1
|
Adermark L, Stomberg R, Söderpalm B, Ericson M. Astrocytic Regulation of Endocannabinoid-Dependent Synaptic Plasticity in the Dorsolateral Striatum. Int J Mol Sci 2024; 25:581. [PMID: 38203752 PMCID: PMC10779090 DOI: 10.3390/ijms25010581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rosita Stomberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| | - Bo Söderpalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
- Beroendekliniken, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| |
Collapse
|
2
|
Selistre NG, Rodrigues L, Federhen BC, Gayger-Dias V, Taday J, Wartchow KM, Gonçalves CA. S100B Secretion in Astrocytes, Unlike C6 Glioma Cells, Is Downregulated by Lactate. Metabolites 2023; 14:7. [PMID: 38276297 PMCID: PMC10819463 DOI: 10.3390/metabo14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
S100B is a calcium-binding protein produced and secreted by astrocytes in response to various extracellular stimuli. C6 glioma cells are a lineage commonly employed for astroglial studies due to the expression of astrocyte specific markers and behavior. However, in high-glucose medium, C6 S100B secretion increases, in contrast to the trend in primary astrocyte cultures. Additionally, S100B secretion decreases due to fluorocitrate (FC), a Krebs cycle inhibitor, highlighting a connection between S100B and metabolism. Herein, we investigate the impact of FC on S100B secretion in primary astrocyte cultures, acute hippocampal slices and C6 glioma cells, as well as lactate mediation. Our results demonstrated that C6 responded similarly to astrocytes in various parameters, despite the decrease in S100B secretion, which was inversely observed in astrocytes and slices. Furthermore, FC inversely altered extracellular lactate in both models, suggesting a role for lactate in S100B secretion. This was reinforced by a decrease in S100B secretion in hippocampal slices treated with lactate and its agonist, but not in C6 cells, despite HCAR1 expression. Our findings indicate that extracellular lactate mediates the decrease in S100B secretion in astrocytes exposed to FC. They also emphasize the differences in C6 glioma cells regarding energetic metabolism. The proposed mechanism via HCAR1 provides further compelling evidence of the relationship between S100B and glucose metabolism.
Collapse
Affiliation(s)
- Nicholas Guerini Selistre
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Leticia Rodrigues
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Barbara Carolina Federhen
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Vitor Gayger-Dias
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Jéssica Taday
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| | - Krista Mineia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
| | - Carlos-Alberto Gonçalves
- Biochemistry Post-Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.G.S.); (L.R.); (B.C.F.); (V.G.-D.); (J.T.); (C.-A.G.)
| |
Collapse
|
3
|
Díaz F, Aguilar F, Wellmann M, Martorell A, González-Arancibia C, Chacana-Véliz L, Negrón-Oyarzo I, Chávez AE, Fuenzalida M, Nualart F, Sotomayor-Zárate R, Bonansco C. Enhanced Astrocyte Activity and Excitatory Synaptic Function in the Hippocampus of Pentylenetetrazole Kindling Model of Epilepsy. Int J Mol Sci 2023; 24:14506. [PMID: 37833953 PMCID: PMC10572460 DOI: 10.3390/ijms241914506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a chronic condition characterized by recurrent spontaneous seizures. The interaction between astrocytes and neurons has been suggested to play a role in the abnormal neuronal activity observed in epilepsy. However, the exact way astrocytes influence neuronal activity in the epileptogenic brain remains unclear. Here, using the PTZ-induced kindling mouse model, we evaluated the interaction between astrocyte and synaptic function by measuring astrocytic Ca2+ activity, neuronal excitability, and the excitatory/inhibitory balance in the hippocampus. Compared to control mice, hippocampal slices from PTZ-kindled mice displayed an increase in glial fibrillary acidic protein (GFAP) levels and an abnormal pattern of intracellular Ca2+-oscillations, characterized by an increased frequency of prolonged spontaneous transients. PTZ-kindled hippocampal slices also showed an increase in the E/I ratio towards excitation, likely resulting from an augmented release probability of excitatory inputs without affecting inhibitory synapses. Notably, the alterations in the release probability seen in PTZ-kindled slices can be recovered by reducing astrocyte hyperactivity with the reversible toxin fluorocitrate. This suggests that astroglial hyper-reactivity enhances excitatory synaptic transmission, thereby impacting the E/I balance in the hippocampus. Altogether, our findings support the notion that abnormal astrocyte-neuron interactions are pivotal mechanisms in epileptogenesis.
