in transcriptional activation of target genes. Our results also indicate that the cytoplasmic to nuclear movement of transcription factors is a dynamic process induced by neuronal activity.
Collapse
Affiliation(s)
- Shou Jing Yang
- Department of Cell Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
34
|
Feng Y, Liang HL, Wong-Riley M. Differential gene expressions in the visual cortex of postnatal day 1 versus day 21 rats revealed by suppression subtractive hybridization. Gene 2004; 329:93-101. [PMID: 15033532 DOI: 10.1016/j.gene.2003.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/02/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
The neonatal visual cortex is a highly plastic structure and its development is guided by visual experience during early postnatal life. Rats do not open their eyes until the end of the second postnatal week. We hypothesized that the expression of genes in the visual cortex would differ before and after eye opening. As a first step in uncovering these differences, we compared gene expressions in the visual cortex of postnatal days (PND) 1 and 21 rats. Suppression subtractive hybridization was performed using PND1 samples as the tester and PND21 as the driver. More than 30 genes were expressed at a higher level in PND1 than PND21 samples, but 5 fragments showed higher copies than others. PCR product of the five fragments was gel-purified and cloned into pCRII vectors. They showed significant homology to cDNA of genes: (A). clone MGC: 19375; (B). Type II iodothyronine 5'-deiodinase (D2); (C). reduced expression 3 gene; (D). lactosylceramide synthase; and (E). septin 4, respectively. Functions of A, C and E are unknown. By means of RACE PCR, three full-length cDNAs not reported previously in the rat were obtained for A, C and E, and we named them "expression genes 1, 2 and 3, respectively, in the rat visual cortex (EG1RVC, EG2RVC and EG3RVC)". EG1RVC was further characterized by Northern blots, in situ hybridization and in vitro transfection. These approaches confirmed that EG1RVC was expressed at a significantly higher level in PND1 than in PND21 visual cortical samples, and that transfected PC12 cells and primary neuronal cultures showed expression mainly in neuronal cell bodies. Our data indicate that genes expressed more abundantly on PND1 are associated with various metabolic pathways and enzymatic changes, and may play an important role in visual cortical development, growth and/or plasticity.
Collapse
Affiliation(s)
- Ying Feng
- Department of Cell Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
35
|
Eells JT, Henry MM, Summerfelt P, Wong-Riley MTT, Buchmann EV, Kane M, Whelan NT, Whelan HT. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A 2003; 100:3439-44. [PMID: 12626762 PMCID: PMC152311 DOI: 10.1073/pnas.0534746100] [Citation(s) in RCA: 484] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Indexed: 11/18/2022] Open
Abstract
Methanol intoxication produces toxic injury to the retina and optic nerve, resulting in blindness. The toxic metabolite in methanol intoxication is formic acid, a mitochondrial toxin known to inhibit the essential mitochondrial enzyme, cytochrome oxidase. Photobiomodulation by red to near-IR radiation has been demonstrated to enhance mitochondrial activity and promote cell survival in vitro by stimulation of cytochrome oxidase activity. The present studies were undertaken to test the hypothesis that exposure to monochromatic red radiation from light-emitting diode (LED) arrays would protect the retina against the toxic actions of methanol-derived formic acid in a rodent model of methanol toxicity. Using the electroretinogram as a sensitive indicator of retinal function, we demonstrated that three brief (2 min, 24 s) 670-nm LED treatments (4 J/cm(2)), delivered at 5, 25, and 50 h of methanol intoxication, attenuated the retinotoxic effects of methanol-derived formate. Our studies document a significant recovery of rod- and cone-mediated function in LED-treated, methanol-intoxicated rats. We further show that LED treatment protected the retina from the histopathologic changes induced by methanol-derived formate. These findings provide a link between the actions of monochromatic red to near-IR light on mitochondrial oxidative metabolism in vitro and retinoprotection in vivo. They also suggest that photobiomodulation may enhance recovery from retinal injury and other ocular diseases in which mitochondrial dysfunction is postulated to play a role.
