1
|
da Silva Neto Trajano LA, da Silva Sergio LP, de Oliveira DSL, Trajano ETL, Dos Santos Silva MA, de Paoli F, Mencalha AL, da Fonseca ADS. Low-power infrared laser modulates mRNA levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury. Photochem Photobiol Sci 2022; 21:1299-1308. [PMID: 35426610 DOI: 10.1007/s43630-022-00221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury by sepsis. For experimental procedure, animals were randomly assigned to six main groups: (1) control group was animals treated with intraperitoneal saline solution; (2) LASER-10 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 10 J cm-2; (3) LASER-20 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 20 J cm-2; (4) acute lung injury (ALI) was animals treated with intraperitoneal LPS (10 mg kg-1); (5) ALI-LASER10 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 10 J cm-2 and (6) ALI-LASER20 was animals treated with intraperitoneal LPS (10 mg kg-1) and, after 4 h, exposed to an infrared laser at 20 J cm-2. Irradiation was performed only once and animal euthanasias for analysis of mRNA relative levels by RT-qPCR. Our results showed that there was a reduction of mRNA relative levels from ATM gene and an increase of mRNA relative levels from P53 gene in the heart of animals with ALI when compared to the control group. In addition, there was an increase of mRNA relative levels from OGG1 and APE1 gene in hearts from animals with ALI when compared to the control group. After irradiation, an increase of mRNA relative levels from ATM and OGG1 gene was observed at 20 J cm-2. In conclusion, low-power laser modulates the mRNA relative levels from genes of base excision repair and genomic stabilization in the experimental model of acute lung injury evaluated.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Mestrado Profissional em Diagnóstico em Medicina Veterinária, Pró Reitoria de Pesquisa e Pós Graduação, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil. .,Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil. .,Mestrado Profissional em Ciências aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil.
| | - Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Diego Sá Leal de Oliveira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Eduardo Tavares Lima Trajano
- Mestrado Profissional em Ciências aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil
| | - Marco Aurélio Dos Santos Silva
- Mestrado Profissional em Ciências aplicadas em Saúde, Universidade de Vassouras, Avenida Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, Rio de Janeiro, 27700000, Brazil
| | - Flávia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer-s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| | - André Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.,Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
2
|
Tsai CM, Chang SF, Chang H. Transcranial photobiomodulation add-on therapy to valproic acid for pentylenetetrazole-induced seizures in peripubertal rats. BMC Complement Med Ther 2022; 22:81. [PMID: 35313886 PMCID: PMC8935768 DOI: 10.1186/s12906-022-03562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. Methods A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine’s scale in a non-blinded manner. Results Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4–7 seizures, and shortened the latency to stage 6 seizures. Conclusions Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, Taipei Medical University Hospital, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Ait Ouares K, Beurrier C, Canepari M, Laverne G, Kuczewski N. Opto nongenetics inhibition of neuronal firing. Eur J Neurosci 2018; 49:6-26. [PMID: 30387216 DOI: 10.1111/ejn.14251] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
Optogenetics is based on the selective expression of exogenous opsins by neurons allowing experimental control of their electrical activity using visible light. The interpretation of the results of optogenetic experiments is based on the assumption that light stimulation selectively acts on those neurons expressing the exogenous opsins without perturbing the activity of naive ones. Here, we report that light stimulation, of wavelengths and power in the range of those normally used in optogenetic experiments, consistently reduces the firing activity of naive Mitral Cells (MCs) and Tufted Neurons in the olfactory bulb as well as in Medium Spiny Neurons (MSNs) in the striatum. No such effect was observed for cerebellar Purkinje and hippocampal CA1 neurons. The effects on MC firing appear to be mainly due to a light-induced increase in tissue temperature, between 0.1 and 0.4°C, associated with the generation of a hyperpolarizing current and a modification of action potential (AP) shape. Therefore, light in the visible range can affect neuronal physiology in a cell-specific manner. Beside the implications for optogenetic studies, our results pave the way to investigating the use of visible light for therapeutic purposes in pathologies associated with neuronal hyperexcitability.
