1
|
Aydin A, Sudagidan M, Abdramanov A, Yurt MNZ, Mamatova Z, Ozalp VC. Horse Meat Microbiota: Determination of Biofilm Formation and Antibiotic Resistance of Isolated Staphylococcus Spp. Foodborne Pathog Dis 2024; 21:643-652. [PMID: 39049800 DOI: 10.1089/fpd.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Domestic horses could be bred for leisure activities and meat production, as is already the case in many countries. Horse meat is consumed in various countries, including Kazakhstan and Kyrgyzstan, and with the increase in this consumption, horses are registered as livestock by the Food and Agricultural Organization. In this study, horse meat microbiota of horse samples (n = 56; 32 samples from Kazakhstan and 24 samples from Kyrgyzstan) from two countries, Kazakhstan (n = 3) and Kyrgyzstan (n = 1), were investigated for the first time by next-generation sequencing and metabarcoding analysis. The results demonstrated that Firmicutes, Proteobacteria, and Actinobacteria were the dominant bacterial phyla in all samples. In addition, three (5.4%) Staphylococcus strains were isolated from the Uzynagash region, Kazakhstan. Staphylococcus strains were identified as Staphylococcus warneri, S. epidermidis, and S. pasteuri by partial 16S rRNA DNA gene Sanger sequencing. All three Staphylococcus isolates were nonbiofilm formers; only the S. pasteuri was detected as multidrug-resistant (resistant to penicillin, cefoxitin, and oxacillin). In addition, S. pasteuri was found to carry mecA, mecC, and tetK genes. This is the first study to detect potentially pathogenic Staphylococcus spp. in horse meat samples originating from Kazakhstan. In conclusion, it should be carefully considered that undercooked horse meat may pose a risk to consumers in terms of pathogens such as antibiotic-resistant Staphylococcus isolates.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Konya, Türkiye
| | - Abzal Abdramanov
- Department of Veterinary Sanitary Examination and Hygiene, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | | | - Zhanylbubu Mamatova
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Türkiye
| |
Collapse
|
2
|
Aydin A, Suleymanoglu AA, Abdramanov A, Paulsen P, Dumen E. Detection of Extended Spectrum ß-Lactamase-Producing Escherichia coli with Biofilm Formation from Chicken Meat in Istanbul. Foods 2024; 13:1122. [PMID: 38611426 PMCID: PMC11011584 DOI: 10.3390/foods13071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial resistance is one of the major public health problems worldwide. This study aimed to detect the presence of extended-spectrum β-lactamase-(ESBL-)producing Escherichia (E.) coli in chicken meat in Istanbul, Türkiye. Raw chicken meat samples (n = 208) were collected from different sale points and analyzed for ESBL-producing E. coli. In total, 101 (48.5%) isolates were confirmed as E. coli by PCR, of which 80/101 (79.2%) demonstrated multiple antibiotic resistance. Resistance against amoxicillin-clavulanic acid was most frequent (87.1%). Eighteen isolates (17.8%) demonstrated phenotypical ESBL resistance, as assessed by the double disc synergy test (DDST). Isolates were tested for the presence of β-lactamase genes and mobilized colistin-resistant genes. The blaTEM group was most frequently detected (97.02%), followed by blaCTX m (45.5%), blaSHV (9.9%), and blaOXA-2 (0.9%). However, mcr genes and blaNDM,blaKPC, blaVIM, and blaOXA-48 genes were not found in any isolate. E. coli strains were tested for biofilm formation in six different media [Nutrient broth, LB broth, Tryptone Soya broth (TSB), TSB containing 1% sucrose, TSB containing 0.6% yeast extract, and BHI]. Biofilm formation by E. coli isolates (44/101, 43.5%) was highest in TSB with 1% sucrose. It is worth noting that all biofilm-producing isolates were found to harbor the blaTEM-1 gene, which can indicate a high level of antibiotic resistance. This is the first report about ESBL-producing E. coli in poultry meat, the exposure of consumers in Istanbul metropolitan areas, and the ability of E. coli from this region to produce biofilms.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye; (A.A.S.); (E.D.)