Collapse
Affiliation(s)
- Franco Díaz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Escuela de Ciencias de la Salud, Universidad Viña del Mar, Viña del Mar 2580022, Chile
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Freddy Aguilar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Mario Wellmann
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Andrés Martorell
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
- Programa de Magíster en Ciencias Biológicas mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Fonoaudiología, Facultad de Salud, Universidad Santo Tomás, Viña del Mar 2561780, Chile
| | - Camila González-Arancibia
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Lorena Chacana-Véliz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Ignacio Negrón-Oyarzo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile;
- Center for Advanced Microscopy CMA BIOBIO, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (F.D.); (F.A.); (M.W.); (A.M.); (C.G.-A.); (L.C.-V.); (I.N.-O.); (M.F.)
| |
Collapse
|
4
|
Fernandes-Costa F, de Lima Flôr AF, Falcão MSF, de Moura Balarini C, de Brito Alves JL, de Andrade Braga V, de Campos Cruz J. Central interaction between nitric oxide, lactate and glial cells to modulate water and sodium intake in rats. Brain Res Bull 2022; 186:1-7. [PMID: 35487385 DOI: 10.1016/j.brainresbull.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 12/23/2022]
Abstract
The "astrocyte-to-neuron lactate shuttle" (ANLS) mechanism is part of the central inhibitory pathway to modulate sodium intake. An interaction between the GABAergic neurons and nitric oxide (NO) in the subfornical organ (SFO) in salt-appetite inhibition has been suggested. In addition, NO is a key molecule involved in astrocytic energy metabolism and lactate production. In the present study, we hypothesized there is an interaction between astrocytic lactate and central NO to negatively modulate water and sodium intake through the ANLS mechanism. The results showed that central Nω-nitro-L-arginine methyl ester (L-NAME, NO-synthase inhibition) induced an increase in water and sodium intake. These responses were attenuated by previous central microinjection of fluorocitrate (FCt, a reversible glial inhibitor). Interestingly, L-NAME-induced water and sodium intake were also decreased by previous microinjection of lactate but did not change after inhibition of the ANLS mechanism by α-cyano 4-hydroxycinnamic acid (α-CHCA), an inhibitor of the MCT lactate transporter. Our results suggest a central interaction between NO, glial cells, and lactate to modulate water and sodium intake.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josiane de Campos Cruz
- Biotechnology Center, Department of Biotechnology, Federal University of Paraiba, João Pessoa, Brazil; Department of Physiology and Pathology, Federal University of Paraiba, João Pessoa, Brazil; Department of Nutrition, Federal University of Paraiba, João Pessoa, Brazil; Department of Biotechnology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
5
|
Rezagholizadeh A, Karimi SA, Hosseinmardi N, Janahmadi M, Sayyah M. The effects of glial cells inhibition on spatial reference, reversal and working memory deficits in a rat model of traumatic brain injury (TBI). Int J Neurosci 2020; 132:226-236. [PMID: 32799586 DOI: 10.1080/00207454.2020.1807544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Evidence suggests that glial cells are influenced by Traumatic brain injury (TBI). Both protective and damaging roles have been attributed to reactive glial cells, but their role after TBI has not been well understood. In this study, the role of glial cells in TBI-induced cognitive impairment was investigated. MATERIALS AND METHODS Male rats were randomly assigned to the following groups: Sham + PBS, sham + FC, TBI + PBS, and TBI + FC. FC (1 nmol/1 μl), a glial cell inhibitor, was injected into the lateral ventricle 10 min after TBI induction and it was repeated every 24 h until the seventh day. On days 8-13 post-injury, reference and reverse memory and on days 8-16 post-injury, working memory was assessed using the Morris water maze test. RESULTS Brain-injured rats exhibited significant impairments in acquisition and retrieval phases of reference and reverse memory compared to sham rats and FC administration could not attenuate the deteriorative effect of TBI in different learning tasks. TBI rats showed impairment in acquisition (but not retrieval) of working memory. Sham animals which received FC showed a deficit in reversal memory acquisition and retrieval of reference memory compared to sham + PBS rats. CONCLUSION The present study demonstrates that memory deficit induced by TBI cannot be improved by FC, and glial cells inhibition in uninjured animals causes impairments in reversal memory acquisition and retrieval of reference memory. Our results suggest that in addition to essential role of glial cells for memory formation in normal situation, their responses after TBI may have preventive effect against memory impairments.
Collapse
Affiliation(s)
- Amir Rezagholizadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Asaad Karimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Kuter K, Olech Ł, Głowacka U, Paleczna M. Astrocyte support is important for the compensatory potential of the nigrostriatal system neurons during early neurodegeneration. J Neurochem 2018; 148:63-79. [PMID: 30295916 DOI: 10.1111/jnc.14605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022]
Abstract