Collapse
Affiliation(s)
- J T Eells
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:1-14. [PMID: 12031478 DOI: 10.1016/s0167-4781(02)00343-3] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biogenesis of mitochondria requires the expression of a large number of genes, most of which reside in the nuclear genome. The protein-coding capacity of mtDNA is limited to 13 respiratory subunits necessitating that nuclear regulatory factors play an important role in governing nucleo-mitochondrial interactions. Two classes of nuclear transcriptional regulators implicated in mitochondrial biogenesis have emerged in recent years. The first includes DNA-binding transcription factors, typified by nuclear respiratory factor (NRF)-1, NRF-2 and others, that act on known nuclear genes that specify mitochondrial functions. A second, more recently defined class, includes nuclear coactivators typified by PGC-1 and related family members (PRC and PGC-1 beta). These molecules do not bind DNA but rather work through their interactions with DNA-bound transcription factors to regulate gene expression. An important feature of these coactivators is that their expression is responsive to physiological signals mediating thermogenesis, cell proliferation and gluconeogenesis. Thus, they have the ability to integrate the action of multiple transcription factors in orchestrating programs of gene expression essential to cellular energetics. The interplay of these nuclear factors appears to be a major determinant in regulating the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, 303 East Chicago Avenue, Searle 4-458, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Rodríguez-Peña A, Escrivá H, Handler AC, Vallejo CG. Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 alpha-subunit in rat liver. FEBS Lett 2002; 514:309-14. [PMID: 11943172 DOI: 10.1016/s0014-5793(02)02389-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (TH) regulates mitochondrial respiratory rate by activating coordinated transcription in the nucleus and mitochondria. Whereas TH activates transcription of mitochondrial genes directly, the activation of nuclear-encoded mitochondrial genes is probably executed by indirect unknown mechanisms. Nuclear respiratory factors (NRF)-1 and GA-binding protein (BP)/NRF-2 may function as transacting genes, but regulation of these genes by TH is not demonstrated. We show that TH administration to hypothyroid rats promptly increases GABP/NRF-2 alpha-subunit mRNA levels in the liver, without significant changes in beta, gamma subunits. In run-on and time-course experiments, the transcription rate and protein levels increased three-fold in response to TH, indicating GABP/NRF-2 transcriptional regulation. The results also support the notion that ATP synthase beta-subunit is regulated by TH through the indirect activation of GABP/NRF-2.
Collapse
Affiliation(s)
- Angeles Rodríguez-Peña
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Vogel MW, Fan H, Sydnor J, Guidetti P. Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die. Neuroreport 2001; 12:3039-43. [PMID: 11568633 DOI: 10.1097/00001756-200110080-00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
+/Lc Purkinje cells degenerate postnatally because of a gain-of-function mutation in the delta2 glutamate receptor (Grid2) that causes a constitutive Na+ current leak. The effect of the resulting chronic depolarization on Purkinje cell metabolism was investigated by measuring levels of cytochrome oxidase (COX) activity in Purkinje cell dendrites using quantitative densitometry. Analysis of wild type controls and +/Lc mutants at P10, P15 and P25 showed that levels of COX activity were significantly increased above control levels by P15 and continued to increase through P25. The increase in COX activity is likely to reflect an increase in oxidative phosphorylation to accommodate the energy demands of removing excess Na+ and Ca2+ entering the Purkinje cells in response to the Grid2 leak current.
Collapse
Affiliation(s)
- M W Vogel
- Maryland Psychiatric Research Center, University of Maryland Medical School, P.O. Box 21247, Baltimore, MD 21228, USA
| | | | | | | |
Collapse
|
39
|
Wong-Riley MT, Bai X, Buchmann E, Whelan HT. Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 2001; 12:3033-7. [PMID: 11568632 DOI: 10.1097/00001756-200110080-00011] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Light close to and in the near-infrared range has documented benefits for promoting wound healing in human and animals. However, mechanisms of its action on cells are poorly understood. We hypothesized that light treatment with a light-emitting diode array at 670 nm (LED) is therapeutic in stimulating cellular events involving increases in cytochrome oxidase activity. LED was administered to cultured primary neurons whose voltage-dependent sodium channels were blocked by tetrodotoxin. The down-regulation of cytochrome oxidase activity by TTX was reverted to control levels by LED. LED alone also up-regulated enzyme activity. Thus, the results are consistent with our hypothesis that LED has a stimulating effect on cytochrome oxidase in neurons, even when they have been functionally silenced by TTX.
Collapse
Affiliation(s)
- M T Wong-Riley
- Department of Cell Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|