| | - Ali Anil Suleymanoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye; (A.A.S.); (E.D.)
| | - Abzal Abdramanov
- Department of Veterinary Sanitary Examination and Hygiene, Kazakh National Agrarian Research University, 050010 Almaty, Kazakhstan;
| | - Peter Paulsen
- Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Emek Dumen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye; (A.A.S.); (E.D.)
| |
Collapse
|
3
|
Cheng X, Wang Y, Ma J, Ma L, Sun W, Su J. Resistance phenotype and genetic features of a heterogeneous vancomycin intermediate-resistant Staphylococcus aureus strain from an immunocompromised patient. Braz J Microbiol 2024; 55:323-332. [PMID: 38057692 PMCID: PMC10920550 DOI: 10.1007/s42770-023-01192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Strain C1 was successfully isolated from an immunosuppressed patient with persistent bacteremia, who had not previously been exposed to glycopeptide antibiotics. This strain was found to be a heterogeneous vancomycin intermediate-resistant Staphylococcus aureus (hVISA). It is noteworthy that, following a brief period of vancomycin treatment, strains C6, C8, and C9, which were obtained from blood and other body parts, exhibited a significant reduction in heterogeneity as determined by population analysis profile-area under the curve (PAP-AUC) detection. Genotyping analysis revealed that these bacterial strains belonged to the same SCCmecIVa-ST59-t437-agrI genotype and shared the same virulome and resistome. In this study, a comparative genomics analysis was conducted between strain C1 and strain N315 to identify potential hVISA-associated mutations. Ultimately, a total of 205 mutation sites in 19 candidate genes, likely associated with the hVISA phenotype, were identified.
Collapse
Affiliation(s)
- Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaru Wang
- Department of Gynecology and Obstetrics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Jingxin Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Sun
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Cheng X, Ma L, Wang Y, Sun W, Su J. Prevalence and molecular characteristics of heterogeneous vancomycin intermediate Staphylococcus aureus in a tertiary care center of northern China. Diagn Microbiol Infect Dis 2024; 108:116180. [PMID: 38183897 DOI: 10.1016/j.diagmicrobio.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The use of glycopeptide medications may decline in line with the annual decline in methicillin-resistant Staphylococcus aureus (MRSA) detection rates in China. The rate of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)detection may be impacted by this. However, there is currently a dearth of information on the incidence of hVISA in China. This study aims to analyze the recent epidemiology and molecular characteristics of hVISA strains in Beijing, China. A total of 175 non-duplicate MRSA strains from various infection sites were collected from a medical center between January 2018 and May 2023 and underwent molecular typing and susceptibility testing (Vitek2). Vancomycin and teicoplanin MICs were also evaluated by standard broth microdilution method and agar dilution method, respectively. Isolates growing on screening agar (BHIV4 and BHIT5, brain heart infusion agar containing 4 μg/ml vancomycin and 5 μg/ml teicoplanin, respectively) were characterized further by analysis of macro-Etest (MET) and population analysis profiling with area under the curve (PAP-AUC). The proportion of hVISA among MRSA isolates was 8.6 %. BHIT5 could select all hVISA strains while BHIV4 and MET only selected two hVISA strains. Compared with vancomycin- susceptible Staphylococcus aureus (VSSA), hVISA isolates were less susceptible to erythromycin and clindamycin. In addition, hVISA frequency was MIC-independent despite using different detection methods. In total, 11 types of STs, 28 types of spa typing, four types of SCCmec typing, and two types of agr typing were identified and the predominant type in both MRSA and hVISA isolates was ST239-t030-SCCmecIII-agr I. The analysis of biofilm formation, growth, and virulence genes in hVISA strains revealed sparse information. The dataset presented in this study provided the prevalence and molecular characteristics of hVISA in hospital settings and the combination of BHIT5 and PAP-AUC may identify hVISA efficiently. The result of genotyping suggested the genotype of hVISA was mainly consistent with that of local MRSA. Additional studies on the characteristics of hVISA strains were necessary.
Collapse
Affiliation(s)
- Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yaru Wang
- Department of Gynecology and Obstetrics, Hua Zhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
| | - Wei Sun
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
5
|
Yurt MNZ, Ersoy Omeroglu E, Tasbasi BB, Acar EE, Altunbas O, Ozalp VC, Sudagidan M. Bacterial and fungal microbiota of mould‐ripened cheese produced in Konya. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Mediha Nur Zafer Yurt
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Esra Ersoy Omeroglu
- Biology Department, Basic and Industrial Microbiology Section, Faculty of Science Ege University Izmir 35040 Türkiye
| | - Behiye Busra Tasbasi
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Elif Esma Acar
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Osman Altunbas
- SARGEM Konya Food and Agriculture University Meram Konya 42080 Türkiye
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Faculty of Medicine Atilim University Ankara 06830 Türkiye
| | - Mert Sudagidan
- KIT‐ARGEM R&D Center Konya Food and Agriculture University Meram Konya 42080 Türkiye
| |
Collapse
|
6
|
Influence of Environmental Factors on Biofilm Formation of Staphylococci Isolated from Wastewater and Surface Water. Pathogens 2022; 11:pathogens11101069. [PMID: 36297126 PMCID: PMC9611571 DOI: 10.3390/pathogens11101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of biofilms can negatively affect several different areas, such as the food industry, environment, and biomedical sectors. Conditions under which bacteria grow and develop, such as temperature, nutrients, and pH, among others, can largely influence biofilm production. Staphylococcus species survive in the natural environment due to their tolerance to a wide range of temperatures, dryness, dehydration, and low water activity. Therefore, we aimed to evaluate the influence of external environmental factors on the formation of biofilm of staphylococci isolated from hospital wastewater and surface waters. We investigated the biofilm formation of methicillin-resistant and -susceptible S. aureus (MRSA and MSSA) and coagulase-negative staphylococci (CoNS) under various temperatures, pH values, salt concentrations, glucose concentrations, and under anaerobic and aerobic conditions. CoNS had the ability to produce more biofilm biomass than MSSA and MRSA. All environmental factors studied influenced the biofilm formation of staphylococci isolates after 24 h of incubation. Higher biofilm formation was achieved at 4% of NaCl and 0.5% of glucose for MSSA and CoNS, and 1% of NaCl and 1.5% of glucose for MRSA isolates. Biofilm formation of isolates was greater at 25 °C and 37 °C than at 10 °C and 4 °C. pH values between 6 and 8 led to more robust biofilm formation than pH levels of 9 and 5. Although staphylococci are facultative anaerobes, biofilm formation was higher in the presence of oxygen. The results demonstrated that multiple environmental factors affect staphylococci biofilm formation. Different conditions affect differently the biofilm formation of MRSA, MSSA, and CoNS strains.
Collapse
|
7
|
Sudagidan M, Ozalp VC, Can Ö, Eligül H, Zafer Yurt MN, Tasbasi BB, Acar EE, Kavruk M, Koçak O. Surface microbiota and associated staphylococci of houseflies (Musca domestica) collected from different environmental sources. Microb Pathog 2022; 164:105439. [DOI: 10.1016/j.micpath.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
8
|
Identification of bacterial communities of fermented cereal beverage Boza by metagenomic analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Bacterial surface, biofilm and virulence properties of Listeriamonocytogenes strains isolated from smoked salmon and fish food contact surfaces. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Di Bonaventura G, Pompilio A, Monaco M, Pimentel de Araujo F, Baldassarri L, Pantosti A, Gherardi G. Adhesion and biofilm formation by Staphylococcus aureus clinical isolates under conditions relevant to the host: relationship with macrolide resistance and clonal lineages. J Med Microbiol 2018; 68:148-160. [PMID: 30540247 DOI: 10.1099/jmm.0.000893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Staphylococcus aureus isolates, collected from various clinical samples, were analysed to evaluate the contribution of the genetic background of both erythromycin-resistant (ERSA) and -susceptible (ESSA) S. aureus strains to biofilm formation. METHODS A total of 66 ESSA and 43 ERSA clinical isolates were studied for adhesiveness and biofilm formation under different atmospheres. All isolates were evaluated for phenotypic and genotypic macrolide resistance, and for clonal relatedness by pulsed-field gel electrophoresis (PFGE), and by spa typing on representative isolates. RESULTS A high genetic heterogeneity was encountered, although 10 major PFGE types accounted for 86 % with a few small spatially and temporally related clusters. Overall, biofilm formation under anoxia was significantly lower than under oxic and micro-aerophilic atmospheres. Biofilm formation by ESSA was significantly higher compared to ERSA under oxic and micro-aerophilic conditions. Adhesiveness to plastic was significantly higher among respiratory tract infection isolates under micro-aerophilic conditions, while surgical site infection isolates formed significantly higher biomass of biofilm under oxic and micro-aerophilic atmospheres compared to anoxia. Pulsotype 2 and 4 strains formed significantly higher biofilm biomass than pulsotype 1, with strains belonging to CC8 forming significantly more compared to those belonging to CC5, under both oxic and micro-aerophilic atmospheres. CONCLUSIONS S. aureus biofilm formation appears to be more efficient in ESSA than ERSA, associated with specific S. aureus lineages, mainly CC8 and CC15, and affected by atmosphere. Further studies investigating the relationship between antibiotic resistance and biofilm formation could prove useful in the development of new strategies for the management of S. aureus infections.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- 1Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Arianna Pompilio
- 1Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Monica Monaco
- 2Department of Infectious, Parasitic and Immune-mediated Diseases, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Fernanda Pimentel de Araujo
- 2Department of Infectious, Parasitic and Immune-mediated Diseases, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Lucilla Baldassarri
- 3Centro Nazionale Sostanze Chimiche, Cosmetici e Protezione del Consumatore, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Annalisa Pantosti
- 2Department of Infectious, Parasitic and Immune-mediated Diseases, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giovanni Gherardi
- 4Department of Medicine, Campus Biomedico University, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
11
|
Assessment of in vivo versus in vitro biofilm formation of clinical methicillin-resistant Staphylococcus aureus isolates from endotracheal tubes. Sci Rep 2018; 8:11906. [PMID: 30093624 PMCID: PMC6085380 DOI: 10.1038/s41598-018-30494-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Our aim was to demonstrate that biofilm formation in a clinical strain of methicillin-resistant Staphylococcus aureus (MRSA) can be enhanced by environment exposure in an endotracheal tube (ETT) and to determine how it is affected by systemic treatment and atmospheric conditions. Second, we aimed to assess biofilm production dynamics after extubation. We prospectively analyzed 70 ETT samples obtained from pigs randomized to be untreated (controls, n = 20), or treated with vancomycin (n = 32) or linezolid (n = 18). A clinical MRSA strain (MRSA-in) was inoculated in pigs to create a pneumonia model, before treating with antibiotics. Tracheally intubated pigs with MRSA severe pneumonia, were mechanically ventilated for 69 ± 16 hours. All MRSA isolates retrieved from ETTs (ETT-MRSA) were tested for their in vitro biofilm production by microtiter plate assay. In vitro biofilm production of MRSA isolates was sequentially studied over the next 8 days post-extubation to assess biofilm capability dynamics over time. All experiments were performed under ambient air (O2) or ambient air supplemented with 5% CO2. We collected 52 ETT-MRSA isolates (placebo N = 19, linezolid N = 11, and vancomycin N = 22) that were clonally identical to the MRSA-in. Among the ETT-MRSA isolates, biofilm production more than doubled after extubation in 40% and 50% under 5% CO2 and O2, respectively. Systemic antibiotic treatment during intubation did not affect this outcome. Under both atmospheric conditions, biofilm production for MRSA-in was at least doubled for 9 ETT-MRSA isolates, and assessment of these showed that biofilm production decreased progressively over a 4-day period after extubation. In conclusion, a weak biofilm producer MRSA strain significantly enhances its biofilm production within an ETT, but it is influenced by the ETT environment rather than by the systemic treatment used during intubation or by the atmospheric conditions used for bacterial growth.
Collapse
|
12
|
Di Domenico EG, Toma L, Provot C, Ascenzioni F, Sperduti I, Prignano G, Gallo MT, Pimpinelli F, Bordignon V, Bernardi T, Ensoli F. Development of an in vitro Assay, Based on the BioFilm Ring Test ®, for Rapid Profiling of Biofilm-Growing Bacteria. Front Microbiol 2016; 7:1429. [PMID: 27708625 PMCID: PMC5030256 DOI: 10.3389/fmicb.2016.01429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023] Open
Abstract
Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.
Collapse
Affiliation(s)
- Enea G Di Domenico
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Luigi Toma
- Infectious Disease Consultant, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Christian Provot
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome Rome, Italy
| | - Isabella Sperduti
- Biostatistics, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Maria T Gallo
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Thierry Bernardi
- BioFilm Control, Biopole Clermont Limagne Saint Beauzire, France
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, Istituti di Ricovero e Cura a Carattere Scientifico Rome, Italy
| |
Collapse
|
13
|
Kim BR, Bae YM, Lee SY. Effect of Environmental Conditions on Biofilm Formation and Related Characteristics of Staphylococcus Aureus. J Food Saf 2016. [DOI: 10.1111/jfs.12263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo-Ram Kim
- Department of Food Science and Technology; Chung-Ang University; 72-1 Nae-ri Daedeok-myeon, Anseong-si Gyeonggi-do 456-756 South Korea
| | - Young-Min Bae
- Department of Food Science and Technology; Chung-Ang University; 72-1 Nae-ri Daedeok-myeon, Anseong-si Gyeonggi-do 456-756 South Korea
| | - Sun-Young Lee
- Department of Food Science and Technology; Chung-Ang University; 72-1 Nae-ri Daedeok-myeon, Anseong-si Gyeonggi-do 456-756 South Korea
| |
Collapse
|
14
|
Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H 2015; 228:1083-99. [PMID: 25406229 DOI: 10.1177/0954411914556137] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
Collapse
Affiliation(s)
- Suganthan Veerachamy
- Department of Biomedical Engineering, School of Biosciences and Technology, VIT University, Vellore, India
| | | | - Geetha Manivasagam
- Centre for Biomaterials Science and Technology, School of Mechanical and Building Sciences, VIT University, Vellore, India
| | - Prasad Kdv Yarlagadda
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5:7. [PMID: 25713785 PMCID: PMC4322838 DOI: 10.3389/fcimb.2015.00007] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
16
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015. [PMID: 25713785 DOI: 10.3389/fcimb.2015.00007/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
17
|
Asai K, Yamada K, Yagi T, Baba H, Kawamura I, Ohta M. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. J Infect Chemother 2014; 21:55-61. [PMID: 25454214 DOI: 10.1016/j.jiac.2014.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/19/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are pathogenic bacteria that often cause invasive infections in humans. In this study, we characterized the composition and growth characteristics of staphylococcal biofilms under various incubation atmospheres. We assessed the effect of incubation atmosphere (aerobic, 5% CO2, anaerobic, and microaerobic) on the biofilm production capabilities of S. aureus strains isolated from healthy volunteers and from patients with catheter-related bloodstream infection. In addition, the composition of S. aureus and S. epidermidis biofilms was determined by assessment of biofilm degradation after treatment with DNase I, proteinase K, and dispersin B. The strains obtained from healthy volunteers and patients showed similar biofilm formation capabilities. Biofilms of S. aureus were rich in proteins when developed under ambient atmospheric conditions, 5% CO2, and microaerobic condition, whereas S. epidermidis biofilms contained large amounts of poly-β (1, 6)-N-acetyl-D-glucosamine when developed under ambient atmospheric conditions and microaerobic condition. The biofilm-producing capability of S. epidermidis was considerably higher than that of S. aureus under aerobic condition. Staphylococcal isolates obtained from healthy individuals and patients with catheter-related infections have similar biofilm-forming capabilities. Under microaerobic conditions, S. aureus and S. epidermidis form protein-rich and poly-β (1, 6)-N-acetyl-D-glucosamine-rich biofilms, respectively. These components may play an important role in the development of biofilms inside the body and may be the target molecules to prevent catheter-related infections caused by these organisms.
Collapse
Affiliation(s)
- Kentaro Asai
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan
| | - Keiko Yamada
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Japan.
| | - Tetsuya Yagi
- Department of Infectious Diseases, Centre of National University Hospital for Infection Control, Nagoya University Hospital, Japan
| | - Hisashi Baba
- Department of Infectious Diseases, Kanazawa Medical University, Japan
| | - Ichiro Kawamura
- Division of Infectious Diseases, Shizuoka Cancer Center, Japan
| | - Michio Ohta
- Department of Nursing, School of Nursing, Sugiyama Jogakuen University, Japan
| |
Collapse
|
18
|
Ersoy Omeroglu E, Karaboz I, Sudagidan M. Characteristics and genetic diversity of bioluminescent Shewanella woodyi strains isolated from the Gulf of Izmir, Turkey. Folia Microbiol (Praha) 2013; 59:79-92. [DOI: 10.1007/s12223-013-0269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
19
|
Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis 2013; 75:235-9. [DOI: 10.1016/j.diagmicrobio.2012.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/13/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022]
|
20
|
Bayoumi MA, Kamal RM, Abd El Aal SF, Awad EI. Assessment of a regulatory sanitization process in Egyptian dairy plants in regard to the adherence of some food-borne pathogens and their biofilms. Int J Food Microbiol 2012; 158:225-31. [DOI: 10.1016/j.ijfoodmicro.2012.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/15/2012] [Accepted: 07/23/2012] [Indexed: 12/01/2022]
|
21
|
SUDAGIDAN MERT, YEMENİCİOĞLU AHMET. Effects of Nisin and Lysozyme on Growth Inhibition and Biofilm Formation Capacity of Staphylococcus aureus Strains Isolated from Raw Milk and Cheese Samples. J Food Prot 2012; 75:1627-33. [DOI: 10.4315/0362-028x.jfp-12-001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of 25 Staphylococcus aureus strains isolated from raw milk (13 strains) and cheese (12 strains) were studied. Nisin was tested at concentrations between 0.5 and 25 μg/ml; the growth of all strains was inhibited at 25 μg/ml, but the resistances of strains showed a great variation at lower nisin concentrations. In contrast, lysozyme tested at concentrations up to 5.0 mg/ml showed no inhibition on the growth of strains. Nisin used at the growth inhibitory concentration prevented the biofilm formation of strains, but strains continued biofilm formation at subinhibitory nisin concentrations. Lysozyme did not affect the biofilm formation of 19 of the strains, but it caused a considerable activation in the biofilm formation capacity of six strains. Twelve of the strains contained both biofilm-related protease genes (sspA, sspB, and aur) and active proteases; eight of these strains were nisin resistant. These results suggest a potential risk of S. aureus growth and biofilm formation when lysozyme is used in the biopreservation of dairy products. Nisin can be used to control growth and biofilm formation of foodborne S. aureus, unless resistance against this biopreservative develops.
Collapse
Affiliation(s)
- MERT SUDAGIDAN
- 1Science and Technology Application and Research Center, Mehmet Akif Ersoy University, 15100 Burdur, Turkey
| | - AHMET YEMENİCİOĞLU
- 2Department of Food Engineering, Izmir Institute of Technology, Gulbahce Campus, Urla 35430, Izmir, Turkey
| |
Collapse
|
22
|
Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 2010; 83:89-105. [DOI: 10.1016/j.mimet.2010.08.018] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 12/23/2022]
|
23
|
Effect of Different Incubation Atmospheres on the Production of Biofilm in Methicillin-Resistant Staphylococcus aureus (MRSA) Grown in Nutrient-Limited Medium. Curr Microbiol 2008; 57:386-90. [DOI: 10.1007/s00284-008-9211-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
|
24
|
Staphylococcus haemolyticus Mitral Valve Endocarditis Presenting With Multiple Brain Abscesses. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2008. [DOI: 10.1097/ipc.0b013e318157d2ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007; 115:891-9. [PMID: 17696944 DOI: 10.1111/j.1600-0463.2007.apm_630.x] [Citation(s) in RCA: 1207] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The details of all steps involved in the quantification of biofilm formation in microtiter plates are described. The presented protocol incorporates information on assessment of biofilm production by staphylococci, gained both by direct experience as well as by analysis of methods for assaying biofilm production. The obtained results should simplify quantification of biofilm formation in microtiter plates, and make it more reliable and comparable among different laboratories.
Collapse
Affiliation(s)
- Srdjan Stepanović
- Department of Bacteriology, Institute of Microbiology and Immunology, School of Medicine, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Di Bonaventura G, Stepanović S, Picciani C, Pompilio A, Piccolomini R. Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol (Praha) 2007; 52:86-90. [PMID: 17571802 DOI: 10.1007/bf02932144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of environmental factors (temperature, aerobiosis-anaerobiosis, static-dynamic conditions, pH) was determined on biofilm formation by 51 S. maltophilia clinical isolates. The strains produced more biofilm at 32 degrees C than at 37 or 18 degrees C. Aerobic and 6% CO2 atmosphere yielded comparable biofilm amounts, higher than under anaerobic conditions. Biofilm production was not affected by static vs. agitated culture conditions. Biofilm production at pH 7.5 and 8.5 was comparable but significantly higher than at pH 5.5. The capacity of individual strains to form biofilm and thus contribute to the severity of some diseases is influenced by host traits and environmental conditions at the site of infection, and play an important role in the pathogenesis of biomaterial-related disease caused by S. maltophilia.
Collapse
Affiliation(s)
- G Di Bonaventura
- Department of Biomedical Sciences, Faculty of Medicine, Gabriele d'Annunzio University, Italy.
| | | | | | | | | |
Collapse
|
27
|
Zhu Y, Weiss EC, Otto M, Fey PD, Smeltzer MS, Somerville GA. Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis. Infect Immun 2007; 75:4219-26. [PMID: 17576756 PMCID: PMC1951195 DOI: 10.1128/iai.00509-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading causes of nosocomial infections in the United States and often are associated with biofilms attached to indwelling medical devices. Despite the importance of biofilms, there is very little consensus about the metabolic requirements of S. aureus during biofilm growth. To assess the metabolic requirements of S. aureus growing in a biofilm, we grew USA200 and USA300 clonal types in biofilm flow cells and measured the extraction and accumulation of metabolites. In spite of the genetic differences, both clonal types extracted glucose and accumulated lactate, acetate, formate, and acetoin, suggesting that glucose was catabolized to pyruvate that was then catabolized via the lactate dehydrogenase, pyruvate formate-lyase, and butanediol pathways. Additionally, both clonal types selectively extracted the same six amino acids (serine, proline, arginine, glutamine, glycine, and threonine) from the culture medium. These data and recent speculation about the importance of arginine in biofilm growth and the function of arginine deiminase in USA300 clones led us to genetically inactivate the sole copy of the arginine deiminase operon by deleting the arginine/ornithine antiporter gene (arcD) in the USA200 clonal type and to assess the effect on biofilm development and pathogenesis. Although inactivation of arcD did completely inhibit arginine transport and did reduce polysaccharide intercellular adhesin accumulation, arcD mutants formed biofilms and achieved cell densities in catheter infection studies that were equivalent to those for isogenic wild-type strains.
Collapse
Affiliation(s)
- Yefei Zhu
- Department of Veterinary and Biomedical Sciences, University of Nebraska, 155 VBS, East Campus Loop, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
28
|
Rode TM, Langsrud S, Holck A, Møretrø T. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 2007; 116:372-83. [PMID: 17408792 DOI: 10.1016/j.ijfoodmicro.2007.02.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/30/2007] [Accepted: 02/27/2007] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus and its biofilm formation are recognized as a serious clinical problem. S. aureus is also a food borne pathogen, and little is known regarding biofilm formation of food-related strains. We have studied biofilm formation of both food-related and clinical S. aureus strains grown under different stress conditions (temperature, sodium chloride, glucose and ethanol) relevant for food processing. Strong biofilm formers were identified among food-related S. aureus strains, and biofilm formation was affected by environmental conditions relevant for the food industry. The results showed that temperatures suboptimal for growth increased the production of biofilm. The combined presence of sodium chloride and glucose enhanced the biofilm formation. Both temperature and osmolarity affected the expression of several biofilm associated genes (e.g. icaA and rbf). Variations in gene expression (e.g. icaA, agrA and sigB) between strains were also observed. Our results support the existence of both ica-dependent and ica-independent mechanisms of biofilm production in S. aureus. The phenotypic and genotypic results showed highly diverse and complex patterns of biofilm formation in S. aureus. This clearly demonstrates that caution must be exercised before drawing general conclusions about gene expression in S. aureus in relation to regulation of biofilm formation. The results are relevant for food safety as they indicate that food processing conditions could promote biofilm formation by S. aureus.
Collapse
Affiliation(s)
- Tone Mari Rode
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 As, Norway.
| | | | | | | |
Collapse
|
29
|
O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O'Gara JP. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 2007; 45:1379-88. [PMID: 17329452 PMCID: PMC1865887 DOI: 10.1128/jcm.02280-06] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Production of icaADBC-encoded polysaccharide intercellular adhesin, or poly-N-acetylglucosamine (PIA/PNAG), represents an important biofilm mechanism in staphylococci. We previously described a glucose-induced, ica-independent biofilm mechanism in four methicillin-resistant Staphylococcus aureus (MRSA) isolates. Here, biofilm regulation by NaCl and glucose was characterized in 114 MRSA and 98 methicillin-sensitive S. aureus (MSSA) isolates from diagnosed device-related infections. NaCl-induced biofilm development was significantly more prevalent among MSSA than MRSA isolates, and this association was independent of the isolate's genetic background as assessed by spa sequence typing. Among MSSA isolates, PIA/PNAG production correlated with biofilm development in NaCl, whereas in MRSA isolates grown in NaCl or glucose, PIA/PNAG production was not detected even though icaADBC was transcribed and regulated. Glucose-induced biofilm in MRSA was ica independent and apparently mediated by a protein adhesin(s). Experiments performed with strains that were amenable to genetic manipulation revealed that deletion of icaADBC had no effect on biofilm in a further six MRSA isolates but abolished biofilm in four MSSA isolates. Mutation of sarA abolished biofilm in seven MRSA and eight MSSA isolates. In contrast, mutation of agr in 13 MRSA and 8 MSSA isolates substantially increased biofilm (more than twofold) in only 5 of 21 (23%) isolates and had no significant impact on biofilm in the remaining 16 isolates. We conclude that biofilm development in MRSA is ica independent and involves a protein adhesin(s) regulated by SarA and Agr, whereas SarA-regulated PIA/PNAG plays a more important role in MSSA biofilm development.
Collapse
Affiliation(s)
- Eoghan O'Neill
- UCD School of Biomolecular and Biomedical Science, Ardmore House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
30
|
Fitzpatrick F, Humphreys H, O'Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol 2005; 43:1973-6. [PMID: 15815035 PMCID: PMC1081404 DOI: 10.1128/jcm.43.4.1973-1976.2005] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of a polysaccharide adhesin by icaADBC-encoded enzymes is currently the best-understood mechanism of staphylococcal biofilm development. In four methicillin-resistant Staphylococcus aureus isolates, environmental activation of icaADBC did not always correlate with increased biofilm production. Moreover, glucose-mediated biofilm development in these isolates was icaADBC independent. Apparently, an environmentally regulated, ica-independent mechanism(s) of biofilm development exists in S. aureus clinical isolates.
Collapse
Affiliation(s)
- Fidelma Fitzpatrick
- Department of Clinical Microbiology, Education and Research Centre, Smurfit Building, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | | | |
Collapse
|