Glial pathology precedes symptoms of Parkinson's disease and multiple other neurodegenerative diseases. Prolonged impairment of astrocytic functions could increase the vulnerability of dopaminergic neurons in the substantia nigra (SN), accelerate their degeneration and affect ability to compensate for partial degeneration at the presymptomatic stages of the disease. The aim of this study was to investigate the astrocyte depletion in the SN, its impact on the dopaminergic system functioning and multiple markers of energy metabolism during the early stages of neurodegeneration and compensation. We induced death of 30% of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, simultaneously activating microglia response but sparing the dopaminergic neurons. The FC effect was reversible after toxin withdrawal. Dopaminergic neurons were killed by 6-hydroxydopamine causing transient locomotor disability, reversed with time showing compensatory potential. Death of astrocytes diminished the capability of the dopaminergic system to compensate for the degeneration of neurons and caused a local energy deprivation by decreasing lactate and glycogen amount. Studied markers suggest a shift in the usage of energy substrates, via increased glycogenolysis and glycolysis markers, ketone bodies availability and fatty acid transport in remaining cells. Peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1alpha) and AMP-activated protein kinase (AMPK), the energy sensors, showed different regulation between the cell-types. Increased neuronal expression of carnitine palmitoyltransferase 1c could play a role in the adaptation to metabolic stress in response to glia dysfunction. Astrocyte energetic support is one of the essential factors for neuronal compensatory mechanisms of dopaminergic system and might have a leading role in the presymptomatic Parkinson's disease stages. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Martyna Paleczna
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
7
|
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia 2017; 66:1213-1234. [PMID: 29098734 DOI: 10.1002/glia.23252] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
8
|
Kuter K, Olech Ł, Głowacka U. Prolonged Dysfunction of Astrocytes and Activation of Microglia Accelerate Degeneration of Dopaminergic Neurons in the Rat Substantia Nigra and Block Compensation of Early Motor Dysfunction Induced by 6-OHDA. Mol Neurobiol 2017; 55:3049-3066. [PMID: 28466266 PMCID: PMC5842510 DOI: 10.1007/s12035-017-0529-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023]
Abstract
Progressive degeneration of dopaminergic neurons in the substantia nigra (SN) is the underlying cause of Parkinson’s disease (PD). The disease in early stages is difficult to diagnose, because behavioral deficits are masked by compensatory processes. Astrocytic and microglial pathology precedes motor symptoms. Besides supportive functions of astrocytes in the brain, their role in PD is unrecognized. Prolonged dysfunction of astrocytes could increase the vulnerability of dopaminergic neurons and advance their degeneration during aging. The aim of our studies was to find out whether prolonged dysfunction of astrocytes in the SN is deleterious for neuronal functioning and if it influences their survival after toxic insult or changes the compensatory potential of the remaining neurons. In Wistar rat model, we induced activation, prolonged dysfunction, and death of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, without causing dopaminergic neuron degeneration. Strongly enhanced dopamine turnover in the SN after 7 days of FC infusion was induced probably by microglia activated in response to astrocyte stress. The FC effect was reversible, and astrocyte pool was replenished 3 weeks after the end of infusion. Importantly, the prolonged astrocyte dysfunction and microglia activation accelerated degeneration of dopaminergic neurons induced by 6-hydroxydopamine and blocked the behavioral compensation normally observed after moderate neurodegeneration. Impaired astrocyte functioning, activation of microglia, diminishing compensatory capability of the dopaminergic system, and increasing neuronal vulnerability to external insults could be the underlying causes of PD. This animal model of prolonged astrocyte dysfunction can be useful for in vivo studies of glia–microglia–neuron interaction.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland.
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| |
Collapse
|
9
|
Valbuena GN, Tortarolo M, Bendotti C, Cantoni L, Keun HC. Altered Metabolic Profiles Associate with Toxicity in SOD1 G93A Astrocyte-Neuron Co-Cultures. Sci Rep 2017; 7:50. [PMID: 28246392 PMCID: PMC5428359 DOI: 10.1038/s41598-017-00072-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Non-cell autonomous processes involving astrocytes have been shown to contribute to motor neuron degeneration in amyotrophic lateral sclerosis. Mutant superoxide dismutase 1 (SOD1G93A) expression in astrocytes is selectively toxic to motor neurons in co-culture, even when mutant protein is expressed only in astrocytes and not in neurons. To examine metabolic changes in astrocyte-spinal neuron co-cultures, we carried out metabolomic analysis by 1H NMR spectroscopy of media from astrocyte-spinal neuron co-cultures and astrocyte-only cultures. We observed increased glucose uptake with SOD1G93A expression in all co-cultures, but while co-cultures with only SOD1G93A neurons had lower extracellular lactate, those with only SOD1G93A astrocytes exhibited the reverse. Reduced branched-chain amino acid uptake and increased accumulation of 3-methyl-2-oxovalerate were observed in co-culture with only SOD1G93A neurons while glutamate was reduced in all co-cultures expressing SOD1G93A. The shifts in these coupled processes suggest a potential block in glutamate processing that may impact motor neuron survival. We also observed metabolic alterations which may relate to oxidative stress responses. Overall, the different metabolite changes observed with the two SOD1G93A cell types highlight the role of the astrocyte-motor neuron interaction in the resulting metabolic phenotype, requiring further examination of altered met abolic pathways and their impact on motor neuron survival.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Massimo Tortarolo
- Department of Neuroscience, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy.
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
10
|
Westergaard N, Waagepetersen HS, Belhage B, Schousboe A. Citrate, a Ubiquitous Key Metabolite with Regulatory Function in the CNS. Neurochem Res 2017; 42:1583-1588. [DOI: 10.1007/s11064-016-2159-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022]
|
11
|
McClain JL, Gulbransen BD. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins. J Neurophysiol 2016; 117:365-375. [PMID: 27784805 DOI: 10.1152/jn.00507.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
Glia play key roles in the regulation of neurotransmission in the nervous system. Fluoroacetate (FA) is a metabolic poison widely used to study glial functions by disrupting the tricarboxylic acid cycle enzyme aconitase. Despite the widespread use of FA, the effects of FA on essential glial functions such as calcium (Ca2+) signaling and hemichannel function remain unknown. Therefore, our goal was to assess specifically the impact of FA on essential glial cell functions that are involved with neurotransmission in the enteric nervous system. To this end, we generated a new optogenetic mouse model to study specifically the effects of FA on enteric glial Ca2+ signaling by crossing PC::G5-tdTomato mice with Sox10::creERT2 mice. FA did not change the peak glial Ca2+ response when averaged across all glia within a ganglion. However, FA decreased the percent of responding glia by 30% (P < 0.05) and increased the peak Ca2+ response of the glial cells that still exhibited a response by 26% (P < 0.01). Disruption of Ca2+ signaling with FA impaired the activity-dependent uptake of ethidium bromide through connexin-43 (Cx43) hemichannels (P < 0.05) but did not affect baseline Cx43-dependent dye uptake. FA did not cause overt glial or neurodegeneration, but glial cells significantly increased glial fibrillary acid protein by 56% (P < 0.05) following treatment with FA. Together, these data show that the acute impairment of glial metabolism with FA causes key changes in glial functions associated with their roles in neurotransmission and phenotypic changes indicative of reactive gliosis. NEW & NOTEWORTHY Our study shows that the acute impairment of enteric glial metabolism with fluoroacetate (FA) alters specific glial functions that are associated with the modification of neurotransmission in the gut. These include subtle changes to glial agonist-evoked calcium signaling, the subsequent disruption of connexin-43 hemichannels, and changes in protein expression that are consistent with a transition to reactive glia. These changes in glial function offer a mechanistic explanation for the effects of FA on peripheral neuronal networks.
Collapse
Affiliation(s)
- Jonathon L McClain
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan; and .,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
12
|
The role of glia in neuronal recovery following anoxia: In vitro evidence of neuronal adaptation. Neurochem Int 2011; 58:665-75. [DOI: 10.1016/j.neuint.2011.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 11/23/2022]
|
13
|
Bonansco C, Couve A, Perea G, Ferradas CÁ, Roncagliolo M, Fuenzalida M. Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 2011; 33:1483-92. [PMID: 21395864 DOI: 10.1111/j.1460-9568.2011.07631.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Astrocytes exhibit spontaneous calcium oscillations that could induce the release of glutamate as gliotransmitter in rat hippocampal slices. However, it is unknown whether this spontaneous release of astrocytic glutamate may contribute to determining the basal neurotransmitter release probability in central synapses. Using whole-cell recordings and Ca(2+) imaging, we investigated the effects of the spontaneous astrocytic activity on neurotransmission and synaptic plasticity at CA3-CA1 hippocampal synapses. We show here that the metabolic gliotoxin fluorocitrate (FC) reduces the amplitude of evoked excitatory postsynaptic currents and increases the paired-pulse facilitation, mainly due to the reduction of the neurotransmitter release probability and the synaptic potency. FC also decreased intracellular Ca(2+) signalling and Ca(2+) -dependent glutamate release from astrocytes. The addition of glutamine rescued the effects of FC over the synaptic potency; however, the probability of neurotransmitter release remained diminished. The blockage of group I metabotropic glutamate receptors mimicked the effects of FC on the frequency of miniature synaptic responses. In the presence of FC, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N '-tetra-acetate or group I metabotropic glutamate receptor antagonists, the excitatory postsynaptic current potentiation induced by the spike-timing-dependent plasticity protocol was blocked, and it was rescued by delivering a stronger spike-timing-dependent plasticity protocol. Taken together, these results suggest that spontaneous glutamate release from astrocytes contributes to setting the basal probability of neurotransmitter release via metabotropic glutamate receptor activation, which could be operating as a gain control mechanism that regulates the threshold of long-term potentiation. Therefore, endogenous astrocyte activity provides a novel non-neuronal mechanism that could be critical for transferring information in the central nervous system.
Collapse
Affiliation(s)
- Christian Bonansco
- Departamento de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.
| | | | | | | | | | | |
Collapse
|
14
|
Skytt DM, Madsen KK, Pajęcka K, Schousboe A, Waagepetersen HS. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex. Neurochem Res 2010; 35:2043-52. [PMID: 21127969 DOI: 10.1007/s11064-010-0329-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 11/30/2022]
Abstract
Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary acidic protein, and the glutamate transporters EAAT1 and EAAT2. The cultures prepared from 7-day-old animals were additionally characterized metabolically using (13)C-labeled glucose and glutamate as well as (15)N-labeled glutamate as substrates. All types of cultures exhibited pronounced immunostaining of the astrocyte marker proteins. The metabolic pattern of the cultures from 7-day-old animals of the labeled substrates was comparable to that seen previously in astrocyte cultures prepared from new-born mouse brain showing pronounced glycolytic and oxidative metabolism of glucose. Glutamate was metabolized both via the GS pathway and oxidatively via the tricarboxylic acid cycle as expected. Additionally, glutamate underwent pronounced transamination to aspartate and alanine and the intracellular pools of alanine and pyruvate exhibited compartmentation. Altogether the results show that cultures prepared from cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes.
Collapse
Affiliation(s)
- Dorte M Skytt
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus 2010; 21:877-84. [PMID: 20572198 DOI: 10.1002/hipo.20803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2010] [Indexed: 12/16/2022]
Abstract
The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus.
Collapse
Affiliation(s)
- Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | |
Collapse
|
16
|
Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF. Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 2010; 30:1200-13. [PMID: 20125180 PMCID: PMC2879471 DOI: 10.1038/jcbfm.2010.2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetate is a well-known astrocyte-specific substrate that has been used extensively to probe astrocytic function in vitro and in vivo. Analysis of amino acid turnover curves from (13)C-acetate has been limited mainly for estimation of first-order rate constants from exponential fitting or calculation of relative rates from steady-state (13)C enrichments. In this study, we used (1)H-[(13)C]-Nuclear Magnetic Resonance spectroscopy with intravenous infusion of [2-(13)C]acetate-Na(+) in vivo to measure the cerebral kinetics of acetate transport and utilization in anesthetized rats. Kinetics were assessed using a two-compartment (neuron/astrocyte) analysis of the (13)C turnover curves of glutamate-C4 and glutamine-C4 from [2-(13)C]acetate-Na(+), brain acetate levels, and the dependence of steady-state glutamine-C4 enrichment on blood acetate levels. The steady-state enrichment of glutamine-C4 increased with blood acetate concentration until 90% of plateau for plasma acetate of 4 to 5 mmol/L. Analysis assuming reversible, symmetric Michaelis-Menten kinetics for transport yielded 27+/-2 mmol/L and 1.3+/-0.3 micromol/g/min for K(t) and T(max), respectively, and for utilization, 0.17+/-0.24 mmol/L and 0.14+/-0.02 micromol/g/min for K(M_util) and V(max_util), respectively. The distribution space for acetate was only 0.32+/-0.12 mL/g, indicative of a large excluded volume. The astrocytic and neuronal tricarboxylic acid cycle fluxes were 0.37+/-0.03 micromol/g/min and 1.41+/-0.11 micromol/g/min, respectively; astrocytes thus comprised approximately 21%+/-3% of total oxidative metabolism.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | |
Collapse
|
17
|
Wang L, Li CC, Wang GW, Cai JX. The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats. ACTA ACUST UNITED AC 2009; 52:701-9. [PMID: 19727587 DOI: 10.1007/s11427-009-0101-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 05/27/2009] [Indexed: 11/25/2022]
Abstract
Although prefrontal and hippocampal neurons are critical for spatial working memory, the function of glial cells in spatial working memory remains uncertain. In this study we investigated the function of glial cells in rats' working memory. The glial cells of rat brain were inhibited by intracerebroventricular (icv) injection of fluorocitrate (FC). The effects of FC on the glial cells were examined by using electroencephalogram (EEG) recordings and delayed spatial alternation tasks. After icv injection of 10 microL of 0.5 nmol/L or 5 nmol/L FC, the EEG power spectrum recorded from the hippocampus increased, but the power spectrum for the prefrontal cortex did not change, and working memory was unaffected. Following an icv injection of 10 microL of 20 nmol/L FC, the EEG power spectra in both the prefrontal cortex and the hippocampus increased, and working memory improved. The icv injection of 10 microL of 50 nmol/L FC, the EEG power spectra in both the prefrontal cortex and in the hippocampus decreased, and working memory was impaired. These results suggest that spatial working memory is affected by centrally administered FC, but only if there are changes in the EEG power spectrum in the prefrontal cortex. Presumably, the prefrontal glial cells relate to the working memory.
Collapse
Affiliation(s)
- Lei Wang
- Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
| | | | | | | |
Collapse
|
18
|
Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves. J Cereb Blood Flow Metab 2008; 28:1835-44. [PMID: 18612316 DOI: 10.1038/jcbfm.2008.71] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In a model of glial-specific chemical anoxia, we have examined how astrocytes influence both synaptic transmission and the viability of hippocampal pyramidal neurons. This relationship was assessed using electrophysiological, pharmacological, and biochemical techniques in rat slices and cell cultures, and oxidative metabolism was selectively impaired in glial cells by exposure to the mitochondrial gliotoxin, fluoroacetate. We found that synaptic transmission was blocked shortly after inducing glial metabolic stress and peri-infarct-like spreading depression (SD) waves developed within 1 to 2 h of treatment. Neuronal electrogenesis was not affected until SD waves developed, thereafter decaying irreversibly. The blockage of synaptic transmission was totally reversed by A(1) adenosine receptor antagonists, unlike the development of SD waves, which appeared earlier under these conditions. Such blockage led to a marked reduction in the electrical viability of pyramidal neurons 1 h after gliotoxin treatment. Cell culture experiments confirmed that astrocytes indeed release adenosine. We interpret this early glial response as a novel safety mechanism that allocates metabolic resources to vital processes when the glia itself sense an energy shortage, thereby delaying or preventing entry into massive lethal ischemic-like depolarization. The implication of these results on the functional recovery of the penumbra regions after ischemic insults is discussed.
Collapse
|
19
|
Singh SP, Niemczyk M, Saini D, Awasthi YC, Zimniak L, Zimniak P. Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry 2008; 47:3900-11. [PMID: 18311940 DOI: 10.1021/bi702124u] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The lipid peroxidation product 4-hydroxynonenal (4-HNE) is a signaling mediator with wide-ranging biological effects. In this paper, we report that disruption of mGsta4, a gene encoding the 4-HNE-conjugating enzyme mGSTA4-4, causes increased 4-HNE tissue levels and is accompanied by age-dependent development of obesity which precedes the onset of insulin resistance in 129/sv mice. In contrast, mGsta4 null animals in the C57BL/6 genetic background have normal 4-HNE levels and remain lean, indicating a role of 4-HNE in triggering or maintaining obesity. In mGsta4 null 129/sv mice, the expression of the acetyl-CoA carboxylase (ACC) transcript is enhanced several-fold with a concomitant increase in the tissue level of malonyl-CoA. Also, mitochondrial aconitase is partially inhibited, and tissue citrate levels are increased. Accumulation of citrate could lead to allosteric activation of ACC, further augmenting malonyl-CoA levels. Aconitase may be inhibited by 4-HNE or by peroxynitrite generated by macrophages which are enriched in white adipose tissue of middle-aged mGsta4 null 129/sv mice and, upon lipopolysaccharide stimulation, produce more reactive oxygen species and nitric oxide than macrophages from wild-type mice. Excessive malonyl-CoA synthesized by the more abundant and/or allosterically activated ACC in mGsta4 null mice leads to fat accumulation by the well-known mechanisms of promoting fatty acid synthesis and inhibiting fatty acid beta-oxidation. Our findings complement the recent report that obesity causes both a loss of mGSTA4-4 and an increase in the level of 4-HNE [Grimsrud, P. A., et al. (2007) Mol. Cell. Proteomics 6, 624-637]. The two reciprocal processes are likely to establish a positive feedback loop that would promote and perpetuate the obese state.
Collapse
Affiliation(s)
- Sharda P Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ng KT. Reinforcement, glucose metabolism and memory formation: A possible role for astrocytes. AUSTRALIAN JOURNAL OF PSYCHOLOGY 2007. [DOI: 10.1080/00049539708260460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Hirose S, Umetani Y, Amitani M, Hosoi R, Momosaki S, Hatazawa J, Gee A, Inoue O. Role of NMDA receptors in the increase of glucose metabolism in the rat brain induced by fluorocitrate. Neurosci Lett 2007; 415:259-63. [PMID: 17280781 DOI: 10.1016/j.neulet.2007.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/19/2006] [Accepted: 01/12/2007] [Indexed: 11/28/2022]
Abstract
The effect of inhibition of glial metabolism by infusion of fluorocitrate (FC, 1 nmol/microl, 2 microl) into the right striatum of the rat brain on the glucose metabolism was studied. Significant increases in [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake (45 min) in the right cerebral cortex and striatum were observed 4h after the infusion of FC, both as determined by the tissue dissection method and autoradiography. No significant increase in the initial uptake of [(18)F]FDG (1 min) was seen in the striatum. Pretreatment with dizocilpine (MK-801), an N-methyl-d-aspartate (NMDA) receptor antagonist, reduced [(18)F]FDG uptake in not only FC infused hemisphere but also in the contralateral hemisphere (saline-infused side). The radioactivity concentrations in plasma at 1, 5 and 45 min after the [(18)F]FDG injection were not altered by MK-801. This effect of MK-801 on glucose metabolism observed in the rat brain infused with FC was different from previous reports which indicated an increase in glucose metabolism in some areas of normal rat brain. In addition, the enhancement of glucose metabolism in the striatum induced by FC was almost completely abolished by pretreatment with MK-801. In the cerebral cortex, the relative ratio of radioactivity concentration in the right hemisphere to that in the left hemisphere still remained 1.37 (tissue dissection method) or 1.55 (autoradiography), which indicated that MK-801 partially blocked the effect of FC of enhancing glucose metabolism in this region. These results indicate an important role of NMDA-mediated signal transmission on the increase of glucose utilization induced by inhibition of glial metabolism.
Collapse
Affiliation(s)
- Shinichiro Hirose
- Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zielke HR, Zielke CL, Baab PJ, Tildon JT. Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. J Neurochem 2007; 101:9-16. [PMID: 17241122 DOI: 10.1111/j.1471-4159.2006.04335.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Glucose is the primary carbon source to enter the adult brain for catabolic and anabolic reactions. Some studies suggest that astrocytes may metabolize glucose to lactate; the latter serving as a preferential substrate for neurons, especially during neuronal activation. The current study utilizes the aconitase inhibitor fluorocitrate to differentially inhibit oxidative metabolism in glial cells in vivo. Oxidative metabolism of 14C-lactate and 14C-glucose was monitored in vivo using microdialysis and quantitating 14CO2 in the microdialysis eluate following pulse labeling of the interstitial glucose or lactate pool. After establishing a baseline oxidation rate, fluorocitrate was added to the perfusate. Neither lactate nor glucose oxidation was affected by 5 micromol/L fluorocitrate. However, 20 and 100 micromol/L fluorocitrate reduced lactate oxidation by 55 +/- 20% and 68 +/- 12%, respectively (p < 0.05 for both). Twenty and 100 micromol/L fluorocitrate reduced 14C-glucose oxidation by 50 +/- 14% (p < 0.05) and 24 +/- 19% (ns), respectively. Addition of non-radioactive lactate to (14)C-glucose plus fluorocitrate decreased 14C-glucose oxidation by an additional 29% and 38%, respectively. These results indicate that astrocytes oxidize about 50% of the interstitial lactate and about 35% of the glucose. By subtraction, neurons metabolize a maximum of 50% of the interstitial lactate and 65% of the interstitial glucose.
Collapse
Affiliation(s)
- H Ronald Zielke
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21010, USA.
| | | | | | | |
Collapse
|
23
|
Goncharov NV, Jenkins RO, Radilov AS. Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 2006; 26:148-61. [PMID: 16252258 DOI: 10.1002/jat.1118] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluoroacetate (FA; CH2FCOOR) is highly toxic towards humans and other mammals through inhibition of the enzyme aconitase in the tricarboxylic acid cycle, caused by 'lethal synthesis' of an isomer of fluorocitrate (FC). FA is found in a range of plant species and their ingestion can cause the death of ruminant animals. Some fluorinated compounds -- used as anticancer agents, narcotic analgesics, pesticides or industrial chemicals -- metabolize to FA as intermediate products. The chemical characteristics of FA and the clinical signs of intoxication warrant the re-evaluation of the toxic danger of FA and renewed efforts in the search for effective therapeutic means. Antidotal therapy for FA intoxication has been aimed at preventing fluorocitrate synthesis and aconitase blockade in mitochondria, and at providing citrate outflow from this organelle. Despite a greatly improved understanding of the biochemical mechanism of FA toxicity, ethanol, if taken immediately after the poisoning, has been the most acceptable antidote for the past six decades. This review deals with the clinical signs and physiological and biochemical mechanisms of FA intoxication to provide an explanation of why, even after decades of investigation, has no effective therapy to FA intoxication been elaborated. An apparent lack of integrated toxicological studies is viewed as a limiter of progress in this regard. Two principal ways of developing effective therapies for FA intoxication are considered. Firstly, competitive inhibition of FA interaction with CoA and of FC interaction with aconitase. Secondly, channeling the alternative metabolic pathways by orienting the fate of citrate via cytosolic aconitase, and by maintaining the flux of reducing equivalents into the TCA cycle via glutamate dehydrogenase.
Collapse
Affiliation(s)
- Nikolay V Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint-Petersburg, Russia
| | | | | |
Collapse
|
24
|
Abstract
Metabonomics and its many pseudonyms (metabolomics, metabolic profiling, etc.) have exploded onto the scientific scene in the past 2 to 3 years. Nowhere has the impact been more profound than within the toxicology community. Within this community there exists a great deal of uncertainty about whether metabonomics is something to count on or just the most recent technological flash in the pan. Much of the uncertainty is due to unfamiliarity with analytical and chemometric facets of the technology and the attendant fear of any "black-box." With those fears in mind, metabonomics technology is reviewed with particular emphasis on toxicologic applications in preclinical drug development. The jargon, logistics, and applications of the technology are covered in some detail with emphasis on recent work in the field.
Collapse
Affiliation(s)
- Donald G Robertson
- Metabonomics Evaluation Group, Department of World-Wide Safety Sciences, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
25
|
Abstract
Obesity has reached epidemic proportions and has become one of the major health problems in developed countries. Current theories consider obesity a result of overeating and sedentary life style and most efforts to treat or prevent weight gain concentrate on exercise and food intake. This approach does not improve the situation as may be seen from the steep increase in the prevalence of obesity. This encouraged us to reanalyse existing information and look for biochemical basis of obesity. Our approach was to ignore current theories and concentrate on experimental data which are described in scientific journals and are available from several databases. We developed and applied a Knowledge Discovery in Databases procedure to analyse metabolic data. We began with the contradictory information: in obesity, more calories are consumed than used up, suggesting that obese people should have excess energy. On the other side, obese people experience fatigue and decreased physical endurance that indicates diminished energy supply in the body. The result of our work is a chain of metabolic events leading to obesity. The crucial event is the inhibition of the TCA cycle at the step of aconitase. It disturbs energy metabolism and results in ATP deficiency with simultaneous fat accumulation. Further steps in obesity development are the consequences of diminished energy supply: inhibition of beta-oxidation, leptin resistance, increase in appetite and food intake and a decrease in physical activity. Thus, our theory shows that obesity does not have to be caused by overeating and sedentary life-style but may be the result of the "obese" change in metabolism which is forcing people to overeat and save energy to sustain metabolic functions of cells. This "obese" change is caused by environmental factors that activate chronic low-grade inflammatory process in the body linking obesity with the environment of developed countries.
Collapse
Affiliation(s)
- Danuta Wlodek
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87508, USA.
| | | |
Collapse
|
26
|
Hassel B, Sonnewald U. Effects of potassium and glutamine on metabolism of glucose in astrocytes. Neurochem Res 2002; 27:167-71. [PMID: 11926271 DOI: 10.1023/a:1014827327690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The metabolic effects of extracellular glutamine (2.5 mM) or high potassium (25 mM) on glucose metabolism were studied in cultured cerebellar astrocytes. High potassium caused an increased glycolytic flux and an increase in glutamine release. Exposure to glutamine increased glycolytic flux and alanine formation, indicating that glutamine uptake is an energy requiring process. The effects of glutamine and high potassium on glycolytic flux were additive. Formation of metabolites from [1-13C]glucose and [2-13C]acetate confirmed the effects of glutamine and high potassium on glycolytic metabolism. In the presence of extracellular glutamine, analysis of the 13C labeling patterns of citrate and glutamine indicated a decrease in the cycling ratio and/or pyruvate carboxylation and glutamine synthesis from [1-13C]glucose did occur, but was decreased. Exposure to high potassium led to extracellular accumulation of acetate, presumably through non-enzymatic decarboxylation of pyruvate.
Collapse
|
27
|
Abstract
Carboxylation of pyruvate in the brain was for many years thought to occur only in glia, an assumption that formed much of the basis for the concept of the glutamine cycle. It was shown recently, however, that carboxylation of pyruvate to malate occurs in neurons and that it supports formation of transmitter glutamate. The role of pyruvate carboxylation in neurons is to ensure tricarboxylic acid cycle activity by compensating for losses of alpha-ketoglutarate that occur through release of transmitter glutamate and GABA; these amino acids are alpha-ketoglutarate derivatives. Available data suggest that neuronal pyruvate carboxylation is quantitatively important. But because there is no net CO(2) fixation in the brain, pyruvate carboxylation must be balanced by decarboxylation of malate or oxaloacetate. Such decarboxylation occurs in both neurons and astrocytes. Several in vitro studies have shown a neuroprotective effect of pyruvate supplementation. Pyruvate carboxylation may be one mechanism through which such treatment is effective, because pyruvate carboxylation through malic enzyme is active during energy deficiency and leads to an increase in the level of dicarboxylates that can be metabolized through the tricarboxylic acid cycle for ATP production.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defense Research Establishment, PO Box 25, N-2027 Kjeller, Norway.
| |
Collapse
|
28
|
Fonseca LL, Alves PM, Carrondo MJ, Santos H. Effect of ethanol on the metabolism of primary astrocytes studied by (13)C- and (31)P-NMR spectroscopy. J Neurosci Res 2001; 66:803-11. [PMID: 11746405 DOI: 10.1002/jnr.10039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear magnetic resonance was used as the primary technique to investigate the effect of ethanol (40, 80, and 160 mM) on the levels of high-energy phosphates, glycolytic flux, anaplerotic and oxidative fluxes to the tricarboxylic acid (TCA) cycle, the contribution of the pentose phosphate pathway (PPP), and the uptake and release of amino acids on primary cultures of rat astrocytes. On line (31)P-NMR spectroscopy showed that long-term exposure to ethanol caused a drop in the levels of ATP and phosphocreatine. The ratio between the fluxes through the pyruvate dehydrogenase and pyruvate carboxylase reactions also decreased, whereas the glycolytic flux and the ratio between formation of lactate and glucose consumption increased when cells were exposed to acute doses of ethanol. Flux through the pentose phosphate pathway was not affected. The uptake of cysteine and the release of glutamine were stimulated by ethanol, whereas the release of methionine was inhibited. Moreover, the fractional enrichment in serine was enhanced. The changes in the amino acid metabolism are interpreted as a response to oxidative stress induced by ethanol.
Collapse
Affiliation(s)
- L L Fonseca
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua de Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
29
|
Holleran J, Babbie M, Erlichman JS. Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. J Appl Physiol (1985) 2001; 90:1539-47. [PMID: 11247957 DOI: 10.1152/jappl.2001.90.4.1539] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glia are thought to regulate ion homeostasis, including extracellular pH; however, their role in modulating central CO2 chemosensitivity is unclear. Using a push-pull cannula in chronically instrumented and conscious rats, we administered a glial toxin, fluorocitrate (FC; 1 mM) into the retrotrapezoid nucleus (RTN), a putative chemosensitive site, during normocapnia and hypercapnia. FC exposure significantly increased expired minute ventilation (VE) to a value 38% above the control level during normocapnia. During hypercapnia, FC also significantly increased both breathing frequency and expired VE. During FC administration, maximal ventilation was achieved at approximately 4% CO2, compared with 8-10% CO2 during control hypercapnic trials. RTN perfusion of control solutions had little effect on any ventilatory measures (VE, tidal volume, or breathing frequency) during normocapnic or hypercapnic conditions. We conclude that unilateral impairment of glial function in the RTN of the conscious rat results in stimulation of respiratory output.
Collapse
Affiliation(s)
- J Holleran
- Department of Biology, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | | |
Collapse
|
30
|
Abstract
Anaplerosis, or de novo formation of intermediates of the tricarboxylic acid (TCA) cycle, compensates for losses of TCA cycle intermediates, especially alpha-ketoglutarate, from brain cells. Loss of alpha-ketoglutarate occurs through release of glutamate and GABA from neurons and through export of glutamine from glia, because these amino acids are alpha-ketoglutarate derivatives. Anaplerosis in the brain may involve four different carboxylating enzymes: malic enzyme, phosphoenopyruvate carboxykinase (PEPCK), propionyl-CoA carboxylase, and pyruvate carboxylase. Anaplerotic carboxylation was for many years thought to occur only in glia through pyruvate carboxylase; therefore, loss of transmitter glutamate and GABA from neurons was thought to be compensated by uptake of glutamine from glia. Recently, however, anaplerotic pyruvate carboxylation was demonstrated in glutamatergic neurons, meaning that these neurons to some extent can maintain transmitter synthesis independently of glutamine. