1
|
Hatakeyama D, Chikamoto N, Fujimoto K, Kitahashi T, Ito E. Comparison between relative and absolute quantitative real-time PCR applied to single-cell analyses: Transcriptional levels in a key neuron for long-term memory in the pond snail. PLoS One 2022; 17:e0279017. [PMID: 36508476 PMCID: PMC9744327 DOI: 10.1371/journal.pone.0279017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is a powerful method for measuring nucleic acid levels and quantifying mRNA levels, even in single cells. In the present study, we compared the results of single-cell qPCR obtained by different quantification methods (relative and absolute) and different reverse transcription methods. In the experiments, we focused on the cerebral giant cell (CGC), a key neuron required for the acquisition of conditioned taste aversion in the pond snail Lymnaea stagnalis, and examined changes in the mRNA levels of 3 memory-related genes, cAMP-response element binding proteins (LymCREB1 and LymCREB2) and CREB-binding protein (LymCBP), during memory formation. The results obtained by relative quantification showed similar patterns for the 3 genes. For absolute quantification, reverse transcription was performed using 2 different methods: a mixture of oligo d(T) primers and random primers (RT method 1); and gene-specific primers (RT method 2). These methods yielded different results and did not show consistent changes related to conditioning. The mRNA levels in the samples prepared by RT method 2 were up to 3.3 times higher than those in samples prepared by RT method 1. These results suggest that for qPCR of single neurons, the efficacy and validity do not differ between relative and absolute quantification methods, but the reverse transcription step critically influences the results of mRNA quantification.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima City, Japan
- * E-mail: (DH); (EI)
| | | | | | - Takashi Kitahashi
- Kushiro Nature Conservation Office, Ministry of the Environment Government of Japan, Kushiro City, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- * E-mail: (DH); (EI)
| |
Collapse
|
2
|
Hatakeyama D, Sunada H, Totani Y, Watanabe T, Felletár I, Fitchett A, Eravci M, Anagnostopoulou A, Miki R, Okada A, Abe N, Kuzuhara T, Kemenes I, Ito E, Kemenes G. Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS. FASEB J 2022; 36:e22593. [PMID: 36251357 PMCID: PMC9828244 DOI: 10.1096/fj.202101225rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023]
Abstract
In eukaryotes, CREB-binding protein (CBP), a coactivator of CREB, functions both as a platform for recruiting other components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. We previously showed that the transcriptional activity of cAMP-responsive element binding protein (CREB) plays a crucial role in neuronal plasticity in the pond snail Lymnaea stagnalis. However, there is no information on the molecular structure and HAT activity of CBP in the Lymnaea central nervous system (CNS), hindering an investigation of its postulated role in long-term memory (LTM). Here, we characterize the Lymnaea CBP (LymCBP) gene and identify a conserved domain of LymCBP as a functional HAT. Like CBPs of other species, LymCBP possesses functional domains, such as the KIX domain, which is essential for interaction with CREB and was shown to regulate LTM. In-situ hybridization showed that the staining patterns of LymCBP mRNA in CNS are very similar to those of Lymnaea CREB1. A particularly strong LymCBP mRNA signal was observed in the cerebral giant cell (CGC), an identified extrinsic modulatory interneuron of the feeding circuit, the key to both appetitive and aversive LTM for taste. Biochemical experiments using the recombinant protein of the LymCBP HAT domain showed that its enzymatic activity was blocked by classical HAT inhibitors. Preincubation of the CNS with such inhibitors blocked cAMP-induced synaptic facilitation between the CGC and an identified follower motoneuron of the feeding system. Taken together, our findings suggest a role for the HAT activity of LymCBP in synaptic plasticity in the feeding circuitry.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK,Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Hiroshi Sunada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan,Present address:
Advanced Medicine, Innovation and Clinical Research CentreTottori University HospitalYonagoJapan
| | - Yuki Totani
- Department of BiologyWaseda UniversityTokyoJapan
| | | | - Ildikó Felletár
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Adam Fitchett
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Murat Eravci
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Aikaterini Anagnostopoulou
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK,Present address:
School of Life SciencesUniversity of WestminsterLondonUK
| | - Ryosuke Miki
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Ayano Okada
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Naoya Abe
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Ildikó Kemenes
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan,Department of BiologyWaseda UniversityTokyoJapan
| | - György Kemenes
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| |
Collapse
|
3
|
Kemenes G, Benjamin PR, Kemenes I. The role of non-coding RNAs in the formation of long-term associative memory after single-trial learning in Lymnaea. Front Behav Neurosci 2022; 16:1005867. [PMID: 36353518 PMCID: PMC9639457 DOI: 10.3389/fnbeh.2022.1005867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
Investigations of the molecular mechanisms of long-term associative memory have revealed key roles for a number of highly evolutionarily conserved molecular pathways in a variety of different vertebrate and invertebrate model systems. One such system is the pond snail Lymnaea stagnalis, in which, like in other systems, the transcription factors CREB1 and CREB2 and the enzyme NOS play essential roles in the consolidation of long-term associative memory. More recently, epigenetic control mechanisms, such as DNA methylation, histone modifications, and control of gene expression by non-coding RNAs also have been found to play important roles in all model systems. In this minireview, we will focus on how, in Lymnaea, even a single episode of associative learning can activate CREB and NO dependent cascades due to the training-induced up- or downregulation of the expression levels of recently identified short and long non-coding RNAs.
Collapse
|
4
|
Rivi V, Batabyal A, Wiley B, Benatti C, Tascedda F, Blom JMC, Lukowiak K. Fluoride affects memory by altering the transcriptional activity in the central nervous system of Lymnaea stagnalis. Neurotoxicology 2022; 92:61-66. [PMID: 35907516 DOI: 10.1016/j.neuro.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Fluoride (F-), has been found to affect learning and memory in several species. In this study, we exposed an F--naïve, inbred strain of Lymnaea stagnalis to a concentration of F- similar to that naturally occurring in wild ponds. We found that the exposure to F- before the configural learning procedure obstructs the memory formation and blocks the configural learning-induced upregulation of CREB1, GRIN1, and HSP70 in snails' central ring ganglia. Along with altering the mRNA levels of these key genes for memory formation, a single acute F- exposure also upregulates Cytochrome c Oxidase, a major regulatory enzyme of the electron transport chain, which plays direct or indirect roles in reactive oxygen species production. As the central nervous system is sensitive to oxidative stress and consistent with previous studies from mammals, our results suggest a potential role of oxidative stress in memory impairment. To our knowledge, this is the first study investigating the neuronal mechanism of memory impairment in an invertebrate species that is exposed to natural F- levels.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Bevin Wiley
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Joan M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Nakai J, Chikamoto N, Fujimoto K, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Insulin and Memory in Invertebrates. Front Behav Neurosci 2022; 16:882932. [PMID: 35558436 PMCID: PMC9087806 DOI: 10.3389/fnbeh.2022.882932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin and insulin-like peptides (ILP) help to maintain glucose homeostasis, whereas insulin-like growth factor (IGF) promotes the growth and differentiation of cells in both vertebrates and invertebrates. It is sometimes difficult to distinguish between ILP and IGF in invertebrates, however, because in some cases ILP has the same function as IGF. In the present review, therefore, we refer to these peptides as ILP/IGF signaling (IIS) in invertebrates, and discuss the role of IIS in memory formation after classical conditioning in invertebrates. In the arthropod Drosophila melanogaster, IIS is involved in aversive olfactory memory, and in the nematode Caenorhabditis elegans, IIS controls appetitive/aversive response to NaCl depending on the duration of starvation. In the mollusk Lymnaea stagnalis, IIS has a critical role in conditioned taste aversion. Insulin in mammals is also known to play an important role in cognitive function, and many studies in humans have focused on insulin as a potential treatment for Alzheimer’s disease. Although analyses of tissue and cellular levels have progressed in mammals, the molecular mechanisms, such as transcriptional and translational levels, of IIS function in cognition have been far advanced in studies using invertebrates. We anticipate that the present review will help to pave the way for studying the effects of insulin, ILPs, and IGFs in cognitive function across phyla.
