1
|
Tibocha-Bonilla JD, Gandhi V, Lieng C, Moyne O, Santibáñez-Palominos R, Zengler K. Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida. NPJ Syst Biol Appl 2025; 11:55. [PMID: 40413180 PMCID: PMC12103522 DOI: 10.1038/s41540-025-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/20/2025] [Indexed: 05/27/2025] Open
Abstract
The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs and proteome allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene expression, macromolecular assembly, and cofactor utilization, enabling accurate growth predictions without additional constraints. Multi-omics analysis using RNA sequencing and ribosomal profiling data revealed translational prioritization in P. putida, with core pathways, such as nicotinamide biosynthesis and queuosine metabolism, exhibiting higher translational efficiency, while secondary pathways displayed lower priority. Notably, the ME-model significantly outperformed the M-model in alignment with multi-omics data, thereby validating its predictive capacity. Thus, iPpu1676-ME offers valuable insights into P. putida's proteome allocation and presents a powerful tool for understanding resource allocation in this industrially relevant microorganism.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Vishant Gandhi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | | | - Karsten Zengler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0418, USA.
| |
Collapse
|
2
|
Liang X, Yang S, Radosevich M, Wang Y, Duan N, Jia Y. Bacteriophage-driven microbial phenotypic heterogeneity: ecological and biogeochemical importance. NPJ Biofilms Microbiomes 2025; 11:82. [PMID: 40399330 PMCID: PMC12095545 DOI: 10.1038/s41522-025-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Bacteriophages (phages) reprogram host metabolism and generate phenotypic heterogeneity, yet the mechanisms and ecological implications remain poorly understood representing a major knowledge gap in microbial ecology. This review explores how phage infection alters microbial physiology, contributes to single-cell variation, and influences population dynamics. We highlight the potential consequences of phage-driven heterogeneity for microbial community structure and biogeochemical cycling, underscoring the importance of integrating phage-host interactions into ecological and ecosystem models.
Collapse
Affiliation(s)
- Xiaolong Liang
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China.
| | - Shuo Yang
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yongfeng Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Ning Duan
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yongfeng Jia
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China.
| |
Collapse
|
3
|
Udaondo Z, Schilder KA, Blesa ARM, Tena-Garitaonaindia M, Mangana JC, Daddaoua A. Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks. Int J Mol Sci 2025; 26:4677. [PMID: 40429820 PMCID: PMC12112638 DOI: 10.3390/ijms26104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidin, 18008 Granada, Spain
| | - Kelsey Aguirre Schilder
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Ana Rosa Márquez Blesa
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - José Canto Mangana
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Pharmacy Services, A.S. Hospital de Poniente de Almería, 04700 El Ejido, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (IBS), 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|
4
|
Foka K, Ferousi C, Topakas E. Polyester-derived monomers as microbial feedstocks: Navigating the landscape of polyester upcycling. Biotechnol Adv 2025; 82:108589. [PMID: 40354902 DOI: 10.1016/j.biotechadv.2025.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Since their large-scale adoption in the early 20th century, plastics have become indispensable to modern life. However, inadequate disposal and recycling methods have led to severe environmental consequences. While traditional end-of-life plastics management had predominantly relied on landfilling, a paradigm shift towards recycling and valorization emerged in the 1970s, leading to the development of various, mostly mechanochemical, recycling strategies, together with the more recent approach of biological depolymerization and upcycling. Plastic upcycling, which converts plastic waste into higher-value products, is gaining attention as a sustainable strategy to reduce environmental impact and reliance on virgin materials. Microbial plastic upcycling relies on efficient depolymerization methods to generate monomeric substrates, which are subsequently metabolized by native or engineered microbial systems yielding valuable bioproducts. This review focuses on the second phase of microbial polyester upcycling, examining the intracellular metabolic pathways that enable the assimilation and bioconversion of polyester-derived monomers into industrially relevant compounds. Both biodegradable and non-biodegradable polyesters with commercial significance are considered, with emphasis on pure monomeric feedstocks to elucidate intracellular carbon assimilation pathways. Understanding these metabolic processes provides a foundation for future metabolic engineering efforts, aiming to optimize microbial systems for efficient bioconversion of mixed plastic hydrolysates into valuable bioproducts.
Collapse
Affiliation(s)
- Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| |
Collapse
|
5
|
Liu Y, Jiang Y, Meng Y, Xiong W, Yuan Z, Liu R, Yang C. Creating a multifunctional degrader for co-mineralization of p-nitrophenol and 1,2-dichloroethane and its application in wastewater bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137417. [PMID: 39884036 DOI: 10.1016/j.jhazmat.2025.137417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Because the interactions among contaminants may lead to enhanced toxicity, combined pollution caused by the co-presence of multiple contaminants has increasingly gained public concern. p-Nitrophenol (PNP) and 1,2-dichloroethane (1,2-DCA) are frequently co-detected in groundwater. To completely eliminate PNP, 1,2-DCA and intermediates from polluted sites, in this study, a novel degrader KTU-PDG was created by functional assembly of PNP and 1,2-DCA biodegradation pathways in a robust chassis Pseudomonas putida KT2440. Cell growth assay indicated that PNP or 1,2-DCA can be metabolized as a sole carbon source by strain KTU-PDG for cell proliferation. Stable isotope analysis indicated that strain KTU-PDG possesses the capability of co-mineralizing PNP and 1,2-DCA to CO2 in mineral salt medium. In wastewater bioremediation, the strain KTU-PDG was proven to be capable of co-mineralizing PNP and DCA and maintained high cell viability during bioremediation. Herein, we demonstrate for the first time co-mineralization of PNP and 1,2-DCA by a single strain. Moreover, green fluorescent protein (GFP)-labeling of strain KTU-PDG facilitates estimation of viable cell number and real-time monitoring of cellular activity and transfer by autofluorescence in the environment. These merits of strain KTU-PDG highlight great potential of this degrader for in situ bioremediation of sites co-contaminated with PNP and 1,2-DCA. More importantly, this strategy of multi-pathways assembly in an optimal chassis shows good potential for the clean-up of combined pollution caused by other organic pollutants.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuting Jiang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziling Yuan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Mwanza C, Purnamasari M, Back D, Prihatna C, Philmus B, Almabruk KH, Mahmud T, Ye L, Bolton MD, Wu X, Loper JE, Yan Q. Polyyne production is regulated by the transcriptional regulators PgnC and GacA in Pseudomonas protegens Pf-5. Appl Environ Microbiol 2025; 91:e0238824. [PMID: 40178257 PMCID: PMC12016544 DOI: 10.1128/aem.02388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Polyynes produced by bacteria have promising applications in agriculture and medicine due to their potent antimicrobial activities. Polyyne biosynthetic genes have been identified in Pseudomonas and Burkholderia. However, the molecular mechanisms underlying the regulation of polyyne biosynthesis remain largely unknown. In this study, we used a soil bacterium Pseudomonas protegens Pf-5, which was recently reported to produce polyyne called protegenin, as a model to investigate the regulation of bacterial polyyne production. Our results show that Pf-5 controls polyyne production at both the pathway-specific level and a higher global level. Mutation of pgnC, a transcriptional regulatory gene located in the polyyne biosynthetic gene cluster, abolished polyyne production. Gene expression analysis revealed that PgnC directly activates the promoter of polyyne biosynthetic genes. The production of polyyne also requires a global regulator GacA. Mutation of gacA decreased the translation of PgnC, which is consistent with the result that pgnC leader mRNA bound directly to RsmE, an RNA-binding protein negatively regulated by GacA. These results suggest that GacA induces the expression of the PgnC regulator, which in turn activates polyyne biosynthesis. Additionally, the polyyne-producing strain of Pf-5, but not the polyyne-nonproducing strain, could inhibit a broad spectrum of bacteria including both Gram-negative and Gram-positive bacteria.IMPORTANCEAntimicrobial metabolites produced by bacteria are widely used in agriculture and medicine to control plant, animal, and human pathogens. Although bacteria-derived polyynes have been identified as potent antimicrobials for decades, the molecular mechanisms by which bacteria regulate polyyne biosynthesis remain understudied. In this study, we found that polyyne biosynthesis is directly activated by a pathway-specific regulator PgnC, which is induced by a global regulator GacA through the RNA-binding protein RsmE in Pseudomonas protegens. To our knowledge, this work is the first comprehensive study of the regulatory mechanisms of bacterial polyyne biosynthesis at both pathway-specific level and global level. The discovered molecular mechanisms can help us optimize polyyne production for agricultural or medical applications.
Collapse
Affiliation(s)
- Chiseche Mwanza
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Maria Purnamasari
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Daniel Back
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, Fargo, North Dakota, USA
| | - Cahya Prihatna
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Khaled H. Almabruk
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Lumeng Ye
- Institute of Molecular Biology and Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melvin D. Bolton
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, Fargo, North Dakota, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, China
| | - Joyce E. Loper
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Klim M, Żmijowska A, Cycoń M. Potential of newly isolated strain Pseudomonas aeruginosa MC-1/23 for the bioremediation of soil contaminated with selected non-steroidal anti-inflammatory drugs. Front Microbiol 2025; 16:1542875. [PMID: 40099187 PMCID: PMC11912566 DOI: 10.3389/fmicb.2025.1542875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
The widespread usage of non-steroidal anti-inflammatory drugs (NSAIDs) has resulted in their significant accumulation in the environment, necessitating the development of effective methods for their removal. This study primarily isolated a bacterial strain capable of degrading specific NSAIDs and evaluated its potential for eliminating these drugs from contaminated soil through bioaugmentation. The objectives were achieved by assessing the degradation rates of ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX) in liquid media and soil samples inoculated with a newly identified strain, Pseudomonas aeruginosa MC-1/23. In addition, the effect of natural soil microflora and abiotic conditions on the breakdown of the tested NSAIDs was examined. The findings revealed that strain MC-1/23 could metabolize these compounds in a mineral salt medium, utilizing them as carbon and energy sources, suggesting metabolic degradation. When nonsterile soil was augmented with the P. aeruginosa MC-1/23 strain, the degradation rates of the drugs significantly improved, as evidenced by reductions in t1/2 values by 5.3-, 1.4-, and 5.8-fold for IBF, DCF, and NPX, respectively, compared with soil containing only natural microflora. These results confirm that the introduced strain enhances the catabolic potential of existing microflora. Thus, the strain’s degradation and bioremediation capabilities offer valuable applications for remediating NSAID-contaminated soils.
Collapse
Affiliation(s)
- Magdalena Klim
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Sosnowiec, Poland
| | - Agnieszka Żmijowska
- Ecotoxicology Research Group, Laboratory of Analytical Chemistry, Łukasiewicz Research Network-Institute of Industrial Organic Chemistry Branch Pszczyna, Warsaw, Poland
| | - Mariusz Cycoń
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
8
|
Han J, Zhang M, Wang Y, Liu Z, Shi X, He Y, Zhu J, Yi X. Cold Plasma Treatment Facilitated the Conversion of Lignin-Derived Aldehyde for Pseudomonas putida. Appl Biochem Biotechnol 2025; 197:1329-1343. [PMID: 39570516 DOI: 10.1007/s12010-024-05082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Syringaldehyde derived from lignin is one of the essential intermediates for the production of basic chemicals. However, it was poorly understood for the direct microbial conversion of syringaldehyde. Here, this study tried to use cold plasma technique to enhance syringaldehyde conversion for the bacterium Pseudomonas putida. It illustrated that cell growth and syringaldehyde conversion were separately increased by 1.49 times at 3 h and 1.60 times at 6 h for 35 s, 1.16 and 3.44 times for 140 W, and 1.63 and 4.02 times for 105 Pa for P. putida through single factor assays of cold plasma treatment. To be sure, cell growth and syringaldehyde conversion were enhanced by 1.14 and 5.54 times at 3 h under the optimum parameters (35 s, 140 W, and 105 Pa) for P. putida. Furthermore, genome re-sequencing further discovered single-nucleotide polymorphisms of P. putida, such as PP_2589 (A428V), PP_5651 (V82F), and PP_0545 (W335R), and thus indicated that the potential genetic changes derived from cold plasma treatment would be responsible for the acceleration of syringaldehyde conversion. This work would provide a robust strain catalyst and the potential candidate mutation sites for genetic manipulation for microbial bioconversion of the value-added and lignin-based biochemicals.
Collapse
Affiliation(s)
- Jianqi Han
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Meng Zhang
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Yilong Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidan Liu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaohui Shi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
9
|
Mu K, He M, Chen H, Liu T, Fan Y, Tao Y, Feng H, Huang Q, Xiao Y, Chen W. Tetracycline induces wsp operon expression to promote biofilm formation in Pseudomonas putida. Appl Environ Microbiol 2025; 91:e0107124. [PMID: 39589111 PMCID: PMC11784136 DOI: 10.1128/aem.01071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
The overuse and wanton discharge of antibiotics produces a threat to bacteria in the environment, which, in turn, stimulates the more rapid emergence of antibiotic-resistant bacteria. Pseudomonas putida actively forms biofilms to protect the population under tetracycline stress, but the molecular mechanism remains unclear. This study found that tetracycline at sub-minimal inhibitory concentrations increased cyclic diguanylate (c-di-GMP), a second messenger that positively regulates biofilm formation. Four c-di-GMP-metabolizing proteins were found to be involved in the tetracycline-mediated biofilm promotion, including DibA, WspR, PP_3242, and PP_3319. Among them, the diguanylate cyclase WspR displayed the most significant effect on c-di-GMP level and biofilm formation. WspR belongs to the wsp operon comprising seven genes (wspA-wspF and wspR). The wsp operon contained six promoters, including one major start promoter (PwspA) and five internal promoters (PwspB, PwspC, PwspD, PwspF, and PwspR), and tetracycline promoted the activity of PwspA. The stress-response sigma factor RpoS directly bound to PwspA and positively regulated its activity under tetracycline stress. Moreover, RpoS was required for tetracycline to induce PwspA activity and promote biofilm formation. Our results enrich the transcriptional regulation of the wsp operon and reveal the mechanism by which tetracycline promotes biofilm formation in P. putida.IMPORTANCEThe overuse and wanton discharge of antibiotics produces a threat to bacteria in the environment, which, in turn, stimulates the more rapid emergence of antibiotic-resistant bacteria. The Pseudomonas putida actively forms biofilm against antibiotic threats, but the mechanism remains unclear. Here, our results showed that tetracycline treatment at sub-minimal inhibitory concentrations could induce the expression of the Wsp system via the sigma factor RpoS in P. putida, resulting in elevated c-di-GMP levels, which leads to increased biofilm formation. The wsp operon contains one major promoter and five internal promoters, and RpoS directly binds to the major promoter to promote its activity.
Collapse
Affiliation(s)
- Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Haozhe Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Tong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Ying Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Yongxin Tao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
10
|
Velázquez E, de Lorenzo V. AND Logic Based on Suppressor tRNAs Enables Stringent Control of Sliding Base Editors in Pseudomonas putida. ACS Synth Biol 2024; 13:4191-4201. [PMID: 39660532 DOI: 10.1021/acssynbio.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Base editors, e.g., cytosine deaminases, are powerful tools for precise DNA editing in vivo, enabling both targeted nucleotide conversions and segment-specific diversification of bacterial genomes. Yet, regulation of their spatiotemporal activity is crucial to avoid off-target effects and enabling controlled evolution of specific genes and pathways. This work reports a strategy for tight control of base-editing devices through subjecting their expression to a genetic AND logic gate in which two chemical inducer inputs are strictly required for cognate activity. The case study involves an archetypal genetic device consisting of a cytosine deaminase (pmCDA1) fused to a T7 RNA polymerase (RNAPT7), which cause intensive diversification of DNA portions bordered by a T7 promoter and a T7 terminator─but whose activity in vivo has been shown unattainable to govern with standard conditional expression systems. By encoding up to three UAG stop codons into the DNA sequence of the pmCDA1-RNAPT7 fusion, which is transcribed by the 3-methylbenzoate inducible promoter Pm, we first broke the structure of the hybrid protein. Then, to overcome the interruptions caused by UAG codons, we placed transcription of a supF tRNA under the control of a cyclohexanone-dependent system. When tested in the soil bacterium and metabolic engineering chassis Pseudomonas putida KT2440, these modifications changed the performance of the sliding base editor from a flawed YES logic to a precise AND logic. We also showed that such a 2-layer control brings about a minimal background activity as compared to a single-input digitalizer circuit. These results show the ability of suppressor tRNA-based logic gates for achieving stringent expression of otherwise difficult to control devices.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
11
|
Arroyo-Pérez EE, Hook JC, Alvarado A, Wimmi S, Glatter T, Thormann K, Ringgaard S. A conserved cell-pole determinant organizes proper polar flagellum formation. eLife 2024; 13:RP93004. [PMID: 39636223 PMCID: PMC11620751 DOI: 10.7554/elife.93004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
Collapse
Affiliation(s)
- Erick E Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of TübingenTübingenGermany
| | - Stephan Wimmi
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Institute for Biological Physics, University of CologneKölnGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Kai Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Simon Ringgaard
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
12
|
Dibbisa D, Daba T, Mohammed S. Regulatory Element Analysis and Comparative Genomics Study of Heavy Metal-Resistant Genes in the Complete Genome of Cupriavidus gilardii CR3. Bioinform Biol Insights 2024; 18:11779322241299905. [PMID: 39588201 PMCID: PMC11587186 DOI: 10.1177/11779322241299905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Environmental pollution has become a worldwide concern that requires rigorous efforts from all sectors of society to monitor, control, and remediate it. In environmental pollution control, Cupriavidus gilardii CR3 has become a model organism to study resistance to heavy metals as a means of bacterial bioremediation. This research aimed to single out regulatory element analysis and conduct a comparative genome study of the heavy metal resistance genes in the complete genome of C gilardii CR3 using bioinformatics and omics tools. Comparative genome analysis, promoter prediction, common motif identification, transcriptional start site identification, gene annotation, and transcription factor identification search are the major steps to understanding gene expression and regulation. MEME Suit, TOMTOM, Prokka, Rapid Annotation utilizing Subsystem Technology (RAST), Orthologous Average Nucleotide Identity Software Tool (OAT), and EziBio databases or programs were the major tools used in this study. Fourteen transcriptional factors were identified and predicted from the most credible and lowest candidate motifs with an e-value of 3.0e-009, which was statistically the utmost remarkable candidate motif. A detailed evaluation was further performed, and 14 transcriptional factors were identified as in activation, repression, and dual functions. The data revealed that most transcriptional factors identified were used for activation rather than repression. The C gilardii CR3 genome contains many genes responsible for resisting heavy metals such as mercury, cadmium, zinc, copper, and arsenate. As a result, regulatory elements will lay a solid basis for understanding genes responsible for heavy metal bioremediation. It was concluded that further studies with wet lab support could be conducted for confirmation. Moreover, other advanced bioinformatics and omics technologies are needed to strengthen the results.
Collapse
Affiliation(s)
- Duguma Dibbisa
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- School of Biological Sciences and Biotechnology, CNCS, Haramaya University, Dire Dawa, Ethiopia
| | - Tadesse Daba
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Ethiopia Institute of Agricultural Research Center, Addis Ababa, Ethiopia
| | - Seid Mohammed
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
13
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
14
|
Park JY, Lee MG, Charalampopoulos D, Park KM, Chang PS. Geometric isomerization of dietary monounsaturated fatty acids by a cis/trans fatty acid isomerase from Pseudomonas putida KT2440. Int J Biol Macromol 2024; 281:136075. [PMID: 39370082 DOI: 10.1016/j.ijbiomac.2024.136075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Pseudomonas putida KT2440 encodes a defense system that rigidifies membranes by a cytochrome c-type cis/trans fatty acid isomerase (CTI). Despite its potential as an industrial biocatalyst for directly regulating the geometric isomerism of monounsaturated fatty acids, its original catalytic and structural properties have remained elusive. In this study, the catalytic nature of wild-type CTI purified P. putida KT2440 against dietary monounsaturated fatty acids was investigated. It showed substrate preference for palmitoleic acid (C16:1, cis-Δ9), along with substrate promiscuity with chain length and double bond position (palmitoleic acid>cis-vaccenic acid>oleic acid). Under determined optimum reaction conditions, its catalytic efficiency (kcat/Km) was evaluated as 5.13 × 102 M-1·sec-1 against palmitoleic acid. Furthermore, computational predictions of the protein structure revealed its monoheme cytochrome c-type domain and a parasol-like transmembrane domain, suggesting its catalytic mode of action. For effective cis/trans isomerization, the ethylene double bond of monounsaturated fatty acids should be precisely positioned at the heme center of CTI, indicating that its substrate specificity can be determined by the alkyl chain length and the double bond position of the fatty acid substrates. These findings shed light on the potential of CTI as a promising biocatalyst for the food and lipid industry.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyeong Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea
| | | | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Matsumoto S, Kishida K, Nonoyama S, Sakai K, Tsuda M, Nagata Y, Ohtsubo Y. Evolution of the Tn 4371 ICE family: traR-mediated coordination of cargo gene upregulation and horizontal transfer. Microbiol Spectr 2024; 12:e0060724. [PMID: 39264161 PMCID: PMC11448139 DOI: 10.1128/spectrum.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
ICEKKS102Tn4677 carries a bph operon for the mineralization of polychlorinated biphenyls (PCBs)/biphenyl and belongs to the Tn4371 ICE (integrative and conjugative element) family. In this study, we investigated the role of the traR gene in ICE transfer. The traR gene encodes a LysR-type transcriptional regulator, which is conserved in sequence, positioning, and directional orientation among Tn4371 family ICEs. The traR belongs to the bph operon, and its overexpression on solid medium resulted in modest upregulation of traG (threefold), marked upregulation of xis (80-fold), enhanced ICE excision and, most notably, ICE transfer frequency. We propose the evolutional roles of traR, which upon insertion to its current position, might have connected the cargo gene activation and ICE transfer. This property of ICE, i.e., undergoing transfer under environmental conditions that lead to cargo gene activation, would instantly confer fitness advantages to bacteria newly acquiring this ICE, thereby resulting in efficient dissemination of the Tn4371 family ICEs.IMPORTANCEOnly ICEKKS102Tn4677 is proven to transfer among the widely disseminating Tn4371 family integrative and conjugative elements (ICEs) from β and γ-proteobacteria. We showed that the traR gene in ICEKKS102Tn4677, which is conserved in the ICE family with fixed location and direction, is co-transcribed with the cargo gene and activates ICE transfer. We propose that capturing of traR by an ancestral ICE to the current position established the Tn4371 family of ICEs. Our findings provide insights into the evolutionary processes that led to the widespread distribution of the Tn4371 family of ICEs across bacterial species.
Collapse
Affiliation(s)
- Satoshi Matsumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shouta Nonoyama
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichiro Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Calderón CG, Gentina JC, Evrard O, Guzmán L. Bioconversion of L-Tyrosine into p-Coumaric Acid by Tyrosine Ammonia-Lyase Heterologue of Rhodobacter sphaeroides Produced in Pseudomonas putida KT2440. Curr Issues Mol Biol 2024; 46:10112-10129. [PMID: 39329955 PMCID: PMC11430055 DOI: 10.3390/cimb46090603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
p-Coumaric acid (p-CA) is a valuable compound with applications in food additives, cosmetics, and pharmaceuticals. However, traditional production methods are often inefficient and unsustainable. This study focuses on enhancing p-CA production efficiency through the heterologous expression of tyrosine ammonia-lyase (TAL) from Rhodobacter sphaeroides in Pseudomonas putida KT2440. TAL catalyzes the conversion of L-tyrosine into p-CA and ammonia. We engineered P. putida KT2440 to express TAL in a fed-batch fermentation system. Our results demonstrate the following: (i) successful integration of the TAL gene into P. putida KT2440 and (ii) efficient bioconversion of L-tyrosine into p-CA (1381 mg/L) by implementing a pH shift from 7.0 to 8.5 during fed-batch fermentation. This approach highlights the viability of P. putida KT2440 as a host for TAL expression and the successful coupling of fermentation with the pH-shift-mediated bioconversion of L-tyrosine. Our findings underscore the potential of genetically modified P. putida for sustainable p-CA production and encourage further research to optimize bioconversion steps and fermentation conditions.
Collapse
Affiliation(s)
- Carlos G Calderón
- Molecular Biotechnology Laboratory, Biotecnos S.A., Viña del Mar 2520000, Chile
- Fermentations Laboratory, Biochemical Engineering School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Juan C Gentina
- Fermentations Laboratory, Biochemical Engineering School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Oscar Evrard
- Molecular Biotechnology Laboratory, Biotecnos S.A., Viña del Mar 2520000, Chile
| | - Leda Guzmán
- Biological Chemistry Laboratory, Chemistry Institute, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| |
Collapse
|
17
|
Weimer A, Pause L, Ries F, Kohlstedt M, Adrian L, Krömer J, Lai B, Wittmann C. Systems biology of electrogenic Pseudomonas putida - multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb Cell Fact 2024; 23:246. [PMID: 39261865 PMCID: PMC11389600 DOI: 10.1186/s12934-024-02509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Laura Pause
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Fabian Ries
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
18
|
Peoples LM, Isanta-Navarro J, Bras B, Hand BK, Rosenzweig F, Elser JJ, Church MJ. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate. mSystems 2024; 9:e0077024. [PMID: 38980051 PMCID: PMC11334502 DOI: 10.1128/msystems.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Brian K. Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James J. Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
19
|
Han F, Zhang X, Chen Y, Zhao H, Wu J, Yu Y, Wang Y. A Simple Allelic Exchange Method for Efficient Seamless Knockout of Up to 34-kbp-Long Gene Cassettes in Pseudomonas. Appl Biochem Biotechnol 2024; 196:5616-5630. [PMID: 38103122 DOI: 10.1007/s12010-023-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Gene knockout is a widely used technique for engineering bacterial genomes, investigating the roles of genes in metabolism, and conferring biological characteristics. Herein, we developed a rapid, efficient, and simple method for the knockout of long gene cassettes in Pseudomonas spp., based on a traditional allelic exchange strategy. The upstream and downstream sequences of the target gene cluster to be deleted were amplified using primers with 5'-end sequences identical to the multiple cloning sites of a suicide plasmid (mutant allele insert vector). The sequences were then fused with the linearized suicide plasmid in one step via seamless cloning. The resulting allelic exchange vector (recombinant plasmid) was introduced from the donor strain (Escherichia coli SM 10) into recipient cells (Pseudomonas putida, P. composti, and P. khazarica) via conjugation. Single-crossover merodiploids (integrates the vector into host chromosome by homologous recombination) were screened based on antibiotic resistance conferred by the plasmid, and double-crossover haploids (deleting the target gene clusters and inserted alien plasmid backbone) were selected using sucrose-mediated counterselection. Unlike other approaches, the method described herein introduces no selective marker genes into the genomes of the knockout mutants. Using our method, we successfully deleted polysaccharide-encoding gene clusters in P. putida, P. composti, and P. khazarica and generated four mutants with single-gene cassette deletions up to 18 kbp and one mutant with double-gene cassette deletion of approximately 34 kbp. Collectively, our results indicate that this method is ideal for the deletion of long genetic sequences, yielding seamless mutants of various Pseudomonas spp.
Collapse
Affiliation(s)
- Feng Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xiaoya Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yunfei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haixia Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jieer Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
20
|
de Lorenzo V, Pérez-Pantoja D, Nikel PI. Pseudomonas putida KT2440: the long journey of a soil-dweller to become a synthetic biology chassis. J Bacteriol 2024; 206:e0013624. [PMID: 38975763 PMCID: PMC11270871 DOI: 10.1128/jb.00136-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Although members of the genus Pseudomonas share specific morphological, metabolic, and genomic traits, the diversity of niches and lifestyles adopted by the family members is vast. One species of the group, Pseudomonas putida, thrives as a colonizer of plant roots and frequently inhabits soils polluted with various types of chemical waste. Owing to a combination of historical contingencies and inherent qualities, a particular strain, P. putida KT2440, emerged time ago as an archetype of an environmental microorganism amenable to recombinant DNA technologies, which was also capable of catabolizing chemical pollutants. Later, the same bacterium progressed as a reliable platform for programming traits and activities in various biotechnological applications. This article summarizes the stepwise upgrading of P. putida KT2440 from being a system for fundamental studies on the biodegradation of aromatic compounds (especially when harboring the TOL plasmid pWW0) to its adoption as a chassis of choice in metabolic engineering and synthetic biology. Although there are remaining uncertainties about the taxonomic classification of KT2440, advanced genome editing capabilities allow us to tailor its genetic makeup to meet specific needs. This makes its traditional categorization somewhat less important, while also increasing the strain's overall value for contemporary industrial and environmental uses.
Collapse
Affiliation(s)
- Victor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Danilo Pérez-Pantoja
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Systems Environmental Microbiology Group, Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Köbbing S, Lechtenberg T, Wynands B, Blank LM, Wierckx N. Reliable Genomic Integration Sites in Pseudomonas putida Identified by Two-Dimensional Transcriptome Analysis. ACS Synth Biol 2024; 13:2060-2072. [PMID: 38968167 PMCID: PMC11264328 DOI: 10.1021/acssynbio.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/07/2024]
Abstract
Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.
Collapse
Affiliation(s)
- Sebastian Köbbing
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Lechtenberg
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lars M. Blank
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Nick Wierckx
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
22
|
Pelletier DA, Alexander W, Burdick LH, Rush TA, Tannous J, Webb AB, Morrell-Falvey JL. Complete genome of Pseudomonas putida strain WBB028 isolated from leaf litter. Microbiol Resour Announc 2024; 13:e0023424. [PMID: 38860815 PMCID: PMC11256791 DOI: 10.1128/mra.00234-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
We report the complete genome of Pseudomonas putida strain WBB028, which exhibits broad-spectrum antifungal activity. This strain was isolated from leaf litter collected at Walker Branch Watershed located on the Oak Ridge Reservation in eastern Tennessee (35.9614 N 84.2864 W). The genome is 6.3 Mbp with a 62.5% GC content.
Collapse
Affiliation(s)
- D. A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - W. Alexander
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - L. H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - T. A. Rush
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - J. Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - A. B. Webb
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
23
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
24
|
Gross J, Katz S, Hershberg R. Pseudomonas putida Dynamics of Adaptation under Prolonged Resource Exhaustion. Genome Biol Evol 2024; 16:evae117. [PMID: 38849986 PMCID: PMC11179108 DOI: 10.1093/gbe/evae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Many nonsporulating bacterial species survive prolonged resource exhaustion, by entering a state termed long-term stationary phase. Here, we performed long-term stationary phase evolutionary experiments on the bacterium Pseudomonas putida, followed by whole-genome sequencing of evolved clones. We show that P. putida is able to persist and adapt genetically under long-term stationary phase. We observed an accumulation of mutations within the evolving P. putida populations. Within each population, independently evolving lineages are established early on and persist throughout the 4-month-long experiment. Mutations accumulate in a highly convergent manner, with similar loci being mutated across independently evolving populations. Across populations, mutators emerge, that due to mutations within mismatch repair genes developed a much higher rate of mutation than other clones with which they coexisted within their respective populations. While these general dynamics of the adaptive process are quite similar to those we previously observed in the model bacterium Escherichia coli, the specific loci that are involved in adaptation only partially overlap between P. putida and E. coli.
Collapse
Affiliation(s)
- Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
25
|
Ampntelnour L, Poulaki EG, Dimitrakas V, Mavrommati M, Amourgis GG, Tjamos SE. Enhancing Botrytis disease management in tomato plants: insights from a Pseudomonas putida strain with biocontrol activity. J Appl Microbiol 2024; 135:lxae094. [PMID: 38599633 DOI: 10.1093/jambio/lxae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
AIMS This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.
Collapse
Affiliation(s)
- Litsa Ampntelnour
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Eirini G Poulaki
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Vasilis Dimitrakas
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Maria Mavrommati
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Grigorios G Amourgis
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Sotiris E Tjamos
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| |
Collapse
|
26
|
Wang Y, Zheng J, Xue Y, Yu B. Engineering Pseudomonas putida KT2440 for Dipicolinate Production via the Entner-Doudoroff Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6500-6508. [PMID: 38470347 DOI: 10.1021/acs.jafc.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Dipicolinic acid (DPA), a cyclic diacid, has garnered significant interest due to its potential applications in antimicrobial agents, antioxidants, chelating reagents, and polymer precursors. However, its natural bioproduction is limited since DPA is only accumulated in Bacillus and Clostridium species during sporulation. Thus, heterologous production by engineered strains is of paramount importance for developing a sustainable biological route for DPA production. Pseudomonas putida KT2440 has emerged as a promising host for the production of various chemicals thanks to its robustness, metabolic versatility, and genetic tractability. The dominant Entner-Doudoroff (ED) pathway for glucose metabolism in this strain offers an ideal route for DPA production due to the advantage of NADPH generation and the naturally balanced flux between glyceraldehyde-3-phosphate and pyruvate, which are both precursors for DPA synthesis. In this study, DPA production via the ED pathway was in silico designed in P. putida KT2440. The systematically engineered strain produced dipicolinate with a titer of 11.72 g/L from glucose in a 5 L fermentor. This approach not only provides a sustainable green route for DPA production but also expands our understanding of the metabolic potential of the ED pathway in P. putida KT2440.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jie Zheng
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubin Xue
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
27
|
Bozhüyük KAJ, Präve L, Kegler C, Schenk L, Kaiser S, Schelhas C, Shi YN, Kuttenlochner W, Schreiber M, Kandler J, Alanjary M, Mohiuddin TM, Groll M, Hochberg GKA, Bode HB. Evolution-inspired engineering of nonribosomal peptide synthetases. Science 2024; 383:eadg4320. [PMID: 38513038 DOI: 10.1126/science.adg4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.
Collapse
Affiliation(s)
- Kenan A J Bozhüyük
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Myria Biosciences AG, Tech Park Basel, Hochbergstrasse 60C, 4057 Basel, Switzerland
| | - Leonard Präve
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Carsten Kegler
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Leonie Schenk
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Sebastian Kaiser
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Christian Schelhas
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
| | - Yan-Ni Shi
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Wolfgang Kuttenlochner
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748 Garching, Germany
| | - Max Schreiber
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Joshua Kandler
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - T M Mohiuddin
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Groll
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748 Garching, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
| | - Helge B Bode
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG) & Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
| |
Collapse
|
28
|
Hashimoto T, Suenaga H, Amagai K, Hashimoto J, Kozone I, Takahashi S, Shin-Ya K. In Vitro Module Editing Of NRPS Enables Production Of Highly Potent G q -Signaling Inhibitor FR900359 Derived From Unculturable Plant Symbiont. Angew Chem Int Ed Engl 2024; 63:e202317805. [PMID: 38238265 DOI: 10.1002/anie.202317805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/03/2024]
Abstract
Heterotrimeric G proteins are key mediators in the signaling of G protein-coupled receptors (GPCR) that are involved in a plethora of important physiological processes and thus major targets of pharmaceutical drugs. The cyclic depsipeptides YM-254890 and FR900359 are strong and selective inhibitors of the Gq subfamily of G proteins. FR900359 was first reported to be produced by unculturable plant symbiont, however, a culturable FR900359 producer was discovered recently by the standard strategy, screening of the producing strain from the environment. As another strategy, we introduce herein the different way to supply natural compounds of unculturable microorganism origin. We therefore embarked on constructing an artificial biosynthetic gene cluster (BGC) for FR900359 with YM-254890 BGC as a template using "in vitro module editing" technology, first developed for the modification of type-I PKS BGCs, to edit YM-254890 BGC. The resulting artificial BGCs coding FR900359 were heterologously expressed in the Pseudomonas putida KT2440 host strain.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Keita Amagai
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
29
|
Willetts A. The Role of Dioxygen in Microbial Bio-Oxygenation: Challenging Biochemistry, Illustrated by a Short History of a Long Misunderstood Enzyme. Microorganisms 2024; 12:389. [PMID: 38399793 PMCID: PMC10891995 DOI: 10.3390/microorganisms12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A Special Issue of Microorganisms devoted to 'Microbial Biocatalysis and Biodegradation' would be incomplete without some form of acknowledgement of the many important roles that dioxygen-dependent enzymes (principally mono- and dioxygenases) play in relevant aspects of bio-oxygenation. This is reflected by the multiple strategic roles that dioxygen -dependent microbial enzymes play both in generating valuable synthons for chemoenzymatic synthesis and in facilitating reactions that help to drive the global geochemical carbon cycle. A useful insight into this can be gained by reviewing the evolution of the current status of 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) from (+)-camphor-grown Pseudomonas putida ATCC 17453, the key enzyme that promotes the initial ring cleavage of this natural bicyclic terpene. Over the last sixty years, the perceived nature of this monooxygenase has transmogrified significantly. Commencing in the 1960s, extensive initial studies consistently reported that the enzyme was a monomeric true flavoprotein dependent on both FMNH2 and nonheme iron as bound cofactors. However, over the last decade, all those criteria have changed absolutely, and the enzyme is currently acknowledged to be a metal ion-independent homodimeric flavin-dependent two-component mono-oxygenase deploying FMNH2 as a cosubstrate. That transition is a paradigm of the ever evolving nature of scientific knowledge.
Collapse
Affiliation(s)
- Andrew Willetts
- 4 Sv Ivan, 21400 Sutivan, Croatia;
- Curnow Consultancies, Helston TR13 9PQ, UK
| |
Collapse
|
30
|
Pal U, Bachmann D, Pelzer C, Christiansen J, Blank LM, Tiso T. A genetic toolbox to empower Paracoccus pantotrophus DSM 2944 as a metabolically versatile SynBio chassis. Microb Cell Fact 2024; 23:53. [PMID: 38360576 PMCID: PMC10870620 DOI: 10.1186/s12934-024-02325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND To contribute to the discovery of new microbial strains with metabolic and physiological robustness and develop them into successful chasses, Paracoccus pantotrophus DSM 2944, a Gram-negative bacterium from the phylum Alphaproteobacteria and the family Rhodobacteraceae, was chosen. The strain possesses an innate ability to tolerate high salt concentrations. It utilizes diverse substrates, including cheap and renewable feedstocks, such as C1 and C2 compounds. Also, it can consume short-chain alkanes, predominately found in hydrocarbon-rich environments, making it a potential bioremediation agent. The demonstrated metabolic versatility, coupled with the synthesis of the biodegradable polymer polyhydroxyalkanoate, positions this microbial strain as a noteworthy candidate for advancing the principles of a circular bioeconomy. RESULTS The study aims to follow the chassis roadmap, as depicted by Calero and Nikel, and de Lorenzo, to transform wild-type P. pantotrophus DSM 2944 into a proficient SynBio (Synthetic Biology) chassis. The initial findings highlight the antibiotic resistance profile of this prospective SynBio chassis. Subsequently, the best origin of replication (ori) was identified as RK2. In contrast, the non-replicative ori R6K was selected for the development of a suicide plasmid necessary for genome integration or gene deletion. Moreover, when assessing the most effective method for gene transfer, it was observed that conjugation had superior efficiency compared to electroporation, while transformation by heat shock was ineffective. Robust host fitness was demonstrated by stable plasmid maintenance, while standardized gene expression using an array of synthetic promoters could be shown. pEMG-based scarless gene deletion was successfully adapted, allowing gene deletion and integration. The successful integration of a gene cassette for terephthalic acid degradation is showcased. The resulting strain can grow on both monomers of polyethylene terephthalate (PET), with an increased growth rate achieved through adaptive laboratory evolution. CONCLUSION The chassis roadmap for the development of P. pantotrophus DSM 2944 into a proficient SynBio chassis was implemented. The presented genetic toolkit allows genome editing and therewith the possibility to exploit Paracoccus for a myriad of applications.
Collapse
Affiliation(s)
- Upasana Pal
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Denise Bachmann
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Chiara Pelzer
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Julia Christiansen
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
31
|
Prout L, Hailes HC, Ward JM. Natural transaminase fusions for biocatalysis. RSC Adv 2024; 14:4264-4273. [PMID: 38298934 PMCID: PMC10829540 DOI: 10.1039/d3ra07081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Biocatalytic approaches are used widely for the synthesis of amines from abundant or low cost starting materials. This is a fast-developing field where novel enzymes and enzyme combinations emerge quickly to enable the production of new and complex compounds. Natural multifunctional enzymes represent a part of multi-step biosynthetic pathways that ensure a one-way flux of reactants. In vivo, they confer a selective advantage via increased reaction rates and chemical stability or prevention of toxicity from reactive intermediates. Here we report the identification and analysis of a natural transaminase fusion, PP_2782, from Pseudomonas putida KT2440, as well as three of its thermophilic homologs from Thermaerobacter marianensis, Thermaerobacter subterraneus, and Thermincola ferriacetica. Both the fusions and their truncated transaminase-only derivatives showed good activity with unsubstituted aliphatic and aromatic aldehydes and amines, as well as with a range of α-keto acids, and l-alanine, l-glutamate, and l-glutamine. Through structural similarity, the fused domain was recognised as the acyl-[acyl-carrier-protein] reductase that affects reductive chain release. These natural transaminase fusions could have a great potential for industrial applications.
Collapse
Affiliation(s)
- Luba Prout
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - John M Ward
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
32
|
Nie L, Xiao Y, Zhou T, Feng H, He M, Liang Q, Mu K, Nie H, Huang Q, Chen W. Cyclic di-GMP inhibits nitrate assimilation by impairing the antitermination function of NasT in Pseudomonas putida. Nucleic Acids Res 2024; 52:186-203. [PMID: 38000372 PMCID: PMC10783516 DOI: 10.1093/nar/gkad1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.
Collapse
Affiliation(s)
- Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyuan Liang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailing Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Hueso-Gil A, Calles B, de Lorenzo V. Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas. Methods Mol Biol 2024; 2721:35-44. [PMID: 37819513 DOI: 10.1007/978-1-0716-3473-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.
Collapse
Affiliation(s)
- Angeles Hueso-Gil
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Madrid, Spain
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
34
|
Nie H, Nie L, Xiao Y, Song M, Zhou T, He J, Chen W, Huang Q. The phosphodiesterase DibA interacts with the c-di-GMP receptor LapD and specifically regulates biofilm in Pseudomonas putida. Mol Microbiol 2024; 121:1-17. [PMID: 37927230 DOI: 10.1111/mmi.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase and degraded by c-di-GMP-specific phosphodiesterase. The genome of Pseudomonas putida contains dozens of genes encoding diguanylate cyclase/phosphodiesterase, but the phenotypical-genotypical correlation and functional mechanism of these genes are largely unknown. Herein, we characterize the function and mechanism of a P. putida phosphodiesterase named DibA. DibA consists of a PAS domain, a GGDEF domain, and an EAL domain. The EAL domain is active and confers DibA phosphodiesterase activity. The GGDEF domain is inactive, but it promotes the phosphodiesterase activity of the EAL domain via binding GTP. Regarding phenotypic regulation, DibA modulates the cell surface adhesin LapA level in a c-di-GMP receptor LapD-dependent manner, thereby inhibiting biofilm formation. Moreover, DibA interacts and colocalizes with LapD in the cell membrane, and the interaction between DibA and LapD promotes the PDE activity of DibA. Besides, except for interacting with DibA and LapD itself, LapD is found to interact with 11 different potential diguanylate cyclases/phosphodiesterases in P. putida, including the conserved phosphodiesterase BifA. Overall, our findings demonstrate the functional mechanism by which DibA regulates biofilm formation and expand the understanding of the LapD-mediated c-di-GMP signaling network in P. putida.
Collapse
Affiliation(s)
- Hailing Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Song
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tiantian Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Li F, Wang CY, Wu YC, Zhang MY, Wang YJ, Zhou XY, Zhang YX. Enhancing the biosynthesis of 2-keto-L-gulonic acid through multi-strategy metabolic engineering in Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2024; 392:130014. [PMID: 37956951 DOI: 10.1016/j.biortech.2023.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
2-KGA, a precursor for the synthesis of Vitamin C, is currently produced in China utilizing the "two-step fermentation" technique. Nevertheless, this method exhibits many inherent constraints. This study presents a comprehensive metabolic engineering strategy to establish and optimize a one-step 2-KGA fermentation process from D-sorbitol in Pseudomonas putida KT2440. In general, the endogenous promoters were screened to identify promoter P1 for subsequent heterologous gene expression in KT2440. Following the screening and confirmation of suitable heterologous gene elements such as sldh, sdh, cytc551, pqqAB, and irrE, genetic recombination was performed in KT2440. In comparison to the initial achievement of expressing only sldh and sdh in KT2440, a yield of merely 0.42 g/L was obtained. However, by implementing four metabolic engineering strategies, the recombinant strain KT20 exhibited a significant enhancement in its ability to produce 2-KGA with a remarkable yield of up to 6.5 g/L - representing an impressive 15.48-fold improvement.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Jin Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xun-Yong Zhou
- Sinobiotech (Shenzhen) Limited Company, Shenzhen 518001, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
36
|
Gao T, Guo J, Niu W. Genetic Code Expansion in Pseudomonas putida KT2440. Methods Mol Biol 2024; 2760:209-217. [PMID: 38468091 DOI: 10.1007/978-1-0716-3658-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Emerging microorganism Pseudomonas putida KT2440 is utilized for the synthesis of biobased chemicals from renewable feedstocks and for bioremediation. However, the methods for analyzing, engineering, and regulating the biosynthetic enzymes and protein complexes in this organism remain underdeveloped.Such attempts can be advanced by the genetic code expansion-enabled incorporation of noncanonical amino acids (ncAAs) into proteins, which also enables further controls over the strain's biological processes. Here, we give a step-by-step account of the incorporation of two ncAAs into any protein of interest (POI) in response to a UAG stop codon by two commonly used orthogonal archaeal tRNA synthetase and tRNA pairs. Using superfolder green fluorescent protein (sfGFP) as an example, this method lays down a solid foundation for future work to study and enhance the biological functions of KT2440.
Collapse
Affiliation(s)
- Tianyu Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Wei Niu
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
37
|
Bitzenhofer NL, Höfel C, Thies S, Weiler AJ, Eberlein C, Heipieper HJ, Batra‐Safferling R, Sundermeyer P, Heidler T, Sachse C, Busche T, Kalinowski J, Belthle T, Drepper T, Jaeger K, Loeschcke A. Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis. Microb Biotechnol 2024; 17:e14312. [PMID: 37435812 PMCID: PMC10832525 DOI: 10.1111/1751-7915.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Höfel
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andrea Jeanette Weiler
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Eberlein
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Hermann J. Heipieper
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Renu Batra‐Safferling
- Institute of Biological Information Processing – Structural Biochemistry (IBI‐7: Structural Biochemistry)Forschungszentrum JülichJülichGermany
| | - Pia Sundermeyer
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Thomas Heidler
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Carsten Sachse
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
- Bielefeld University, Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomke Belthle
- DWI─Leibniz‐Institute for Interactive MaterialsAachenGermany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
38
|
Bitzenhofer NL, Classen T, Jaeger KE, Loeschcke A. Biotransformation Of l-Tryptophan To Produce Arcyriaflavin A With Pseudomonas putida KT2440. Chembiochem 2023; 24:e202300576. [PMID: 37743253 DOI: 10.1002/cbic.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Natural products such as indolocarbazoles are a valuable source of highly bioactive compounds with numerous potential applications in the pharmaceutical industry. Arcyriaflavin A, isolated from marine invertebrates and slime molds, is one representative of this group and acts as a cyclin D1-cyclin-dependent kinase 4 inhibitor. To date, access to this compound has mostly relied on multi-step total synthesis. In this study, biosynthetic access to arcyriaflavin A was explored using recombinant Pseudomonas putida KT2440 based on a previously generated producer strain. We used a Design of Experiment approach to analyze four key parameters, which led to the optimization of the bioprocess. By engineering the formation of outer membrane vesicles and using an adsorbent in the culture broth, we succeeded to increase the yield of arcyriaflavin A in the cell-free supernatant, resulting in a nearly eight-fold increase in the overall production titers. Finally, we managed to scale up the bioprocess leading to a final yield of 4.7 mg arcyriaflavin A product isolated from 1 L of bacterial culture. Thus, this study showcases an integrative approach to improve biotransformation and moreover also provides starting points for further optimization of indolocarbazole production in P. putida.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| |
Collapse
|
39
|
Buffi M, Cailleau G, Kuhn T, Li Richter XY, Stanley CE, Wick LY, Chain PS, Bindschedler S, Junier P. Fungal drops: a novel approach for macro- and microscopic analyses of fungal mycelial growth. MICROLIFE 2023; 4:uqad042. [PMID: 37965130 PMCID: PMC10642649 DOI: 10.1093/femsml/uqad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The 'fungal drops' method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is created by depositing 15-20 µl drops on a hydrophobic surface at a fixed distance. This system is akin to a two-dimensional (2D) soil-like structure in which aqueous-pockets are intermixed with air-filled pores. The fungus (spores or mycelia) is inoculated into one of the drops, from which hyphal growth and exploration take place. Hyphal structures are assessed at different scales using stereoscopic and microscopic imaging. The former allows to evaluate the local response of regions within the colony (modular behaviour), while the latter can be used for fractal dimension analyses to describe the hyphal network architecture. The method was tested with several species to underpin the transferability to multiple species. In addition, two sets of experiments were carried out to demonstrate its use in fungal biology. First, mycelial reorganization of Fusarium oxysporum was assessed as a response to patches containing different nutrient concentrations. Second, the effect of interactions with the soil bacterium Pseudomonas putida on habitat colonization by the same fungus was assessed. This method appeared as fast and accessible, allowed for a high level of replication, and complements more complex experimental platforms. Coupled with image analysis, the fungal drops method provides new insights into the study of fungal modularity both macroscopically and at a single-hypha level.
Collapse
Affiliation(s)
- Matteo Buffi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, B304, Bessemer Building, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Patrick S Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, P.O. Box 1663, NM 87545, United States
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
40
|
Vitt JD, Hansen EG, Garg R, Bowden SD. Bacteria intrinsic to Medicago sativa (alfalfa) reduce Salmonella enterica growth in planta. J Appl Microbiol 2023; 134:lxad204. [PMID: 37669894 DOI: 10.1093/jambio/lxad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
AIMS The purpose of this study was to determine whether plant-associated bacteria (PAB) can reduce Salmonella enterica colonization and infection of alfalfa sprouts to reduce the risk of foodborne illness. METHODS We isolated PAB from alfalfa seeds and sprouts. Monoclonal isolates of the bacteria were obtained and tested for their ability to inhibit Salmonella Typhimurium growth in alfalfa sprouts over 6 days. Genome sequencing and annotation were used to construct draft genomes of the bacteria isolated in this study using Illumina sequencing platform. RESULTS We observed that a cocktail of five PAB could reduce Salmonella growth in alfalfa sprouts from ∼108 to ∼105 CFU g-1, demonstrating a protective role. Genome sequencing revealed that these bacteria were members of the Pseudomonas, Pantoea, and Priestia genus, and did not possess genes that were pathogenic to plants or animals. CONCLUSIONS This work demonstrates that PAB can be utilized to reduce pathogen levels in fresh produce, which may be synergistic with other technologies to improve the safety of sprouts and other fresh produce.
Collapse
Affiliation(s)
- Jacob D Vitt
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Eleanore G Hansen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Raghav Garg
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Steven D Bowden
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| |
Collapse
|
41
|
Bleem A, Kato R, Kellermyer ZA, Katahira R, Miyamoto M, Niinuma K, Kamimura N, Masai E, Beckham GT. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6. Cell Rep 2023; 42:112847. [PMID: 37515767 DOI: 10.1016/j.celrep.2023.112847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin.
Collapse
Affiliation(s)
- Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Miyamoto
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Koh Niinuma
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
42
|
Ikeda S, Tomita K, Nakagawa G, Kouzuma A, Watanabe K. Supplementation with Amino Acid Sources Facilitates Fermentative Growth of Shewanella oneidensis MR-1 in Defined Media. Appl Environ Microbiol 2023; 89:e0086823. [PMID: 37367298 PMCID: PMC10370299 DOI: 10.1128/aem.00868-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Shewanella oneidensis MR-1 is a facultative anaerobe that grows by respiration using a variety of electron acceptors. This organism serves as a model to study how bacteria thrive in redox-stratified environments. A glucose-utilizing engineered derivative of MR-1 has been reported to be unable to grow in glucose minimal medium (GMM) in the absence of electron acceptors, despite this strain having a complete set of genes for reconstructing glucose to lactate fermentative pathways. To gain insights into why MR-1 is incapable of fermentative growth, this study examined a hypothesis that this strain is programmed to repress the expression of some carbon metabolic genes in the absence of electron acceptors. Comparative transcriptomic analyses of the MR-1 derivative were conducted in the presence and absence of fumarate as an electron acceptor, and these found that the expression of many genes involved in carbon metabolism required for cell growth, including several tricarboxylic acid (TCA) cycle genes, was significantly downregulated in the absence of fumarate. This finding suggests a possibility that MR-1 is unable to grow fermentatively on glucose in minimal media owing to the shortage of nutrients essential for cell growth, such as amino acids. This idea was demonstrated in subsequent experiments that showed that the MR-1 derivative fermentatively grows in GMM containing tryptone or a defined mixture of amino acids. We suggest that gene regulatory circuits in MR-1 are tuned to minimize energy consumption under electron acceptor-depleted conditions, and that this results in defective fermentative growth in minimal media. IMPORTANCE It is an enigma why S. oneidensis MR-1 is incapable of fermentative growth despite having complete sets of genes for reconstructing fermentative pathways. Understanding the molecular mechanisms behind this defect will facilitate the development of novel fermentation technologies for the production of value-added chemicals from biomass feedstocks, such as electro-fermentation. The information provided in this study will also improve our understanding of the ecological strategies of bacteria living in redox-stratified environments.
Collapse
Affiliation(s)
- Sota Ikeda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Keisuke Tomita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Gen Nakagawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
43
|
Chen J, Rosen BP. Arsenite Methyltransferase Diversity and Optimization of Methylation Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9754-9761. [PMID: 37327778 PMCID: PMC10669576 DOI: 10.1021/acs.est.3c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Arsenic is methylated by arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferases (ArsMs). ArsM crystal structures show three domains (an N-terminal SAM binding domain (A domain), a central arsenic binding domain (B domain), and a C-terminal domain of unknown function (C domain)). In this study, we performed a comparative analysis of ArsMs and found a broad diversity in structural domains. The differences in the ArsM structure enable ArsMs to have a range of methylation efficiencies and substrate selectivities. Many small ArsMs with 240-300 amino acid residues have only A and B domains, represented by RpArsM from Rhodopseudomonas palustris. These small ArsMs have higher methylation activity than larger ArsMs with 320-400 residues such as Chlamydomonas reinhardtii CrArsM, which has A, B, and C domains. To examine the role of the C domain, the last 102 residues in CrArsM were deleted. This CrArsM truncation exhibited higher As(III) methylation activity than the wild-type enzyme, suggesting that the C-terminal domain has a role in modulating the rate of catalysis. In addition, the relationship of arsenite efflux systems and methylation was examined. Lower rates of efflux led to higher rates of methylation. Thus, the rate of methylation can be modulated in multiple ways.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
44
|
Wang Y, Jin Y, Sun F, Zhang Y, Liu Q, Wang Q, Yang D, Zhang Y. The c-di-GMP signalling component YfiR regulates multiple bacterial phenotypes and virulence in Pseudomonas plecoglossicida. J Appl Microbiol 2023; 134:lxad157. [PMID: 37500265 DOI: 10.1093/jambio/lxad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
AIMS Pseudomonas plecoglossicida (P. plecoglossicida) is the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea) and it causes severe economic loss to its industry. Biofilm formation, related to intracellular cyclic bis (3'-5') diguanylic acid (c-di-GMP) levels, is essential for the lifestyle of P. plecoglossicida. This research aims to investigate the role of YfiR-a key regulator of the diguanylate cyclase YfiN to regulate c-di-GMP levels and reveal its regulatory function of bacterial virulence expression in P. plecoglossicida. METHODS AND RESULTS A genetic analysis was carried out to identify the yfiBNR operon for c-di-GMP regulation in P. plecoglossicida. Then, we constructed a yfiR mutant and observed increased c-di-GMP levels, enhanced biofilm formation, increased exopolysaccharides, and diminished swimming and swarming motility in this strain. Moreover, through establishing a yolk sac microinjection infection model in zebrafish larvae, an attenuated phenotype of yfiR mutant that manifested as restored survival and lower bacterial colonization was found. CONCLUSIONS YfiR is the key regulator of virulence in P. plecoglossicida, which contributes to c-di-GMP level, biofilm formation, exopolysaccharides production, swimming, swarming motility, and bacterial colonization in zebrafish model.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yinhua Jin
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Sun
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
45
|
Nnadi MO, Bingle L, Thomas K. Bacterial community dynamics and associated genes in hydrocarbon contaminated soil during bioremediation using brewery spent grain. Access Microbiol 2023; 5:acmi000519.v3. [PMID: 37424545 PMCID: PMC10323799 DOI: 10.1099/acmi.0.000519.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 07/11/2023] Open
Abstract
Brewery spent grain (BSG) has previously been exploited in bioremediation. However, detailed knowledge of the associated bacterial community dynamics and changes in relevant metabolites and genes over time is limited. This study investigated the bioremediation of diesel contaminated soil amended with BSG. We observed complete degradation of three total petroleum hydrocarbon (TPH C10-C28) fractions in amended treatments as compared to one fraction in the unamended, natural attenuation treatments. The biodegradation rate constant (k) was higher in amended treatments (0.1021k) than in unamended (0.059k), and bacterial colony forming units increased significantly in amended treatments. The degradation compounds observed fitted into the elucidated diesel degradation pathways and quantitative PCR results showed that the gene copy numbers of all three associated degradation genes, alkB, catA and xylE, were significantly higher in amended treatments. High-throughput sequencing of 16S rRNA gene amplicons showed that amendment with BSG enriched autochthonous hydrocarbon degraders. Also, community shifts of the genera Acinetobacter and Pseudomonas correlated with the abundance of catabolic genes and degradation compounds observed. This study showed that these two genera are present in BSG and thus may be associated with the enhanced biodegradation observed in amended treatments. The results suggest that the combined evaluation of TPH, microbiological, metabolite and genetic analysis provides a useful holistic approach to assessing bioremediation.
Collapse
Affiliation(s)
- Mabel Owupele Nnadi
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Lewis Bingle
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Keith Thomas
- Brewlab, Unit One, West Quay Court, Sunderland SR5 2TE, UK
| |
Collapse
|
46
|
Huo K, Wang S, Zhao W, Guo H, Xiong W, Liu R, Yang C. Creating an efficient 1,2-dichloroethane-mineralizing bacterium by a combination of pathway engineering and promoter engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163140. [PMID: 37001652 DOI: 10.1016/j.scitotenv.2023.163140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Currently, 1,2-dichloroethane (DCA) is frequently detected in groundwater and has been listed as a potential human carcinogen by the U.S. EPA. Owing to its toxicity and recalcitrant nature, inefficient DCA mineralization has become a bottleneck of DCA bioremediation. In this study, the first engineered DCA-mineralizing strain KTU-P8DCA was constructed by functional assembly of DCA degradation pathway and enhancing pathway expression with a strong promoter P8 in the biosafety strain Pseudomonas putida KT2440. Strain KTU-P8DCA can metabolize DCA to produce CO2 and utilize DCA as the sole carbon source for cell growth by quantifying 13C stable isotope ratios in collected CO2 and in lyophilized cells. Strain KTU-P8DCA exhibited superior tolerance to high concentrations of DCA. Excellent genetic stability was also observed in continuous passage culture. Therefore, strain KTU-P8DCA has enormous potential for use in bioremediation of sites heavily contaminated with DCA. In the future, our strategy for pathway construction and optimization is expected to be developed as a standard pipeline for creating a wide variety of new contaminants-mineralizing microorganisms. The present study also highlights the power of synthetic biology in creating novel degraders for environmental remediation.
Collapse
Affiliation(s)
- Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Spiers AJ, Dorfmueller HC, Jerdan R, McGregor J, Nicoll A, Steel K, Cameron S. Bioinformatics characterization of BcsA-like orphan proteins suggest they form a novel family of pseudomonad cyclic-β-glucan synthases. PLoS One 2023; 18:e0286540. [PMID: 37267309 PMCID: PMC10237404 DOI: 10.1371/journal.pone.0286540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria produce a variety of polysaccharides with functional roles in cell surface coating, surface and host interactions, and biofilms. We have identified an 'Orphan' bacterial cellulose synthase catalytic subunit (BcsA)-like protein found in four model pseudomonads, P. aeruginosa PA01, P. fluorescens SBW25, P. putida KT2440 and P. syringae pv. tomato DC3000. Pairwise alignments indicated that the Orphan and BcsA proteins shared less than 41% sequence identity suggesting they may not have the same structural folds or function. We identified 112 Orphans among soil and plant-associated pseudomonads as well as in phytopathogenic and human opportunistic pathogenic strains. The wide distribution of these highly conserved proteins suggest they form a novel family of synthases producing a different polysaccharide. In silico analysis, including sequence comparisons, secondary structure and topology predictions, and protein structural modelling, revealed a two-domain transmembrane ovoid-like structure for the Orphan protein with a periplasmic glycosyl hydrolase family GH17 domain linked via a transmembrane region to a cytoplasmic glycosyltransferase family GT2 domain. We suggest the GT2 domain synthesises β-(1,3)-glucan that is transferred to the GH17 domain where it is cleaved and cyclised to produce cyclic-β-(1,3)-glucan (CβG). Our structural models are consistent with enzymatic characterisation and recent molecular simulations of the PaPA01 and PpKT2440 GH17 domains. It also provides a functional explanation linking PaPAK and PaPA14 Orphan (also known as NdvB) transposon mutants with CβG production and biofilm-associated antibiotic resistance. Importantly, cyclic glucans are also involved in osmoregulation, plant infection and induced systemic suppression, and our findings suggest this novel family of CβG synthases may provide similar range of adaptive responses for pseudomonads.
Collapse
Affiliation(s)
- Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Jessica McGregor
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Abbie Nicoll
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Kenzie Steel
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Scott Cameron
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| |
Collapse
|
48
|
Kossmann DF, Huang M, Weihmann R, Xiao X, Gätgens F, Weber TM, Brass HUC, Bitzenhofer NL, Ibrahim S, Bangert K, Rehling L, Mueller C, Tiso T, Blank LM, Drepper T, Jaeger KE, Grundler FMW, Pietruszka J, Schleker ASS, Loeschcke A. Production of tailored hydroxylated prodiginine showing combinatorial activity with rhamnolipids against plant-parasitic nematodes. Front Microbiol 2023; 14:1151882. [PMID: 37200918 PMCID: PMC10187637 DOI: 10.3389/fmicb.2023.1151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
Bacterial secondary metabolites exhibit diverse remarkable bioactivities and are thus the subject of study for different applications. Recently, the individual effectiveness of tripyrrolic prodiginines and rhamnolipids against the plant-parasitic nematode Heterodera schachtii, which causes tremendous losses in crop plants, was described. Notably, rhamnolipid production in engineered Pseudomonas putida strains has already reached industrial implementation. However, the non-natural hydroxyl-decorated prodiginines, which are of particular interest in this study due to a previously described particularly good plant compatibility and low toxicity, are not as readily accessible. In the present study, a new effective hybrid synthetic route was established. This included the engineering of a novel P. putida strain to provide enhanced levels of a bipyrrole precursor and an optimization of mutasynthesis, i.e., the conversion of chemically synthesized and supplemented monopyrroles to tripyrrolic compounds. Subsequent semisynthesis provided the hydroxylated prodiginine. The prodiginines caused reduced infectiousness of H. schachtii for Arabidopsis thaliana plants resulting from impaired motility and stylet thrusting, providing the first insights on the mode of action in this context. Furthermore, the combined application with rhamnolipids was assessed for the first time and found to be more effective against nematode parasitism than the individual compounds. To obtain, for instance, 50% nematode control, it was sufficient to apply 7.8 μM hydroxylated prodiginine together with 0.7 μg/ml (~ 1.1 μM) di-rhamnolipids, which corresponded to ca. ¼ of the individual EC50 values. In summary, a hybrid synthetic route toward a hydroxylated prodiginine was established and its effects and combinatorial activity with rhamnolipids on plant-parasitic nematode H. schachtii are presented, demonstrating potential application as antinematodal agents. Graphical Abstract.
Collapse
Affiliation(s)
- D. F. Kossmann
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - M. Huang
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - R. Weihmann
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - X. Xiao
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - F. Gätgens
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - T. M. Weber
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - H. U. C. Brass
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - N. L. Bitzenhofer
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - S. Ibrahim
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K. Bangert
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - L. Rehling
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - C. Mueller
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Tiso
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - L. M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K.-E. Jaeger
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - J. Pietruszka
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - A. Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| |
Collapse
|
49
|
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, Hall S, Henderson JD, Kenney SM, Lensink ME, Paternoster MV, Pyle SL, Ustick L, Walters-Laird CJ, Top EM, Cummings DE. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid 2023; 126:102682. [PMID: 37023995 PMCID: PMC10213127 DOI: 10.1016/j.plasmid.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E. coli after one hour, with frequencies as high as 10-3 transconjugants per recipient. Two of the plasmids also transferred cefotaxime resistance to Pseudomonas putida, but these were unable to back-transfer this resistance from P. putida to E. coli. In addition to the cephalosporins, E. coli transconjugants inherited resistance to at least seven distinct classes of antibiotics. Complete nucleotide sequences revealed large IncF-type plasmids with globally distributed replicon sequence types F31:A4:B1 and F18:B1:C4 carrying diverse antibiotic resistance and virulence genes. The plasmids encoded extended-spectrum β-lactamases blaCTX-M-15 or blaCTX-M-55, each associated with the insertion sequence ISEc9, although in different local arrangements. Despite similar resistance profiles, the plasmids shared only one resistance gene in common, the aminoglycoside acetyltransferase aac(3)-IIe. Plasmid accessory cargo also included virulence factors involved in iron acquisition and defense against host immunity. Despite their sequence similarities, several large-scale recombination events were detected, including rearrangements and inversions. In conclusion, selection with a single antibiotic, cefotaxime, yielded conjugative plasmids conferring multiple resistance and virulence factors. Clearly, efforts to limit the spread of antibiotic resistance and virulence among bacteria must include a greater understanding of mobile elements in the natural and human-impacted environments.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Dawne M Page
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Joseph A Bravo
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Madelaine L Brown
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Claudia C Castilleja
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Samantha Hall
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Jacob D Henderson
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Shelby M Kenney
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Mariele E Lensink
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Megan V Paternoster
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Sarah L Pyle
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Lucas Ustick
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America; Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Chara J Walters-Laird
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, United States of America
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America.
| |
Collapse
|
50
|
Dvořák P, Galvão TC, Pflüger‐Grau K, Banks AM, de Lorenzo V, Jiménez JI. Water potential governs the effector specificity of the transcriptional regulator XylR of Pseudomonas putida. Environ Microbiol 2023; 25:1041-1054. [PMID: 36683138 PMCID: PMC10946618 DOI: 10.1111/1462-2920.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
The biodegradative capacity of bacteria in their natural habitats is affected by water availability. In this work, we have examined the activity and effector specificity of the transcriptional regulator XylR of the TOL plasmid pWW0 of Pseudomonas putida mt-2 for biodegradation of m-xylene when external water potential was manipulated with polyethylene glycol PEG8000. By using non-disruptive luxCDEAB reporter technology, we noticed that the promoter activated by XylR (Pu) restricted its activity and the regulator became more effector-specific towards head TOL substrates when cells were grown under water subsaturation. Such a tight specificity brought about by water limitation was relaxed when intracellular osmotic stress was counteracted by the external addition of the compatible solute glycine betaine. With these facts in hand, XylR variants isolated earlier as effector-specificity responders to the non-substrate 1,2,4-trichlorobenzene under high matric stress were re-examined and found to be unaffected by water potential in vivo. All these phenomena could be ultimately explained as the result of water potential-dependent conformational changes in the A domain of XylR and its effector-binding pocket, as suggested by AlphaFold prediction of protein structures. The consequences of this scenario for the evolution of specificities in regulators and the emergence of catabolic pathways are discussed.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | | | - Katharina Pflüger‐Grau
- Specialty Division for Systems BiotechnologyTechnische Universität MünchenGarchingGermany
| | - Alice M. Banks
- Department of Life SciencesImperial College LondonLondonUK
| | - Víctor de Lorenzo
- Systems Biology DepartmentCentro Nacional de Biotecnología‐CSICMadridSpain
| | | |
Collapse
|