1
|
Evans KM, Buser TJ, Larouche O, Kolmann MA. Untangling the relationship between developmental and evolutionary integration. Semin Cell Dev Biol 2022; 145:22-27. [PMID: 35659472 DOI: 10.1016/j.semcdb.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022]
Abstract
Patterns of integration and modularity among organismal traits are prevalent across the tree of life, and at multiple scales of biological organization. Over the past several decades, researchers have studied these patterns at the developmental, and evolutionary levels. While their work has identified the potential drivers of these patterns at different scales, there appears to be a lack of consensus on the relationship between developmental and evolutionary integration. Here, we review and summarize key studies and build a framework to describe the conceptual relationship between these patterns across organismal scales and illustrate how, and why some of these studies may have yielded seemingly conflicting outcomes. We find that among studies that analyze patterns of integration and modularity using morphological data, the lack of consensus may stem in part from the difficulty of fully disentangling the developmental and functional causes of integration. Nonetheless, in some empirical systems, patterns of evolutionary modularity have been found to coincide with expectations based on developmental processes, suggesting that in some circumstances, developmental modularity may translate to evolutionary modularity. We also advance an extension to Hallgrímsson et al.'s palimpsest model to describe how patterns of trait modularity may shift across different evolutionary scales. Finally, we also propose some directions for future research which will hopefully be useful for investigators interested in these issues.
Collapse
Affiliation(s)
- Kory M Evans
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA.
| | - Thaddaeus J Buser
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| | - Olivier Larouche
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| | - Matthew A Kolmann
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
2
|
Melville J, Hunjan S, McLean F, Mantziou G, Boysen K, Parry LJ. Expression of a hindlimb-determining factor Pitx1 in the forelimb of the lizard Pogona vitticeps during morphogenesis. Open Biol 2017; 6:rsob.160252. [PMID: 27784790 PMCID: PMC5090065 DOI: 10.1098/rsob.160252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression—a hindlimb-determining gene—in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis—a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology.
Collapse
Affiliation(s)
| | | | | | | | - Katja Boysen
- Museum Victoria, Carlton, Victoria 3001, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Riley C, Cloutier R, Grogan ED. Similarity of morphological composition and developmental patterning in paired fins of the elephant shark. Sci Rep 2017; 7:9985. [PMID: 28855616 PMCID: PMC5577158 DOI: 10.1038/s41598-017-10538-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
Jawed vertebrates, or gnathostomes, have two sets of paired appendages, pectoral and pelvic fins in fishes and fore- and hindlimbs in tetrapods. As for paired limbs, paired fins are purported serial homologues, and the advent of pelvic fins has been hypothesized to have resulted from a duplication of the developmental mechanisms present in the pectoral fins, but re-iterated at a posterior location. Developmental similarity of gene expression between pectoral and pelvic fins has been documented in chondrichthyans, but a detailed morphological description of the progression of paired fin development for this group is still lacking. We studied paired fin development in an ontogenetic series of a phylogenetically basal chondrichthyan, the elephant shark Callorhinchus milii. A strong similarity in the morphology and progression of chondrification between the pectoral and pelvic fins was found, which could be interpretated as further evidence of serial homology in paired fins, that could have arisen by duplication. Furthermore, this high degree of morphological and developmental similarity suggests the presence of morphological and developmental modules within paired fins, as observed in paired limbs. This is the first time morphological and developmental modules are described for the paired fins of chimaeras.
Collapse
Affiliation(s)
- Cyrena Riley
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada.
| | - Eileen D Grogan
- Biology Department, Saint Joseph's University, Philadelphia, Pennsylvania, 19131, USA
| |
Collapse
|
4
|
Harada M, Omori A, Nakahara C, Nakagata N, Akita K, Yamada G. Tissue-specific roles of FGF signaling in external genitalia development. Dev Dyn 2015; 244:759-73. [DOI: 10.1002/dvdy.24277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/22/2015] [Accepted: 03/22/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Masayo Harada
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
- Department of Clinical Anatomy; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Akiko Omori
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| | - Chiaki Nakahara
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering; Center for Animal Resources and Development, Kumamoto University; Kumamoto Japan
| | - Keiichi Akita
- Department of Clinical Anatomy; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Gen Yamada
- Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto Japan
- Department of Developmental Genetics; Institute of Advanced Medicine; Wakayama Medical University; Wakayama Japan
| |
Collapse
|
5
|
Nagashima H, Shibata M, Taniguchi M, Ueno S, Kamezaki N, Sato N. Comparative study of the shell development of hard- and soft-shelled turtles. J Anat 2014; 225:60-70. [PMID: 24754673 PMCID: PMC4089346 DOI: 10.1111/joa.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Masahiro Shibata
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| | - Mari Taniguchi
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Shintaro Ueno
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Naoki Kamezaki
- Suma Aqualife ParkKobe, Japan
- Sea Turtle Association of JapanHirakata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
| |
Collapse
|
6
|
Zhu X, Huang S, Zhang L, Wu Y, Chen Y, Tao Y, Wang Y, He S, Shen S, Wu J, Li B, Guo X, He L, Ma G. Constitutive activation of ectodermal β-catenin induces ectopic outgrowths at various positions in mouse embryo and affects abdominal ventral body wall closure. PLoS One 2014; 9:e92092. [PMID: 24647475 PMCID: PMC3960177 DOI: 10.1371/journal.pone.0092092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Vertebrate limbs originate from the lateral plate mesoderm (LPM) and the overlying ectoderm. While normal limb formation in defined regions has been well studied, the question of whether other positions retain limb-forming potential has not been fully investigated in mice. By ectopically activating β-catenin in the ectoderm with Msx2-cre, we observed that local tissue outgrowths were induced, which either progressed into limb-like structure within the inter-limb flank or formed extra tissues in other parts of the mouse embryo. In the presumptive abdominal region of severely affected embryos, ectopic limb formation was coupled with impaired abdominal ventral body wall (AVBW) closure, which indicates the existence of a potential counterbalance of limb formation and AVBW closure. At the molecular level, constitutive β-catenin activation was sufficient to trigger, but insufficient to maintain the ectopic expression of a putative limb-inducing factor, Fgf8, in the ectoderm. These findings provide new insight into the mechanism of limb formation and AVBW closure, and the crosstalk between the Wnt/β-catenin pathway and Fgf signal.
Collapse
Affiliation(s)
- Xuming Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Sixia Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingling Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Yumei Wu
- Department of Dermatology, Luwan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingwei Chen
- Department of Dermatology, Luwan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yixin Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Yushu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Shigang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Sanbing Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Ji Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail: (XG); (LH); (GM)
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail: (XG); (LH); (GM)
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail: (XG); (LH); (GM)
| |
Collapse
|
7
|
Freitas R, Gómez-Skarmeta JL, Rodrigues PN. New frontiers in the evolution of fin development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:540-52. [DOI: 10.1002/jez.b.22563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Renata Freitas
- IBMC-Instituto de Biologia Celular e Molecular; Porto Portugal
| | | | - Pedro Nuno Rodrigues
- IBMC-Instituto de Biologia Celular e Molecular; Porto Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; Porto Portugal
| |
Collapse
|
8
|
Yokoyama H, Maruoka T, Ochi H, Aruga A, Ohgo S, Ogino H, Tamura K. Different requirement for Wnt/β-catenin signaling in limb regeneration of larval and adult Xenopus. PLoS One 2011; 6:e21721. [PMID: 21814549 PMCID: PMC3144201 DOI: 10.1371/journal.pone.0021721] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 06/09/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/β-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/β-catenin signaling. METHODOLOGY/PRINCIPAL FINDINGS We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/β-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/β-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. CONCLUSIONS/SIGNIFICANCE In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/β-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/β-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/β-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Noro M, Yuguchi H, Sato T, Tsuihiji T, Yonei-Tamura S, Yokoyama H, Wakamatsu Y, Tamura K. Role of paraxial mesoderm in limb/flank regionalization of the trunk lateral plate. Dev Dyn 2011; 240:1639-49. [DOI: 10.1002/dvdy.22666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2011] [Indexed: 11/11/2022] Open
|
10
|
Johanson Z. Evolution of paired fins and the lateral somitic frontier. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:347-52. [DOI: 10.1002/jez.b.21343] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Gillis JA, Shubin NH. The evolution of gnathostome development: Insight from chondrichthyan embryology. Genesis 2010; 47:825-41. [PMID: 19882670 DOI: 10.1002/dvg.20567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chondrichthyans (cartilaginous fishes) represent one of the two lineages of gnathostomes, the other being the osteicthyans (bony fishes). Classical studies on chondrichthyan embryology have strongly impacted our views of vertebrate body plan evolution, while recent studies highlight oviparous chondrichthyans as emerging vertebrate model systems that are amenable to experimental embryological manipulation. Here, we review three particular areas of interest in the field of chondrichthyan developmental biology-gastrulation, neural development, and appendage patterning-and we discuss recent findings within a broader chondrichthyan-osteichthyan comparative framework. In some cases, comparative studies of chondrichthyan and osteichthyan development reveal conserved patterns of gene expression in common developmental contexts. Studies of chondrichthyan gastrulation reveal conserved patterns of developmental gene expression, despite highly divergent modes of mesendoderm internalization, while molecular characterization of chondrichthyan neurogenic placodes indicates a conservation of placode transcription factor expression across gnathostome phylogeny. In other cases, comparative studies of chondrichthyan and osteichthyan development yield evidence of shared patterning mechanisms functioning in different developmental contexts. This is exemplified by studies on the development of chondrichthyan appendages-paired fins, median fins, and gill rays. These have demonstrated that a retinoic acid-responsive Shh-expressing signaling center functions to pattern the endoskeleton of gnathostome paired fins and chondrichthyan gill rays, while expression patterns of Tbx18 and HoxD family members are shared by gnathostome paired fins and chondrichthyan median fins. These findings fuel novel hypotheses of developmental genetic homology, and demonstrate how comparative studies of gnathostome development can provide insight into the evolutionary processes that underlie morphological diversity.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
12
|
Liem IK, Aoyama H. Body wall morphogenesis: limb-genesis interferes with body wall-genesis via its influence on the abaxial somite derivatives. Mech Dev 2008; 126:198-211. [PMID: 19059337 DOI: 10.1016/j.mod.2008.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 11/03/2008] [Accepted: 11/14/2008] [Indexed: 11/25/2022]
Abstract
The vertebrate body wall is regionalized into thoracic and lumbosacral/abdominal regions that differ in their morphology and developmental origin. The thoracic body wall has ribs and intercostal muscles, which develops from thoracic somites, whereas the abdominal wall has abdominal muscles, which develops from lumbosacral somites without ribs cage. To examine whether limb-genesis interferes with body wall-genesis, and to test the possibility that limb generation leads to the regional differentiation, an ectopic limb was induced in the thoracic region by transplanting prospective limb somatopleural mesoderm of Japanese quail between the ectoderm and somatopleural mesoderm of the chick prospective thoracic region. This ectopic limb generation induced the somitic cells to migrate into the ectopic limb mesenchyme to become its muscles and caused the loss of distal thoracic body wall (sterno-distal rib and distal intercostal muscle), without causing any significant effect on the more proximal region (proximal rib, vertebro-distal rib and proximal intercostal muscle). According to a new primaxial-abaxial classification, the proximal region is classified as primaxial and the distal region, as well as limb, is classified as abaxial. We demonstrated that ectopic limb development interfered with body wall development via its influence on the abaxial somite derivatives. The present study supports the idea that the somitic cells give rise to the primaxial derivatives keeping their own identity and fate, whereas they produce the abaxial derivatives responding to the lateral plate mesoderm.
Collapse
Affiliation(s)
- Isabella Kurnia Liem
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | |
Collapse
|
13
|
Yonei-Tamura S, Abe G, Tanaka Y, Anno H, Noro M, Ide H, Aono H, Kuraishi R, Osumi N, Kuratani S, Tamura K. Competent stripes for diverse positions of limbs/fins in gnathostome embryos. Evol Dev 2008; 10:737-45. [DOI: 10.1111/j.1525-142x.2008.00288.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Maxwell EE, Fröbisch NB, Heppleston AC. Variability and Conservation in Late Chondrichthyan Development: Ontogeny of the Winter Skate (Leucoraja ocellata). Anat Rec (Hoboken) 2008; 291:1079-87. [DOI: 10.1002/ar.20719] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Cole NJ, Currie PD. Insights from sharks: evolutionary and developmental models of fin development. Dev Dyn 2007; 236:2421-31. [PMID: 17676641 DOI: 10.1002/dvdy.21268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The shark and its embryology have recently returned to the spotlight as a model animal in the quest to determine the origins of paired appendages during vertebrate evolution. As the most basal living gnathostomes, sharks and other extant chondrichthyans are ideal models to elucidate the developmental mechanisms utilised in mesoderm-derived primitive fin morphologies. Chondrichthyans occupy a phylogenetic position and possess morphological structures that can answer major questions on the origin of the body plan of vertebrates. This review will outline the past, present, and future use of shark species as a model system with particular emphasis on the recent studies that have utilised comparative molecular embryology of chondrichthyan species to examine the question of the origin of the paired fins. We will also examine the problems and pitfalls of utilising chondrichthyans and the barriers that remain to their utilisation in the modern era of developmental biology.
Collapse
Affiliation(s)
- Nicholas J Cole
- The Victor Chang Cardiac Research Institute, Sydney, Australia.
| | | |
Collapse
|
16
|
Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 2007; 306:170-8. [PMID: 17442299 PMCID: PMC2703180 DOI: 10.1016/j.ydbio.2007.03.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hajime Ogino
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Cristi L. Stoick-Cooper
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Rob M. Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Abe G, Ide H, Tamura K. Function of FGF signaling in the developmental process of the median fin fold in zebrafish. Dev Biol 2006; 304:355-66. [PMID: 17258191 DOI: 10.1016/j.ydbio.2006.12.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 12/12/2022]
Abstract
Median fins, unpaired appendages in fish, are fundamental locomotory organs that are believed to have evolved before paired lateral appendages in vertebrates. However, the early process of median fin development remains largely unknown. We investigated the early development of the median fin fold, a rudiment of median fins, and report here the process in zebrafish embryos and the function of FGF signaling in the process. Using expressions of three genes, dlx5a, sp9 and fgf24, as markers of different phases of fold development, our findings suggest that the early process of median fin fold development can be divided into two steps, specification of the median fin fold territory and construction of the fold structure. Both loss-of-function and gain-of-function assays revealed that FGF signaling plays roles in each step, suggesting a common mechanism for the development of median appendages and paired lateral appendages.
Collapse
Affiliation(s)
- Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
18
|
Garrity DM, Childs S, Fishman MC. Theheartstringsmutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 2002; 129:4635-45. [PMID: 12223419 DOI: 10.1242/dev.129.19.4635] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Holt-Oram syndrome is one of the autosomal dominant human ‘heart-hand’ disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart.We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium.Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.
Collapse
Affiliation(s)
- Deborah M Garrity
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
19
|
Tanaka M, Münsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C. Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 2002; 416:527-31. [PMID: 11932743 DOI: 10.1038/416527a] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent fossil finds and experimental analysis of chick and mouse embryos highlighted the lateral fin fold theory, which suggests that two pairs of limbs in tetrapods evolved by subdivision of an elongated single fin. Here we examine fin development in embryos of the primitive cartilaginous fish, Scyliorhinus canicula (dogfish) using scanning electron microscopy and investigate expression of genes known to be involved in limb positioning, identity and patterning in higher vertebrates. Although we did not detect lateral fin folds in dogfish embryos, Engrailed-1 expression suggests that the body is compartmentalized dorso-ventrally. Furthermore, specification of limb identity occurs through the Tbx4 and Tbx5 genes, as in higher vertebrates. In contrast, unlike higher vertebrates, we did not detect Shh transcripts in dogfish fin-buds, although dHand (a gene involved in establishing Shh) is expressed. In S. canicula, the main fin axis seems to lie parallel to the body axis. 'Freeing' fins from the body axis and establishing a separate 'limb' axis has been proposed to be a crucial step in evolution of tetrapod limbs. We suggest that Shh plays a critical role in this process.
Collapse
Affiliation(s)
- Mikiko Tanaka
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | | | | | | | | | | |
Collapse
|