Collapse
Affiliation(s)
- Karima Ait Ouares
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France
| | - Corinne Beurrier
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France.,Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Marco Canepari
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France.,Institut National de la Santé et Recherche Médicale, Paris, France
| | | | - Nicola Kuczewski
- CNRS, UMR 5292, INSERM, U1028, Lyon, France.,Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, Lyon, France.,University Lyon, Lyon, Franc.,University Lyon1, Villeurbanne, France
| |
Collapse
|
4
|
Liebert AD, Chow RT, Bicknell BT, Varigos E. Neuroprotective Effects Against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton. J Exp Neurosci 2016; 10:1-19. [PMID: 26848276 PMCID: PMC4737522 DOI: 10.4137/jen.s33444] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.
Collapse
Affiliation(s)
| | - Roberta T. Chow
- Brain and Mind Institute, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
5
|
Sturm JJ, Nguyen T, Kandler K. Mapping Auditory Synaptic Circuits with Photostimulation of Caged Glutamate. Methods Mol Biol 2016; 1427:525-537. [PMID: 27259947 PMCID: PMC5957083 DOI: 10.1007/978-1-4939-3615-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photostimulation of neurons with caged glutamate is a viable tool for mapping the strength and spatial distribution of synaptic networks in living brain slices. In photostimulation experiments, synaptic connectivity is assessed by eliciting action potentials in putative presynaptic neurons via focal photolysis of caged glutamate, while measuring postsynaptic responses via intracellular recordings. Two approaches are commonly used for delivering light to small, defined areas in the slice preparation; an optical fiber-based method and a laser-scanning-based method. In this chapter, we outline the technical bases for using photostimulation of caged glutamate to map synaptic circuits, and discuss the advantages and disadvantages of using fiber-based vs. laser-based systems.
Collapse
Affiliation(s)
- Joshua J Sturm
- Department of Otolaryngology, School of Medicine, Ear and Eye Institute, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tuan Nguyen
- Department of Physics, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Karl Kandler
- Department of Otolaryngology, School of Medicine, Ear and Eye Institute, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Flyktman A, Mänttäri S, Nissilä J, Timonen M, Saarela S. Transcranial light affects plasma monoamine levels and expression of brain encephalopsin in the mouse. ACTA ACUST UNITED AC 2015; 218:1521-6. [PMID: 25805701 DOI: 10.1242/jeb.111864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
Encephalopsin (OPN3) belongs to the light-sensitive transmembrane receptor family mainly expressed in the brain and retina. It is believed that light affects mammalian circadian rhythmicity only through the retinohypothalamic tract, which transmits light information to the suprachiasmatic nucleus in the hypothalamus. However, it has been shown that light penetrates the skull. Here, we present the effect of transcranial light treatment on OPN3 expression and monoamine concentrations in mouse brain and other tissues. Mice were randomly assigned to control group, morning-light group and evening-light group, and animals were illuminated transcranially five times a week for 8 min for a total of 4 weeks. The concentrations of OPN3 and monoamines were analysed using western blotting and HPLC, respectively. We report that transcranial light treatment affects OPN3 expression in different brain areas and plasma/adrenal gland monoamine concentrations. In addition, when light was administered at a different time of the day, the response varied in different tissues. These results provide new information on the effects of light on transmitters mediating mammalian rhythmicity.
Collapse
Affiliation(s)
- Antti Flyktman
- University of Oulu, Department of Biology, P.O. Box 3000, Oulu FIN-90014, Finland
| | - Satu Mänttäri
- Finnish Institute of Occupational Health, Aapistie 1, Oulu FI-90220, Finland
| | - Juuso Nissilä
- University of Oulu, Department of Biology, P.O. Box 3000, Oulu FIN-90014, Finland University of Oulu, Institute of Health Sciences, P.O. Box 5000, Oulu FIN-90014, Finland
| | - Markku Timonen
- University of Oulu, Institute of Health Sciences, P.O. Box 5000, Oulu FIN-90014, Finland
| | - Seppo Saarela
- University of Oulu, Department of Biology, P.O. Box 3000, Oulu FIN-90014, Finland
| |
Collapse
|
7
|
Nissilä J, Mänttäri S, Särkioja T, Tuominen H, Takala T, Timonen M, Saarela S. Encephalopsin (OPN3) protein abundance in the adult mouse brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:833-9. [PMID: 22991144 PMCID: PMC3478508 DOI: 10.1007/s00359-012-0754-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/07/2012] [Accepted: 08/27/2012] [Indexed: 11/09/2022]
Abstract
Encephalopsin belongs to the family of extraretinal opsins having a putative role in CNS tissue photosensitivity. Encephalopsin mRNA has earlier been localized in rodent brains, but expression and localization of the protein has not yet been reported. In this study, we aimed to define encephalopsin protein abundance and localization in the rodent brain. The distribution and localization of encephalopsin protein in a mouse brain and selected peripheral tissues were analysed in ten mice, using Western blotting and immunohistochemistry. The specificity of immunoreaction was validated by primary antibody omitting and immunizing peptide blocking experiment. We found encephalopsin protein abundant in the mouse brain, but not in the periphery. Encephalopsin protein was present in neurons of the mouse cerebral cortex, paraventricular area, and cerebellar cells. Our results show that encephalopsin is expressed at the protein level in different brain areas of the mouse. Therefore, the suggested idea that encephalopsin plays a role in non-visual photic processes seems to be applicable. Evidently, further investigations are needed to find out the signalling mechanisms, and the potential physiological role of encephalopsin in phototransduction due to the changes in ambient light.
Collapse
Affiliation(s)
- Juuso Nissilä
- Department of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
8
|
Can transcranial brain-targeted bright light treatment via ear canals be effective in relieving symptoms in seasonal affective disorder? A pilot study. Med Hypotheses 2012; 78:511-5. [PMID: 22296809 DOI: 10.1016/j.mehy.2012.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
Abstract
Bright light therapy (BLT) is widely accepted as first-line treatment of seasonal affective disorder (SAD). However, the mechanism of action of BLT is still widely unknown. On the other hand, in mammals, light penetrates the skull bone and reaches the brain, and extra ocular transcranial phototransduction has physiological influences such as changed reproductive cycles and increased brain serotonin levels. Therefore, we challenged the existing conceptual framework that light therapy would only be mediated through the eyes. Consequently, we run a pilot study on the putative effect of transcranial bright light in the treatment of SAD. The light was produced using light-emitting diodes (LEDs), which were attached to earplugs. The amount of photic energy was 6.0-8.5 lumens in both ear canals, and the length of treatment was 8 or 12 min five times a week during a four-week study period. Subjects were recruited through advertisements in the city of Oulu, Finland (latitude 65°01'N) during 14 January 2009-03 February 2009. The final patient series consisted of 13 (aged 37.1 ± 7.2 years) physically healthy indoor workers suffering from SAD according to DSM-IV-TR criteria. Severity of depressive symptoms was assessed using the 17-item Hamilton Depression Rating Scale (HAMD-17) and Beck Depression Inventory (BDI)-21. Furthermore, severity of anxiety symptoms was measured by the 14-item Hamilton Anxiety Rating Scale (HAMA). The HAMD-17 mean sum score at screening was 23.1 ± 1.6. Ten out of 13 SAD patients (76.9%) achieved full remission (i.e., HAMD-17 sum score ≤ 7), and 92.3% (12/13) at least 50% reduction in HAMD-17 sum scores at "Week 4". By using a mixed regression model of repeated measures (AR-1) controlling for age, gender, and HAMD-17 mean sum score at screening, significant differences were found comparing the HAMD-17 mean sum scores of "Week 0" with the corresponding scores at the "Week 3" (t=-2.05, p=0.045) and "Week 4" visit (t=-2.77, p=0.008). Correspondingly, significant differences were found comparing the BDI-21 mean sum scores (15.2 ± 6.7) of "Week 0" with the corresponding scores at the "Week 3" (t=-2.37, p=0.021) and "Week 4" visit (t=-3.65, p<0.001). The HAMA mean sum score at screening was 20.5 ± 5.4. During the study period, 12 out of 13 (92.3%) patients achieved at least 50% reduction in their HAMA sum scores, and in 10 out of 13 patients (76.9%), the HAMA sum score was <7. In conclusion, it is hard to believe that our findings could be explained solely by placebo effect. Consequently, the basic assumptions underlying extraocular photoreception in humans deserve to be reconsidered. Given that a proper placebo treatment can be implemented via ear canals, further investigations with randomized placebo-controlled and/or dose-finding study designs regarding the extraocular transcranial bright light in the treatment of SAD are called for.
Collapse
|
9
|
Abstract
The activity of many receptors and ion channels in the nervous system can be regulated by redox-dependent mechanisms. Native and recombinant GABA(A) receptors are modulated by endogenous and pharmacological redox agents. However, the sensitivity of GABA(C) receptors to redox modulation has not been demonstrated. We studied the actions of different reducing and oxidizing agents on human homomeric GABArho(1) receptors expressed in Xenopus laevis oocytes. The reducing agents dithiothreitol (2 mM) and N-acetyl-L-cysteine (1 mM) potentiated GABA-evoked Cl(-) currents recorded by two-electrode voltage-clamp, while the oxidants 5-5'-dithiobis-2-nitrobenzoic acid (500 microM) and oxidized dithiothreitol (2 mM) caused inhibition. The endogenous antioxidant glutathione (5 mM) also enhanced GABArho(1) receptor-mediated currents while its oxidized form GSSG (3 mM) had inhibitory effects. All the effects were rapid and easily reversible. Redox modulation of GABArho(1) receptors was strongly dependent on the GABA concentration; dose-response curves for GABA were shifted to the left in the presence of reducing agents, whereas oxidizing agents produced the opposite effect, without changes in the maximal response to GABA and in the Hill coefficient. Our results demonstrate that, similarly to GABA(A) receptors and other members of the cys-loop receptor superfamily, GABA(C) receptors are subjected to redox modulation.
Collapse
Affiliation(s)
- Cecilia I Calero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Abstract
Voltage-sensitive dyes are important tools for assessing network and single-cell excitability, but an untested premise in most cases is that the dyes do not interfere with the parameters (membrane potential, excitability) that they are designed to measure. We found that popular members of several different families of voltage-sensitive dyes modulate GABA(A) receptor with maximum efficacy and potency similar to clinically used GABA(A) receptor modulators. Di-4-ANEPPS and DiBAC4(3) potentiated GABA function with micromolar and high nanomolar potency, respectively, and yielded strong maximum effects similar to barbiturates and neurosteroids. Newer blue oxonols had biphasic effects on GABA(A) receptor function at nanomolar and micromolar concentrations, with maximum potentiation comparable to that of saturating benzodiazepine effects. ANNINE-6 and ANNINE-6plus had no detectable effect on GABA(A) receptor function. Even dyes with no activity on GABA(A) receptors at baseline induced photodynamic enhancement of GABA(A) receptors. The basal effects of dyes were sufficient to prolong IPSCs and to dampen network activity in multielectrode array recordings. Therefore, the dual effects of voltage-sensitive dyes on GABAergic inhibition require caution in dye use for studies of excitability and network activity.
Collapse
|
11
|
Shu HJ, Eisenman LN, Wang C, Bandyopadhyaya AK, Krishnan K, Taylor A, Benz AM, Manion B, Evers AS, Covey DF, Zorumski CF, Mennerick S. Photodynamic effects of steroid-conjugated fluorophores on GABAA receptors. Mol Pharmacol 2009; 76:754-65. [PMID: 19596835 DOI: 10.1124/mol.109.057687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that fluorescent, 7-nitro-2,1,3-benzoxadiazol-4-yl amino (NBD)-conjugated neurosteroid analogs photopotentiate GABA(A) receptor function. These compounds seem to photosensitize a modification of receptor function, resulting in long-lived increases in responses to exogenous or synaptic GABA. Here we extend this work to examine the effectiveness of different fluorophore positions, conjugations, steroid structures, and fluorophores. Our results are generally in agreement with the idea that steroids with activity at GABA(A) receptors are the most potent photopotentiators. In particular, we find that an unnatural enantiomer of an effective photopotentiating steroid is relatively weak, excluding the idea that membrane solubility alone, which is identical for enantiomer pairs, is solely responsible for potent photopotentiation. Furthermore, there is a significant correlation between baseline GABA(A) receptor activity and photopotentiation. Curiously, both sulfated steroids, which bind a presumed external neurosteroid antagonist site, and hydroxysteroids, which bind an independent site, are effective. We also find that a rhodamine dye conjugated to a 5beta-reduced 3alpha-hydroxy steroid is a particularly potent and effective photopotentiator, with minimal baseline receptor activity up to 10 muM. Steroid conjugated fluorescein and Alexa Fluor 546 also supported photopotentiation, although the Alexa Fluor conjugate was weaker and required 10-fold higher concentration to achieve similar potentiation to the best NBD and rhodamine conjugates. Filling cells with steroid-conjugated or free fluorophores via whole-cell patch pipette did not support photopotentiation. FM1-43, another membrane-targeted, structurally unrelated fluorophore, also produced photopotentiation at micromolar concentrations. We conclude that further optimization of fluorophore and carrier could produce an effective, selective, light-sensitive GABA(A) receptor modulator.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eisenman LN, Shu HJ, Wang C, Aizenman E, Covey DF, Zorumski CF, Mennerick S. NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue. J Physiol 2009; 587:2937-47. [PMID: 19403611 DOI: 10.1113/jphysiol.2009.172700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors are widely studied because of their importance in synaptic plasticity and excitotoxic cell death. Here we report a novel method of potentiating NMDA receptors with fluorescence excited by blue (480 nm) light. In the presence of 300 nM of a (7-nitro-2,1,3-benzoxadiazol-4-yl) amino (NBD)-tagged neuroactive steroid carrier C2-NBD-(3alpha,5alpha)-3-hydroxypregnan-20-one (C2-NBD 3alpha5alphaP), responses of cultured hippocampal neurons to 10 microM NMDA were potentiated to 219.2 +/- 9.2% of the baseline response (100%) by a 30 s exposure to 480 nm light. The potentiation decayed back to baseline with a time constant of 80.6 s. Responses to 1 microM and 100 microM NMDA were potentiated to 147.9 +/- 9.6% and 174.1 +/- 15.6% of baseline, respectively, suggesting that visible-light potentiation is relatively insensitive to NMDA concentration. Peak autaptic NMDA responses were potentiated to 178.9 +/- 22.4% of baseline. Similar potentiation was seen with 10 microM NBD-lysine, suggesting that visible-light potentiation is not a steroid effect. Potentiation was also seen with a steroid analogue in which the NBD was replaced with fluorescein, suggesting that NBD is not the only fluorophore capable of supporting visible-light potentiation. UV light and redox potentiation of NMDA receptors largely occluded subsequent blue light potentiation (127.7 +/- 7.4% and 120.2 +/- 6.2% of baseline, respectively). The NR1a(C744A,C798A) mutant that is insensitive to redox and UV potentiation was also largely unaffected by visible-light potentiation (135.0 +/- 10.0% of baseline). Finally, we found that the singlet oxygen scavenger furfuryl alcohol decreased visible-light potentiation. Collectively, these data suggest that visible-light potentiation of NMDA receptors by fluorescence excitation shares mechanisms with UV and redox potentiation and may involve singlet oxygen production.
Collapse
Affiliation(s)
- Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, Box 8111, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Nelson MT, Woo J, Kang HW, Vitko I, Barrett PQ, Perez-Reyes E, Lee JH, Shin HS, Todorovic SM. Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 2007; 27:8250-60. [PMID: 17670971 PMCID: PMC6673068 DOI: 10.1523/jneurosci.1800-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have demonstrated an important role for T-type Ca2+ channels (T-channels) in controlling the excitability of peripheral pain-sensing neurons (nociceptors). However, the molecular mechanisms underlying the functions of T-channels in nociceptors are poorly understood. Here, we demonstrate that reducing agents as well as endogenous metal chelators sensitize C-type dorsal root ganglion nociceptors by chelating Zn2+ ions off specific extracellular histidine residues on Ca(v)3.2 T-channels, thus relieving tonic channel inhibition, enhancing Ca(v)3.2 currents, and lowering the threshold for nociceptor excitability in vitro and in vivo. Collectively, these findings describe a novel mechanism of nociceptor sensitization and firmly establish reducing agents, as well as Zn2+, Zn2+-chelating amino acids, and Zn2+-chelating proteins as endogenous modulators of Ca(v)3.2 and nociceptor excitability.
Collapse
Affiliation(s)
- Michael T. Nelson
- Departments of Anesthesiology
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Jiwan Woo
- Center for Neural Science, Korea Institute of Science and Technology, Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Korea
| | - Ho-Won Kang
- Department of Life Science and
- Interdisciplinary Program of Biotechnology, Sogang University, Shinsu-Dong, Seoul 121-742, Korea, and
| | | | | | - Edward Perez-Reyes
- Pharmacology, and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Jung-Ha Lee
- Department of Life Science and
- Interdisciplinary Program of Biotechnology, Sogang University, Shinsu-Dong, Seoul 121-742, Korea, and
| | - Hee-Sup Shin
- Center for Neural Science, Korea Institute of Science and Technology, Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791, Korea
| | - Slobodan M. Todorovic
- Departments of Anesthesiology
- Neuroscience and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
14
|
Eisenman LN, Shu HJ, Akk G, Wang C, Manion BD, Kress GJ, Evers AS, Steinbach JH, Covey DF, Zorumski CF, Mennerick S. Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light. Nat Neurosci 2007; 10:523-30. [PMID: 17322875 DOI: 10.1038/nn1862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/01/2007] [Indexed: 11/08/2022]
Abstract
Most photoactivatable compounds suffer from the limitations of the ultraviolet wavelengths that are required for activation. We synthesized a neuroactive steroid analog with a fluorescent (7-nitro-2,1,3-benzoxadiazol-4-yl) amino (NBD) group in the beta configuration at the C2 position of (3alpha,5alpha)-3-hydroxypregnan-20-one (allopregnanolone, 3alpha5alphaP). Light wavelengths (480 nm) that excite compound fluorescence strongly potentiate GABAA receptor function. Potentiation is limited by photodepletion of the receptor-active species. Photopotentiation is long-lived and stereoselective and shows single-channel hallmarks similar to steroid potentiation. Other NBD-conjugated compounds also generate photopotentiation, albeit with lower potency. Thus, photopotentiation does not require a known ligand for neurosteroid potentiating sites on the GABAA receptor. Photoactivation of a membrane-impermeant, fluorescent steroid analog demonstrates that membrane localization is critical for activity. The photoactivatable steroid silences pathological spiking in cultured rat hippocampal neurons and anesthetizes tadpoles. Fluorescent steroids photoactivated by visible light may be useful for modulating GABAA receptor function in a spatiotemporally defined manner.
Collapse
Affiliation(s)
- Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|