Collapse
Affiliation(s)
- Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | | | | | - Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E. Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Etsuro Ito
| |
Collapse
|
6
|
Wooller S, Anagnostopoulou A, Kuropka B, Crossley M, Benjamin PR, Pearl F, Kemenes I, Kemenes G, Eravci M. A combined bioinformatics and LC-MS based approach for the development and benchmarking of a comprehensive database of Lymnaea CNS proteins. J Exp Biol 2022; 225:275013. [DOI: 10.1242/jeb.243753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Applications of key technologies in biomedical research, such as qRT-PCR or LC-MS based proteomics, are generating large biological (-omics) data sets which are useful for the identification and quantification of biomarkers in any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of memory function and dysfunction. Here we used a bioinformatics approach to designing and benchmarking a comprehensive CNS proteomics database (LymCNS-PDB) for the identification of proteins from the CNS of Lymnaea by LC-MS based proteomics. LymCNS-PDB was created by using the Trinity TransDecoder bioinformatics tool to translate amino acid sequences from mRNA transcript assemblies obtained from a published Lymnaea transcriptomics database. The blast-style MMSeq2 software was used to match all translated sequences to UniProtKB sequences for molluscan proteins, including Lymnaea and other molluscs. LymCNS-PDB contains 9,628 identified matched proteins that were benchmarked by performing LC-MS based proteomics analysis with proteins isolated from the Lymnaea CNS. MS/MS analysis using the LymCNS-PDB database led to the identification of 3,810 proteins. Only 982 proteins were identified by using a non-specific molluscan database. LymCNS-PDB provides a valuable tool that will enable us to perform quantitative proteomics analysis of protein interactomes involved in several CNS functions in Lymnaea, including learning and memory and age-related memory decline.
Collapse
Affiliation(s)
- Sarah Wooller
- Bioinformatics Group, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Benno Kuropka
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Paul R. Benjamin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Frances Pearl
- Bioinformatics Group, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Murat Eravci
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
7
|
Potential evidence of peripheral learning and memory in the arms of dwarf cuttlefish, Sepia bandensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:575-594. [PMID: 34121131 DOI: 10.1007/s00359-021-01499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
CREB (cAMP response element-binding) transcription factors are conserved markers of memory formation in the brain and peripheral circuits. We provide immunohistochemical evidence of CREB phosphorylation in the dwarf cuttlefish, Sepia bandensis, following the inaccessible prey (IP) memory experiment. During the IP experiment, cuttlefish are shown prey enclosed in a transparent tube, and tentacle strikes against the tube decrease over time as the cuttlefish learns the prey is inaccessible. The cues driving IP learning are unclear but may include sensory inputs from arms touching the tube. The neural activity marker, anti-phospho-CREB (anti-pCREB) was used to determine whether IP training stimulated cuttlefish arm sensory neurons. pCREB immunoreactivity occurred along the oral surface of the arms, including the suckers and epithelial folds surrounding the suckers. pCREB increased in the epithelial folds and suckers of trained cuttlefish. We found differential pCREB immunoreactivity along the distal-proximal axis of trained arms, with pCREB concentrated distally. Unequal CREB phosphorylation occurred among the 4 trained arm pairs, with arm pairs 1 and 2 containing more pCREB. The resulting patterns of pCREB in trained arms suggest that the arms obtain cues that may be salient for learning and memory of the IP experiment.
Collapse
|
8
|
Another Example of Conditioned Taste Aversion: Case of Snails. BIOLOGY 2020; 9:biology9120422. [PMID: 33256267 PMCID: PMC7760351 DOI: 10.3390/biology9120422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary It is important to decide what to eat and what not to eat in the life. Children are likely to reject new foods. When eating a new food results in a negative experience, the child will avoid that specific food in the future. This phenomenon is called ‘conditioned taste aversion’ in mammals, and it is considered necessary for survival by preventing subsequent ingestion of sickening foods. Many researchers study the same kind of phenomenon in invertebrates, too. For example, the formation of conditioned taste aversion was found in the pond snail, Lymnaea stagnalis, with the selective associability between a sweet sucrose solution and a bitter KCl solution. A sweet food attracts many kinds of animals, resulting in the feeding response, whereas a KCl solution is an aversive stimulus, inducing a withdrawal response in snails. After repeated temporally-contingent presentations of these two stimuli, the sucrose solution no longer elicits a feeding response, and this phenomenon persists for a long term. In the present review, we first outline the mechanisms of conditioned taste aversion in mammals, then introduce the conditioned taste aversion in snails, and compare them. Furthermore, the molecular events in snails are discussed, suggesting the general mechanism in conditioned taste aversion. Abstract Conditioned taste aversion (CTA) in mammals has several specific characteristics: (1) emergence of a negative symptom in subjects due to selective association with a taste-related stimulus, (2) robust long-term memory that is resistant to extinction induced by repeated presentation of the conditioned stimulus (CS), (3) a very-long-delay presentation of the unconditioned stimulus (US), and (4) single-trial learning. The pond snail, Lymnaea stagnalis, can also form a CTA. Although the negative symptoms, like nausea, in humans cannot be easily observed in invertebrate animal models of CTA, all the other characteristics of CTA seem to be present in snails. Selective associability was confirmed using a sweet sucrose solution and a bitter KCl solution. Once snails form a CTA, repeated presentation of the CS does not extinguish the CTA. A long interstimulus interval between the CS and US, like in trace conditioning, still results in the formation of a CTA in snails. Lastly, even single-trial learning has been demonstrated with a certain probability. In the present review, we compare, in detail, CTA in mammals and snails, and discuss the possible molecular events in CTA.
Collapse
|
9
|
Totani Y, Nakai J, Hatakeyama D, Ito E. Memory-enhancing effects of short-term fasting. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Y. Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - J. Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | - D. Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - E. Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Fodor I, Hussein AAA, Benjamin PR, Koene JM, Pirger Z. The unlimited potential of the great pond snail, Lymnaea stagnalis. eLife 2020; 9:e56962. [PMID: 32539932 PMCID: PMC7297532 DOI: 10.7554/elife.56962] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Only a limited number of animal species lend themselves to becoming model organisms in multiple biological disciplines: one of these is the great pond snail, Lymnaea stagnalis. Extensively used since the 1970s to study fundamental mechanisms in neurobiology, the value of this freshwater snail has been also recognised in fields as diverse as host-parasite interactions, ecotoxicology, evolution, genome editing and 'omics', and human disease modelling. While there is knowledge about the natural history of this species, what is currently lacking is an integration of findings from the laboratory and the field. With this in mind, this article aims to summarise the applicability of L. stagnalis and points out that this multipurpose model organism is an excellent, contemporary choice for addressing a large range of different biological questions, problems and phenomena.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| | - Ahmed AA Hussein
- Department of Ecological Sciences, Faculty of Sciences, Vrije UniversiteitAmsterdamNetherlands
| | - Paul R Benjamin
- Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Joris M Koene
- Section of Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological ResearchTihanyHungary
| |
Collapse
|
11
|
Induction of LTM following an Insulin Injection. eNeuro 2020; 7:ENEURO.0088-20.2020. [PMID: 32291265 PMCID: PMC7218004 DOI: 10.1523/eneuro.0088-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The pond snail Lymnaea stagnalis learns conditioned taste aversion (CTA) and consolidates it into long-term memory (LTM). One-day food-deprived snails (day 1 snails) show the best CTA learning and memory, whereas more severely food-deprived snails (5 d) do not express good memory. However, previous studies showed that CTA-LTM was indeed formed in 5-d food-deprived snails (day 5 snails), but its recall was prevented by the effects of food deprivation. CTA-LTM recall in day 5 snails was expressed following 7 d of feeding and then 1 d of food deprivation (day 13 snails). In the present study, we thus hypothesized that memory recall occurs because day 13 snails are in an optimal internal state. One day of food deprivation before the memory test in day 13 snails increased the mRNA level of molluscan insulin-related peptide (MIP) in the CNS. Thus, we further hypothesized that an injection of insulin into day 5 snails following seven additional days with access to food (day 12 snails) activates CTA neurons and mimics the food deprivation state before the memory test in day 13 snails. Day 12 snails injected with insulin could recall the memory. In addition, the simultaneous injection of an anti-insulin receptor antibody and insulin into day 12 snails did not allow memory recall. Insulin injection also decreased the hemolymph glucose concentration. Together, the results suggest that an optimal internal state (i.e., a spike in insulin release and specific glucose levels) are necessary for LTM recall following CTA training in snails.
Collapse
|
12
|
Ierusalimsky VN, Roshchin MV, Balaban PM. Immediate-Early Genes Detection in the CNS of Terrestrial Snail. Cell Mol Neurobiol 2020; 40:1395-1404. [PMID: 32162199 DOI: 10.1007/s10571-020-00825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 11/27/2022]
Abstract
In the present work, using in situ hybridization, we studied the expression patterns of three molluscan homologs of vertebrate immediate-early genes C/EBP, c-Fos, and c-Jun in the central nervous system (CNS) of terrestrial gastropod snail Helix. The molluscan C/EBP gene was described in literature, while c-Fos and c-Jun were studied in terrestrial snails for the first time. Localization of the expression was traced in normal conditions, and in preparations physiologically activated using stimulation of suboesophageal ganglia nerves. No expression was detected constitutively. In stimulated preparations, all three genes had individual expression patterns in Helix CNS, and the level of expression was stimulus-dependent. The number of cells expressing the gene of interest was different from the number of cells projecting to the stimulated nerve, and thus activated retrogradely. This difference depended on the ganglia studied. At the subcellular level, the labeled RNA was observed as dots (probably small clusters of RNA molecules) and shapeless mass of RNA, often seen as a circle at the internal border of the cell nuclei. The data provide a basis for further study of behavioral role of these putative immediate-early genes in snail behavior and learning.
Collapse
Affiliation(s)
- Victor N Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova str., Moscow, Russia, 117485.
| | - Matvey V Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova str., Moscow, Russia, 117485
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova str., Moscow, Russia, 117485
| |
Collapse
|
13
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
14
|
Korneev SA, Vavoulis DV, Naskar S, Dyakonova VE, Kemenes I, Kemenes G. A CREB2-targeting microRNA is required for long-term memory after single-trial learning. Sci Rep 2018; 8:3950. [PMID: 29500383 PMCID: PMC5834643 DOI: 10.1038/s41598-018-22278-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/12/2018] [Indexed: 02/01/2023] Open
Abstract
Although single-trial induced long-term memories (LTM) have been of major interest in neuroscience, how LTM can form after a single episode of learning remains largely unknown. We hypothesized that the removal of molecular inhibitory constraints by microRNAs (miRNAs) plays an important role in this process. To test this hypothesis, first we constructed small non-coding RNA (sncRNA) cDNA libraries from the CNS of Lymnaea stagnalis subjected to a single conditioning trial. Then, by next generation sequencing of these libraries, we identified a specific pool of miRNAs regulated by training. Of these miRNAs, we focussed on Lym-miR-137 whose seed region shows perfect complementarity to a target sequence in the 3' UTR of the mRNA for CREB2, a well-known memory repressor. We found that Lym-miR-137 was transiently up-regulated 1 h after single-trial conditioning, preceding a down-regulation of Lym-CREB2 mRNA. Furthermore, we discovered that Lym-miR-137 is co-expressed with Lym-CREB2 mRNA in an identified neuron with an established role in LTM. Finally, using an in vivo loss-of-function approach we demonstrated that Lym-miR-137 is required for single-trial induced LTM.
Collapse
Affiliation(s)
- Sergei A Korneev
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Dimitris V Vavoulis
- RDM Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Clifton, BS8 1UB, UK
| | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
15
|
Briskin-Luchinsky V, Levy R, Halfon M, Susswein AJ. Molecular correlates of separate components of training that contribute to long-term memory formation after learning that food is inedible in Aplysia. ACTA ACUST UNITED AC 2018; 25:90-99. [PMID: 29339560 PMCID: PMC5772390 DOI: 10.1101/lm.046326.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Training Aplysia with inedible food for a period that is too brief to produce long-term memory becomes effective in producing memory when training is paired with a nitric oxide (NO) donor. Lip stimulation for the same period of time paired with an NO donor is ineffective. Using qPCR, we examined molecular correlates of brief training versus lip stimulation, of treatment with an NO donor versus saline, and of the combined stimuli producing long-term memory. Changes were examined in mRNA expression of Aplysia homologs of C/EBP, CREB1, CREB1α, CREB1β, and CREB2, in both the buccal and cerebral ganglia controlling feeding. Both the brief training and the NO donor increased expression of C/EBP, CREB1, CREB1α, and CREB1β, but not CREB2 in the buccal ganglia. For CREB1α, there was a significant interaction between the effects of the brief training and of the NO donor. In addition, the NO donor, but not brief training, increased expression of all of the genes in the cerebral ganglion. These findings show that the components of learning that alone do not produce memory produce molecular changes in different ganglia. Thus, long-term memory is likely to arise by both additive and interactive increases in gene expression.
Collapse
Affiliation(s)
- Valeria Briskin-Luchinsky
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Roi Levy
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Maayan Halfon
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Abraham J Susswein
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
16
|
Yili W, Yuanxiang T, Jianxin Z, Lei X. Effect of electroacupuncture on gene expression in calcium signaling pathway in hippocampal cells in mice with cerebral ischemia reperfusion. J TRADIT CHIN MED 2017; 37:252-60. [DOI: 10.1016/s0254-6272(17)30052-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Gehring KB, Heufelder K, Feige J, Bauer P, Dyck Y, Ehrhardt L, Kühnemund J, Bergmann A, Göbel J, Isecke M, Eisenhardt D. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus. Learn Mem 2016; 23:195-207. [PMID: 27084927 PMCID: PMC4836635 DOI: 10.1101/lm.040964.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
Abstract
The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees(Apis mellifera)we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees' CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus.
Collapse
Affiliation(s)
- Katrin B Gehring
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Karin Heufelder
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Janina Feige
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Paul Bauer
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Yan Dyck
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Lea Ehrhardt
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Johannes Kühnemund
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Anja Bergmann
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Josefine Göbel
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Marlene Isecke
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| |
Collapse
|
18
|
Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:969-81. [PMID: 26233474 DOI: 10.1007/s00359-015-1032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Abstract
Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.
Collapse
|
19
|
Hermann PM, Watson SN, Wildering WC. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet 2014; 5:419. [PMID: 25538730 PMCID: PMC4255604 DOI: 10.3389/fgene.2014.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada
| | - Shawn N Watson
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Willem C Wildering
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
20
|
Naskar S, Wan H, Kemenes G. pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Nat Commun 2014; 5:3967. [PMID: 24875483 PMCID: PMC4048835 DOI: 10.1038/ncomms4967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/25/2014] [Indexed: 12/02/2022] Open
Abstract
The role of CaMKII in learning-induced activation and trafficking of AMPA receptors (AMPARs) is well established. However, the link between the phosphorylation state of CaMKII and the agonist-triggered proteasomal degradation of AMPARs during memory consolidation remains unknown. Here we describe a novel CaMKII-dependent mechanism by which a learning-induced increase in AMPAR levels is stabilized for consolidation of associative long-term memory. Six hours after classical conditioning the levels of both autophosphorylated pT305-CaMKII and GluA1 type AMPAR subunits are significantly elevated in the ganglia containing the learning circuits of the snail Lymnaea stagnalis. CaMKIINtide treatment significantly reduces the learning-induced elevation of both pT305-CaMKII and GluA1 levels and impairs associative long-term memory. Inhibition of proteasomal activity offsets the deleterious effects of CaMKIINtide on both GluA1 levels and long-term memory. These findings suggest that increased levels of pT305-CaMKII play a role in AMPAR dependent memory consolidation by reducing proteasomal degradation of GluA1 receptor subunits.
Collapse
Affiliation(s)
- Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Huimin Wan
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
21
|
Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis. J Neurosci 2013; 33:371-83. [PMID: 23283349 DOI: 10.1523/jneurosci.0679-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pond snail Lymnaea stagnalis is capable of learning taste aversion and consolidating this learning into long-term memory (LTM) that is called conditioned taste aversion (CTA). Previous studies showed that some molluscan insulin-related peptides (MIPs) were upregulated in snails exhibiting CTA. We thus hypothesized that MIPs play an important role in neurons underlying the CTA-LTM consolidation process. To examine this hypothesis, we first observed the distribution of MIP II, a major peptide of MIPs, and MIP receptor and determined the amounts of their mRNAs in the CNS. MIP II was only observed in the light green cells in the cerebral ganglia, but the MIP receptor was distributed throughout the entire CNS, including the buccal ganglia. Next, when we applied exogenous mammalian insulin, secretions from MIP-containing cells or partially purified MIPs, to the isolated CNS, we observed a long-term change in synaptic efficacy (i.e., enhancement) of the synaptic connection between the cerebral giant cell (a key interneuron for CTA) and the B1 motor neuron (a buccal motor neuron). This synaptic enhancement was blocked by application of an insulin receptor antibody to the isolated CNS. Finally, injection of the insulin receptor antibody into the snail before CTA training, while not blocking the acquisition of taste aversion learning, blocked the memory consolidation process; thus, LTM was not observed. These data suggest that MIPs trigger changes in synaptic connectivity that may be correlated with the consolidation of taste aversion learning into CTA-LTM in the Lymnaea CNS.
Collapse
|
22
|
Kemenes G. Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. INVERTEBRATE LEARNING AND MEMORY 2013. [DOI: 10.1016/b978-0-12-415823-8.00020-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur J Anaesthesiol 2010; 27:835-41. [PMID: 20485178 DOI: 10.1097/eja.0b013e32833a6561] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE There is increasing interest in studying the role of tau hyperphosphorylation associated with memory impairment. We examined the involvement of tau hyperphosphorylation in memory impairment after hypothermia following isoflurane anaesthesia in rats. METHODS Adult rats were randomly divided into three groups: the control group received no treatment and others were subjected to 1.5% isoflurane anaesthesia with or without temperature control for 2 h. On the day before anaesthesia and on postanaesthetic days 1, 3 and 7, cognitive functions were assessed in a Y-maze test paradigm. To find the relationship between memory results and tau, we measured the site-specific phosphorylation of tau at Thr-205 and Ser-396 and the activity of protein phosphatase 2A within the hippocampus. RESULTS The spatial learning and memory of animals with hypothermia were impaired at day 1 after anaesthesia, compared with nonanaesthetized rats. Anaesthesia and hypothermia led to tau hyperphosphorylation at the Thr-205 and Ser-396 epitopes in the hippocampus. There was no significant difference in the protein phosphatase 2A activity between the control and the postanaesthetic rat hippocampal samples, whereas nearly 45% protein phosphatase 2A inhibition was detected in the anaesthetized without temperature maintenance rat samples. CONCLUSION Our results indicate that tau phosphorylation is not a direct result of anaesthesia per se, but it is due to anaesthesia-induced hypothermia and this leads to the inhibition of phosphatase activity as well as tau hyperphosphorylation. Tau hyperphosphorylation is associated with the observed deficits in spatial learning and memory following anaesthesia in hypothermic rats.
Collapse
|
24
|
A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate. J Neurosci 2010; 30:13766-73. [PMID: 20943917 DOI: 10.1523/jneurosci.2577-10.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Similar to other invertebrate and vertebrate animals, cAMP-dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unknown. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy in combination with biochemical and immunohistochemical methods, recently we have obtained evidence for the existence of a Lymnaea homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) and for the AC-activating effect of PACAP in the Lymnaea nervous system. Here we first tested the hypothesis that PACAP plays an important role in the formation of robust LTM after single-trial classical food-reward conditioning. Application of the PACAP receptor antagonist PACAP6-38 around the time of single-trial training with amyl acetate and sucrose blocked associative LTM, suggesting that in this "strong" food-reward conditioning paradigm the activation of AC by PACAP was necessary for LTM to form. We found that in a "weak" multitrial food-reward conditioning paradigm, lip touch paired with sucrose, memory formation was also dependent on PACAP. Significantly, systemic application of PACAP at the beginning of multitrial tactile conditioning accelerated the formation of transcription-dependent memory. Our findings provide the first evidence to show that in the same nervous system PACAP is both necessary and instructive for fast and robust memory formation after reward classical conditioning.
Collapse
|
25
|
Guo CH, Senzel A, Li K, Feng ZP. De novo protein synthesis of syntaxin-1 and dynamin-1 in long-term memory formation requires CREB1 gene transcription in Lymnaea stagnalis. Behav Genet 2010; 40:680-93. [PMID: 20563839 DOI: 10.1007/s10519-010-9374-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
Abstract
Consolidation of aversive operant conditioning into long-term memory (LTM) requires CREB-dependent de novo protein synthesis. The newly synthesized proteins are distributed to the synapses in neurons that are involved in memory formation and storage. Accumulating evidence indicates that the presynaptic release mechanisms also play a role in long-term synaptic plasticity. Our understanding of whether the presynaptic proteins undergo de novo synthesis during long-term memory formation is limited. In this study, we investigated the involvement of syntaxin-1, a presynaptic exocytotic protein, and dynamin-1, an endocytotic protein, in the formation of long-term memory. We took advantage of a well-established aversive operant conditioning model of aerial respiratory behavior in the fresh water pond snail Lymnaea stagnalis, and demonstrated that the LTM formation is associated with increased expression of syntaxin-1 and dynamin-1, coincident with elevated levels of CREB1. Partial knockdown of CREB1 gene by double stranded RNA inhibition (dsRNAi) prior to operant conditioning prevented snails from memory consolidation, and reduced the expression of syntaxin-1 and dynamin-1 at both mRNA and protein levels. These findings suggest that CREB1-mediated gene expression is required for the LTM-induced up-regulation of synaptic proteins, syntaxin-1 and dynamin-1, in L. stagnalis. Our study thus offers new insights into the molecular mechanisms that mediate CREB1-dependent long-term memory formation.
Collapse
Affiliation(s)
- Cong-Hui Guo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | |
Collapse
|
26
|
Sadamoto H, Kitahashi T, Fujito Y, Ito E. Learning-Dependent Gene Expression of CREB1 Isoforms in the Molluscan Brain. Front Behav Neurosci 2010; 4:25. [PMID: 20631825 PMCID: PMC2901150 DOI: 10.3389/fnbeh.2010.00025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/30/2010] [Indexed: 11/13/2022] Open
Abstract
Cyclic AMP-responsive element binding protein1 (CREB1) has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1) mRNA isoforms of spliced variants in the central nervous system (CNS) of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA) learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.
Collapse
Affiliation(s)
- Hisayo Sadamoto
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Japan
| | | | | | | |
Collapse
|
27
|
Pirger Z, Laszlo Z, Hiripi L, Hernadi L, Toth G, Lubics A, Reglodi D, Kemenes G, Mark L. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis. J Mol Neurosci 2010; 42:464-71. [PMID: 20396976 DOI: 10.1007/s12031-010-9361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/23/2010] [Indexed: 02/06/2023]
Abstract
PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.
Collapse
Affiliation(s)
- Zsolt Pirger
- Department of Experimental Zoology, Balaton Limnological Research Institute, Tihany, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sárvári M, Szego EM, Barabás K, Jávor A, Tóth S, Kovács Z, Abrahám IM. Genistein induces phosphorylation of cAMP response element-binding protein in neonatal hypothalamus in vivo. J Neuroendocrinol 2009; 21:1024-8. [PMID: 19840237 DOI: 10.1111/j.1365-2826.2009.01925.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effect of the phytoestrogen, genistein and 17beta-oestradiol on cAMP response element-binding protein (CREB) phosphorylation in the neonatal female rat hypothalamus in vivo using western blot analysis and immunohistochemistry. Although CREB expression was insensitive to the compounds we tested, administration of genistein and 17beta-oestradiol induced rapid CREB phosphorylation (< 15 min) in the hypothalamus and its level remained elevated at 4 h. Quantitative immunohistochemical analysis showed that genistein and 17beta-oestradiol had no effect on CREB phosphorylation in the magnocellular subdivision of paraventricular nucleus. By contrast, genistein induced a dose-dependent increase in CREB phosphorylation in the medial preoptic area (mPOA) and anteroventral periventricular nucleus (AVPV). Administration of 17beta-oestradiol also caused a rapid, dose-dependent increase in CREB phosphorylation in the hypothalamus, mPOA and AVPV. These results demonstrate that genistein induces oestrogen-like rapid action on CREB phosphorylation in the neonatal central nervous system in vivo.
Collapse
Affiliation(s)
- M Sárvári
- Richter Gedeon Ltd. Molecular Neurobiology Research Group, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
29
|
Time-window for sensitivity to cooling distinguishes the effects of hypothermia and protein synthesis inhibition on the consolidation of long-term memory. Neurobiol Learn Mem 2008; 90:651-4. [PMID: 18793738 DOI: 10.1016/j.nlm.2008.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/01/2008] [Accepted: 08/03/2008] [Indexed: 11/23/2022]
Abstract
The effects of hypothermia on memory formation have been examined extensively, and while it is clear that post-training cooling interferes with the process of consolidation, the nature of the temperature sensitive processes disrupted in this way remain poorly defined. Post-training manipulations that disrupt consolidation tend to be effective during specific time-windows of sensitivity, the timing and duration of which are directly related to the mechanism through which the treatment induces amnesia. As such, different treatments that target the same basic processes should be associated with similar time-windows of sensitivity. Using this rationale we have investigated the possibility that cooling induced blockade of long-term memory (LTM) stems from the disruption of protein synthesis. By varying the timing of post-training hypothermia we have determined the critical period during which cooling disrupts the consolidation of appetitive long-term memory in the pond snail Lymnaea. Post-training hypothermia was found to disrupt LTM only when applied immediately after conditioning, while delaying the treatment by 10 min left the 24 h memory trace intact. This brief (<10 min) window of sensitivity differs from the time-window we have previously described for the protein synthesis inhibitor anisomycin, which was effective during at least the first 30 min after conditioning [Fulton, D., Kemenes, I., Andrew, R. J., & Benjamin, P. R. (2005). A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning. European Journal of Neuroscience, 21, 1347-1358]. We conclude that hypothermia and protein synthesis inhibition exhibit distinct time-windows of effectiveness in Lymnaea, a fact that is inconsistent with the hypothesis that cooling induced amnesia occurs through the direct disruption of macromolecular synthesis.
Collapse
|
30
|
Michel M, Kemenes I, Müller U, Kemenes G. Different phases of long-term memory require distinct temporal patterns of PKA activity after single-trial classical conditioning. Learn Mem 2008; 15:694-702. [PMID: 18772258 DOI: 10.1101/lm.1088408] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cAMP-dependent protein kinase (PKA) is known to play a critical role in both transcription-independent short-term or intermediate-term memory and transcription-dependent long-term memory (LTM). Although distinct phases of LTM already have been demonstrated in some systems, it is not known whether these phases require distinct temporal patterns of learning-induced PKA activation. This question was addressed in a robust form of associative LTM that emerges within a matter of hours after single-trial food-reward classical conditioning in the pond snail Lymnaea stagnalis. After establishing the molecular and functional identity of the PKA catalytic subunit in the Lymnaea nervous system, we used a combination of PKA activity measurement and inhibition techniques to investigate its role in LTM in intact animals. PKA activity in ganglia involved in single-trial learning showed a short latency but prolonged increase after classical conditioning. However, while increased PKA activity immediately after training (0-10 min) was essential for an early phase of LTM (6 h), the late phase of LTM (24 h) required a prolonged increase in PKA activity. These observations indicate mechanistically different roles for PKA in recent and more remote phases of LTM, which may underpin different cellular and molecular mechanisms required for these phases.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Biology and Environmental Sciences, Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | |
Collapse
|
31
|
Immunohistochemical detection of the activation of CREB and c-Fos transcription factors in the nervous system of the terrestrial snail induced by pentylenetetrazole. ACTA ACUST UNITED AC 2007; 37:853-6. [DOI: 10.1007/s11055-007-0092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/06/2006] [Indexed: 10/22/2022]
|
32
|
Azami S, Wagatsuma A, Sadamoto H, Hatakeyama D, Usami T, Fujie M, Koyanagi R, Azumi K, Fujito Y, Lukowiak K, Ito E. Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea. J Neurosci Res 2007; 84:1610-20. [PMID: 16941636 DOI: 10.1002/jnr.21045] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pond snail Lymnaea stagnalis is capable of learning conditioned taste aversion (CTA) and then consolidating that learning into long-term memory (LTM) that persists for at least 1 month. LTM requires de novo protein synthesis and altered gene activity. Changes in gene activity in Lymnaea that are correlated with, much less causative, memory formation have not yet been identified. As a first step toward rectifying this situation, we constructed a cDNA microarray with mRNAs extracted from the central nervous system (CNS) of Lymnaea. We then, using this microarray assay, identified genes whose activity either increased or decreased following CTA memory consolidation. We also identified genes whose expression levels were altered after inhibition of the cyclic AMP response element-binding protein (CREB) that is hypothesized to be a key transcription factor for CTA memory. We found that the molluscan insulin-related peptide II (MIP II) was up-regulated during CTA-LTM, whereas the gene encoding pedal peptide preprohormone (Pep) was down-regulated by CREB2 RNA interference. We next examined mRNAs of MIP II and Pep using real-time RT-PCR with SYBR Green. The MIP II mRNA level in the CNS of snails exhibiting "good" memory for CTA was confirmed to be significantly higher than that from the CNS of snails exhibiting "poor" memory. In contrast, there was no significant difference in expression levels of the Pep mRNA between "good" and "poor" performers. These data suggest that in Lymnaea MIP II may play a role in the consolidation process that forms LTM following CTA training.
Collapse
Affiliation(s)
- Sachiyo Azami
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Canesi L, Ciacci C, Lorusso LC, Betti M, Guarnieri T, Tavolari S, Gallo G. Immunomodulation by 17β-estradiol in bivalve hemocytes. Am J Physiol Regul Integr Comp Physiol 2006; 291:R664-73. [PMID: 16601263 DOI: 10.1152/ajpregu.00139.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals, estrogens have dose- and cell-type-specific effects on immune cells and may act as pro- and anti-inflammatory stimuli, depending on the setting. In the bivalve mollusc Mytilus, the natural estrogen 17β-estradiol (E2) has been shown to affect neuroimmune functions. We have investigated the immunomodulatory role of E2 in Mytilus hemocytes, the cells responsible for the innate immune response. E2 at 5–25 nM rapidly stimulated phagocytosis and oxyradical production in vitro; higher concentrations of E2 inhibited phagocytosis. E2-induced oxidative burst was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-l-arginine and superoxide dismutase, indicating involvement of NO and O2−; NO production was confirmed by nitrite accumulation. The effects of E2 were prevented by the antiestrogen tamoxifen and by specific kinase inhibitors, indicating a receptor-mediated mechanism and involvement of p38 MAPK and PKC. E2 induced rapid and transient increases in the phosphorylation state of PKC, as well as of a aCREB-like (cAMP responsive element binding protein) transcription factor, as indicated by Western blot analysis with specific anti-phospho-antibodies. Localization of estrogen receptor-α- and -β-like proteins in hemocytes was investigated by immunofluorescence confocal microscopy. The effects of E2 on immune function were also investigated in vivo at 6 and 24 h in hemocytes of E2-injected mussels. E2 significantly affected hemocyte lysosomal membrane stability, phagocytosis, and extracellular release of hydrolytic enzymes: lower concentrations of E2 resulted in immunostimulation, and higher concentrations were inhibitory. Our data indicate that the physiological role of E2 in immunomodulation is conserved from invertebrates to mammals.
Collapse
Affiliation(s)
- Laura Canesi
- Istituto di Scienze Fisiologiche, Università Carlo Bo di Urbino, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kemenes G, Kemenes I, Michel M, Papp A, Müller U. Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J Neurosci 2006; 26:6298-302. [PMID: 16763037 PMCID: PMC6675185 DOI: 10.1523/jneurosci.0890-06.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After consolidation, a process that requires gene expression and protein synthesis, memories are stable and highly resistant to disruption by amnestic influences. Recently, consolidated memory has been shown to become labile again after retrieval and to require a phase of reconsolidation to be preserved. New findings, showing that the dependence of reconsolidation on protein synthesis decreases with the age of memory, point to changing molecular requirements for reconsolidation during memory maturation. We examined this possibility by comparing the roles of protein synthesis (a general molecular requirement for memory consolidation) and the activation of protein kinase A (PKA) (a specific molecular requirement for memory consolidation), in memory reconsolidation at two time points after training. Using associative learning in Lymnaea, we show that reconsolidation after the retrieval of consolidated memory at both 6 and 24 h requires protein synthesis. In contrast, only reconsolidation at 6 h after training, but not at 24 h, requires PKA activity, which is in agreement with the measured retrieval-induced PKA activation at 6 h. This phase-dependent differential molecular requirement for reconsolidation supports the notion that even seemingly consolidated memories undergo further selective molecular maturation processes, which may only be detected by analyzing the role of specific pathways in memory reconsolidation after retrieval.
Collapse
Affiliation(s)
- György Kemenes
- Sussex Centre for Neuroscience, Department of Biology and Environmental Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | |
Collapse
|
35
|
Straub VA, Kemenes I, O'Shea M, Benjamin PR. Associative memory stored by functional novel pathway rather than modifications of preexisting neuronal pathways. J Neurosci 2006; 26:4139-46. [PMID: 16611831 PMCID: PMC6673874 DOI: 10.1523/jneurosci.0489-06.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Associative conditioning involves changes in the processing pathways activated by sensory information to link the conditioned stimulus (CS) to the conditioned behavior. Thus, conditioning can recruit neuronal elements to form new pathways for the processing of the CS and/or can change the strength of existing pathways. Using a behavioral and systems level electrophysiological approach on a tractable invertebrate circuit generating feeding in the mollusk Lymnaea stagnalis, we identified three independent pathways for the processing of the CS amyl acetate used in appetitive conditioning. Two of these pathways, one suppressing and the other stimulating feeding, mediate responses to the CS in naive animals. The effects of these two pathways on feeding behavior are unaltered by conditioning. In contrast, the CS response of a third stimulatory pathway is significantly enhanced after conditioning, becoming an important contributor to the overall CS response. This is unusual because, in most of the previous examples in which naive animals already respond to the CS, memory formation results from changes in the strength of pathways that mediate the existing response. Here, we show that, in the molluscan feeding system, both modified and unmodified pathways are activated in parallel by the CS after conditioning, and it is their integration that results in the conditioned response.
Collapse
Affiliation(s)
- Volko A Straub
- Sussex Centre for Neuroscience, School of Biology and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Sugai R, Shiga H, Azami S, Watanabe T, Sadamoto H, Fujito Y, Lukowiak K, Ito E. Taste discrimination in conditioned taste aversion of the pond snail Lymnaea stagnalis. J Exp Biol 2006; 209:826-33. [PMID: 16481572 DOI: 10.1242/jeb.02069] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Conditioned taste aversion (CTA) in the pond snail Lymnaea stagnalis has been widely used as a model for gaining an understanding of the molecular and behavioral mechanisms underlying learning and memory. At the behavioral level, however, it is still unclear how taste discrimination and CTA interact. We thus examined how CTA to one taste affected the feeding response induced by another appetitive food stimulus. We first demonstrated that snails have the capacity to recognize sucrose and carrot juice as distinct appetitive stimuli. We then found that snails can become conditioned(i.e. CTA) to avoid one of the stimuli and not the other. These results show that snails can distinguish between appetitive stimuli during CTA, suggesting that taste discrimination is processed upstream of the site where memory consolidation in the snail brain occurs. Moreover, we examined second-order conditioning with two appetitive stimuli and one aversive stimulus. Snails acquired second-order conditioning and were still able to distinguish between the different stimuli. Finally, we repeatedly presented the conditional stimulus alone to the conditioned snails, but this procedure did not extinguish the long-term memory of CTA in the snails. Taken together, our data suggest that CTA causes specific, irreversible and rigid changes from appetitive stimuli to aversive ones in the conditioning procedure.
Collapse
Affiliation(s)
- Rio Sugai
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Larade K, Storey KB. Analysis of signal transduction pathways during anoxia exposure in a marine snail: A role for p38 MAP kinase and downstream signaling cascades. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:85-91. [PMID: 16326124 DOI: 10.1016/j.cbpb.2005.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/15/2005] [Accepted: 10/16/2005] [Indexed: 10/25/2022]
Abstract
The responses of members of the three main MAPK families (ERK, JNK/SAPK, p38 MAPK), as well as selected peripheral pathways, were examined in hepatopancreas of the marine periwinkle, Littorina littorea, to determine if anoxia exposure influenced the total protein content or the phosphorylation status of any key components. The content of active phospho-p38 MAPK was 2-fold higher in hepatopancreas from anoxic snails relative to controls. A 1.7-fold increase in the amount of phospho-Hsp27 and a 1.3-fold increase in phospho-CREB correlated well with the changes in p38 MAPK phosphorylation. Activation of these factors via p38 MAPK may be vital to the reorganization of metabolic responses to anoxia in hepatopancreas. No changes in components of the JNK/SAPK and ERK pathways occurred and transcription factors involved in lipid metabolism did not appear to be affected by anoxia. The present analysis of a variety of signaling pathways has implicated the p38 MAPK pathway as a key anoxia-responsive signal transduction pathway in L. littorea.
Collapse
Affiliation(s)
- Kevin Larade
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
38
|
Wagatsuma A, Azami S, Sakura M, Hatakeyama D, Aonuma H, Ito E. De Novo synthesis of CREB in a presynaptic neuron is required for synaptic enhancement involved in memory consolidation. J Neurosci Res 2006; 84:954-60. [PMID: 16886187 DOI: 10.1002/jnr.21012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interaction between the activator type of cyclic AMP response element binding protein (CREB1) and the repressor type (CREB2) results in determining the emergence of long-lasting synaptic enhancement involved in memory consolidation. However, we still do not know whether the constitutively expressed forms of CREB are enough or the newly synthesized forms are required for the synaptic enhancement. In addition, if the newly synthesized forms are needed, we must determine the time for translation of CREB from its mRNA. We applied the methods of RNA interference and real-time polymerase chain reaction (PCR) to CREB in the cerebral giant cells of Lymnaea. The cerebral giant cells play an important role in associative learning and employ a CREB cascade for the synaptic enhancement to neurons such as the B1 motoneurons. We injected the small interfering RNA (siRNA) of CREB1 or CREB2 into the cerebral giant cells and examined the changes in amplitude of excitatory postsynaptic potential (EPSP) recorded in the B1 motoneurons. The changes in the amounts of CREB1 and CREB2 mRNAs were also examined in the cerebral giant cells. The EPSP amplitude was suppressed 15 min after injection of CREB1 siRNA, whereas that was augmented 60 min after injection of CREB2 siRNA. In the latter case, the decrease in the amount of CREB2 mRNA was confirmed by real-time PCR. Our results showed that the de novo synthesized forms of CREB are required within tens of minutes for the synaptic enhancement in memory consolidation.
Collapse
Affiliation(s)
- Akiko Wagatsuma
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Hatakeyama D, Sadamoto H, Watanabe T, Wagatsuma A, Kobayashi S, Fujito Y, Yamashita M, Sakakibara M, Kemenes G, Ito E. Requirement of new protein synthesis of a transcription factor for memory consolidation: paradoxical changes in mRNA and protein levels of C/EBP. J Mol Biol 2005; 356:569-77. [PMID: 16403525 DOI: 10.1016/j.jmb.2005.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/20/2005] [Accepted: 12/02/2005] [Indexed: 11/17/2022]
Abstract
Some specific transcription factors are essential for memory consolidation across species. However, it is still unclear whether only the activation of constitutively expressed forms of these conserved transcription factors is involved in memory consolidation or their de novo synthesis also occurs after learning. This question has remained unanswered partly because of the lack of an efficient method for the determination of copy numbers of particular mRNAs in single neurons, which allows the detection of new transcription at the cellular level. Here we applied a newly developed protocol of single-cell quantitative real-time polymerase chain reaction (qRT-PCR) to single neurons playing an important role in associative learning. Specifically, we examined the changes in the mRNA and protein expression levels of a highly conserved transcription factor, CCAAT/enhancer binding protein (C/EBP), in the paired B2 motoneurons of the pond snail Lymnaea stagnalis. These buccal neurons are involved in the motor control of feeding behavior, with a potentially important role in conditioned taste aversion (CTA). Single-cell qRT-PCR revealed a significant decrease in LymC/EBP mRNA copy numbers in the B2 motoneurons during memory consolidation after CTA training. By contrast, isoelectric focusing and immunoblotting of extracts of the buccal ganglia showed that translation and phosphorylation levels of LymC/EBP significantly increased during memory consolidation. The C/EBP-like immunoreactivity in the B2 motoneurons, which are the major immunopositive component in the buccal ganglia, also significantly increased during memory consolidation, suggesting that the main source of increase in the level of protein in the buccal ganglia are the B2 motoneurons. Thus, early memory consolidation after CTA learning in L.stagnalis involves both the rapid synthesis and phosphorylation of LymC/EBP as well as the rapid breakdown of LymC/EBP mRNA in the neural network controlling feeding, suggesting that all of these processes play a role in the function of C/EBP in memory consolidation.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Douglas SJ, Dawson-Scully K, Sokolowski MB. The neurogenetics and evolution of food-related behaviour. Trends Neurosci 2005; 28:644-52. [PMID: 16203044 DOI: 10.1016/j.tins.2005.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/22/2005] [Accepted: 09/20/2005] [Indexed: 11/30/2022]
Abstract
All organisms must acquire nutrients from the ambient environment to survive. In animals, the need to eat has driven the evolution of a rich array of complex food-related behaviours that ensure appropriate nutrient intake in diverse niches. Here, we review some of the neural and genetic components that contribute to the regulation of food-related behaviour in invertebrates, with emphasis on mechanisms that are conserved throughout various taxa and activities. We focus on synthesizing neurobiological and genetic approaches into a neurogenetic framework that explains food-related behaviour as the product of interactions between neural substrates, genes and internal and external environments.
Collapse
Affiliation(s)
- Scott J Douglas
- Department of Biology, University of Toronto, 3359 Mississauga Road, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
41
|
Ribeiro MJ, Schofield MG, Kemenes I, O'Shea M, Kemenes G, Benjamin PR. Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning. Learn Mem 2005; 12:538-45. [PMID: 16166393 PMCID: PMC1240067 DOI: 10.1101/lm.8305] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although an important role for the mitogen-activated protein kinase (MAPK) has been established for memory consolidation in a variety of learning paradigms, it is not known if this pathway is also involved in appetitive classical conditioning. We address this question by using a single-trial food-reward conditioning paradigm in the freshwater snail Lymnaea stagnalis. This learning paradigm induces protein synthesis-dependent long-term memory formation. Inhibition of MAPK phosphorylation blocked long-term memory consolidation without affecting the sensory and motor abilities of the snails. Thirty minutes after conditioning, levels of MAPK phosphorylation were increased in extracts from the buccal and cerebral ganglia. These ganglia are involved in the generation, modulation, and plasticity of the feeding behavior. We also detected an increase in levels of MAPK phosphorylation in the peripheral tissue around the mouth of the snails where chemoreceptors are located. Although an increase in MAPK phosphorylation was shown to be essential for food-reward conditioning, it was also detected in snails that were exposed to the conditioned stimulus (CS) or the unconditioned stimulus (US) alone, suggesting that phosphorylation of MAPK is necessary but not sufficient for learning to occur.
Collapse
Affiliation(s)
- Maria J Ribeiro
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Nikitin ES, Kiss T, Staras K, O'shea M, Benjamin PR, Kemenes G. Persistent sodium current is a target for cAMP-induced neuronal plasticity in a state-setting modulatory interneuron. J Neurophysiol 2005; 95:453-63. [PMID: 16162825 DOI: 10.1152/jn.00785.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have identified a TTX-resistant low-threshold persistent inward sodium current in the cerebral giant cells (CGCs) of Lymnaea, an important state-setting modulatory cell type of molluscan feeding networks. This current has slow voltage-dependent activation and de-activation kinetics, ultra-slow inactivation kinetics and fast de-inactivation kinetics. It activates at approximately -90 mV, peaks at approximately -30 mV, reverses at approximately +35 mV and does not show full voltage-dependent inactivation even at positive voltage steps. Lithium-sodium replacement experiments indicate that the persistent sodium current makes a significant contribution to the CGC membrane potential. Injection of cyclic adenosine monophosphate (cAMP) into the CGC cell body produces a large increase in the persistent sodium current that lasts for several hours. cAMP injection also leads to increased bursting, a significant decrease in the resistance and a significant depolarization of the soma membrane, indicating that cAMP-dependent mechanisms induce prolonged neuronal plasticity in the CGCs. Our observations provide the first link between cAMP-mediated modulation of a TTX-resistant persistent sodium current and prolonged neuronal plasticity in an identified modulatory cell type that plays an important role in behavioral state setting.
Collapse
Affiliation(s)
- E S Nikitin
- School of Life Sciences, Department of Biology and Environmental Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
43
|
Wagatsuma A, Sadamoto H, Kitahashi T, Lukowiak K, Urano A, Ito E. Determination of the exact copy numbers of particular mRNAs in a single cell by quantitative real-time RT-PCR. ACTA ACUST UNITED AC 2005; 208:2389-98. [PMID: 15939778 DOI: 10.1242/jeb.01625] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gene expression is differently regulated in every cell even though the cells are included in the same tissue. For this reason, we need to measure the amount of mRNAs in a single cell to understand transcription mechanism better. However, there are no accurate, rapid and appropriate methods to determine the exact copy numbers of particular mRNAs in a single cell. We therefore developed a procedure for isolating a single, identifiable cell and determining the exact copy numbers of mRNAs within it. We first isolated the cerebral giant cell of the pond snail Lymnaea stagnalis as this neuron plays a key role in the process of memory consolidation of a learned behavior brought about by associative learning of feeding behavior. We then determined the copy numbers of mRNAs for the cyclic AMP-responsive element binding proteins (CREBs). These transcription factors play an important role in memory formation across animal species. The protocol uses two techniques in concert with each other: a technique for isolating a single neuron with newly developed micromanipulators coupled to an assay of mRNAs by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). The molecular assay determined the mRNA copy numbers, each of which was compared with a standard curve prepared from cDNA solutions corresponding to the serially diluted solutions of Lymnaea CREB mRNA. The standard curves were linear within a range of 10 to 10(5) copies, and the intra-assay variation was within 15%. Each neuron removed from the ganglia was punctured to extract the total RNA directly and was used for the assay without further purification. Using this two-step procedure, we found that the mRNA copy number of CREB repressor (CREB2) was 30-240 in a single cerebral giant cell, whereas that of CREB activator (CREB1) was below the detection limits of the assay (< 25). These results suggest that the CREB cascade is regulated by an excess amount of CREB2 in the cerebral giant cells. Our procedure is the only quantitative analysis for elucidation of the dynamics of gene transcription in a single cell.
Collapse
Affiliation(s)
- Akiko Wagatsuma
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Fulton D, Kemenes I, Andrew RJ, Benjamin PR. A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning. Eur J Neurosci 2005; 21:1347-58. [PMID: 15813944 DOI: 10.1111/j.1460-9568.2005.03970.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein synthesis is generally held to be essential for long-term memory formation. Often two periods of sensitivity to blockade of protein synthesis have been described, one immediately after training and another several hours later. We wished to relate the timing of protein synthesis-dependence of behavioural long-term memory (LTM) formation to an electrophysiological correlate of the LTM memory trace. We used the snail Lymnaea because one-trial appetitive conditioning of feeding using a chemical conditioned stimulus leads to a stable LTM trace that can be monitored behaviourally and then electrophysiologically in preparations made from the same animals. Anisomycin (an inhibitor of translation) injected 10 min after training blocked behavioural LTM formation. Actinomycin D (an inhibitor of transcription) was also effective at 10 min. When anisomycin, at doses shown to be effective in blocking central nervous system protein synthesis, was injected at 1, 2, 3, 4, 5 and 6 h after training there was no effect on recall. These results indicate that there is a single period of sensitivity to protein synthesis inhibition in Lymnaea lasting for between 10 min and 1 h after training with no evidence for a second window of sensitivity. An electrophysiological correlate of LTM was found to be sensitive to anisomycin injected 10 min after training. It is unusual to find only one period of protein synthesis-dependence in detailed time-course studies of LTM, and this suggests that the consolidation processes involving protein synthesis are relatively rapid in one-trial appetitive conditioning and complete within 1 h of training.
Collapse
Affiliation(s)
- Daniel Fulton
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QG, UK
| | | | | | | |
Collapse
|
45
|
Canesi L, Betti M, Lorusso LC, Ciacci C, Gallo G. 'In vivo' effects of Bisphenol A in Mytilus hemocytes: modulation of kinase-mediated signalling pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 71:73-84. [PMID: 15642633 DOI: 10.1016/j.aquatox.2004.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 10/13/2004] [Accepted: 10/14/2004] [Indexed: 05/24/2023]
Abstract
Endocrine disrupting chemicals (EDCs) include a variety of natural and synthetic estrogens, as well as estrogen-mimicking chemicals. We have previously shown that in the hemocytes of the mussel Mytilus galloprovincialis Lam. both natural and environmental estrogens in vitro can rapidly affect the phosphorylation state of components of tyrosine kinase-mediated cell signalling, in particular of mitogen activated protein kinases (MAPKs) and signal transducers and activators of transcription (STAT), that are involved in mediating the hemocyte immune response. These effects were consistent with the hypothesis that 'alternative' modes of estrogen action involving kinase-mediated pathways similar to those described in mammalian systems are also present in invertebrate cells. This possibility was investigated in vivo with Bisphenol A (BPA): mussels were injected with BPA and hemocytes sampled at 6, 12, and 24 h post-injection. The results show that BPA (25 nM nominal concentration in the hemolymph) lead to a significant lysosomal membrane destabilisation at all times post-injection, indicating BPA-induced stress conditions in the hemocytes, whereas lower concentrations were ineffective. BPA induced significant changes in the phosphorylation state of MAPK and STAT members, as evaluated by SDS-PAGE and WB of hemocyte protein extracts with specific antibodies, although to a different degree at different exposure times. In particular, BPA induced a dramatic decrease in phosphorylation of the stress-activated p38 MAPK, whose activation is crucial in mediating the bactericidal activity. Moreover, BPA decreased the phosphorylation of a CREB-like transcription factor (cAMP-responsive element binding protein). The results demonstrate that BPA can affect kinase-mediated cell signalling in mussel hemocytes also in vivo, and suggest that EDCs may affect gene expression in mussel cells through modulation of the activity of transcription factors secondary to cytosolic kinase cascades. Overall, these data address the importance of investigating full range responses to EDCs in ecologically relevant marine invertebrate species.
Collapse
Affiliation(s)
- Laura Canesi
- Istituto di Scienze Fisiologiche, Università di Urbino Carlo Bo, Loc. Crocicchia, 61029 Urbino PU, Italy.
| | | | | | | | | |
Collapse
|
46
|
Hatakeyama D, Fujito Y, Sakakibara M, Ito E. Expression and distribution of transcription factor CCAAT/enhancer-binding protein in the central nervous system of Lymnaea stagnalis. Cell Tissue Res 2004; 318:631-41. [PMID: 15578275 DOI: 10.1007/s00441-004-0965-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/28/2004] [Indexed: 11/30/2022]
Abstract
The transcription factor, CCAAT/enhancer-binding protein (C/EBP), is involved in important physiological processes, such as cellular proliferation and differentiation, homeostasis, and higher-order functions of the brain. In the present study, we investigated the distribution of mRNA and protein of C/EBP in the central nervous system of the pond snail, Lymnaea stagnalis, by in situ hybridization and immunohistochemistry. Specificity of the anti-mammalian C/EBP antibody against Lymnaea C/EBP (LymC/EBP) was confirmed by combination of sodium dodecyl sulfate polyacrylamide gel electrophoresis or isoelectric focusing and immunoblotting. Cells positive for in situ hybridization were immunoreactive for LymC/EBP in all 11 ganglia. The motoneurons (B1, B2, B4, and B4 clusters) in the buccal ganglia and interneurons (cerebral giant cell, CGC) in the cerebral ganglia were positive for in situ hybridization and were immunopositive. In the pedal ganglion, the right pedal dorsal 1 (RPeD1), pedal A, and pedal C clusters exhibited positive signals of in situ hybridization and immunohistochemistry for LymC/EBP. CGC and RPeD1 are key neurons for associative learning. In addition, the neuropeptidergic cells in the cerebral, pleural, parietal, and visceral ganglia were positive for in situ hybridization and immunoreactive. Interestingly, although the cytoplasm of almost all immunopositive cells was stained, some neuropeptidergic cells located in the light parietal and visceral ganglia exhibited immunoreactivity in nuclei. Our results suggest that LymC/EBP is involved in learning and memory and in the expression and/or secretion of neuropeptides in Lymnaea.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, 060-0810, Sapporo, Hokkaido, Japan.
| | | | | | | |
Collapse
|
47
|
Sadamoto H, Sato H, Kobayashi S, Murakami J, Aonuma H, Ando H, Fujito Y, Hamano K, Awaji M, Lukowiak K, Urano A, Ito E. CREB in the pond snail Lymnaea stagnalis: cloning, gene expression, and function in identifiable neurons of the central nervous system. ACTA ACUST UNITED AC 2004; 58:455-66. [PMID: 14978723 DOI: 10.1002/neu.10296] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pond snail Lymnaea stagnalis is an excellent model system in which to study the neuronal and molecular substrates of associative learning and its consolidation into long-term memory. Until now, the presence of cyclic AMP (cAMP)-responsive element binding protein (CREB), which is believed to be a necessary component in the process of a learned behavior that is consolidated into long-term memory, has only been assumed in Lymnaea neurons. We therefore cloned and analyzed the cDNA sequences of homologues of CREB1 and CREB2 and determined the presence of these mRNAs in identifiable neurons of the central nervous system (CNS) of L. stagnalis. The deduced amino acid sequence of Lymnaea CREB1 is homologous to transcriptional activators, mammalian CREB1 and Aplysia CREB1a, in the C-terminal DNA binding (bZIP) and phosphorylation domains, whereas the deduced amino acid sequence of Lymnaea CREB2 is homologous to transcriptional repressors, human CREB2, mouse activating transcription factor-4, and Aplysia CREB2 in the bZIP domain. In situ hybridization revealed that only a relatively few neurons showed strongly positive signals for Lymnaea CREB1 mRNA, whereas all the neurons in the CNS contained Lymnaea CREB2 mRNA. Using one of the neurons (the cerebral giant cell) containing Lymnaea CREB1 mRNA, we showed that the injection of a CRE oligonucleotide inhibited a cAMP-induced, long-lasting synaptic plasticity. We therefore conclude that CREBs are present in Lymnaea neurons and may function as necessary players in behavioral plasticity.
Collapse
Affiliation(s)
- Hisayo Sadamoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Poels J, Vanden Broeck J. Insect basic leucine zipper proteins and their role in cyclic AMP-dependent regulation of gene expression. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:277-309. [PMID: 15548422 DOI: 10.1016/s0074-7696(04)41005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway is an important intracellular signal transduction cascade that can be activated by a large variety of stimuli. Activation or inhibition of this pathway will ultimately affect the transcriptional regulation of various genes through distinct responsive sites. In vertebrates, the best- characterized nuclear targets of PKA are the cyclic AMP response element-binding (CREB) proteins. It is now well established that CREB is not only regulated by PKA, but many other kinases can exert an effect as well. Since CREB-like proteins were also discovered in invertebrates, several studies unraveling their physiological functions in this category of metazoans have been performed. This review will mainly focus on the presence and regulation of CREB proteins in insects. Differences in transcriptional responses to the PKA pathway and other CREB-regulating stimuli between cells, tissues, and even organisms can be partially attributed to the presence of different CREB isoforms. In addition, the regulation of CREB appears to show some important differences between insects and vertebrates. Since CREB is a basic leucine zipper (bZip) protein, other insect members of this important family of transcriptional regulators will be briefly discussed as well.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Catholic University Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|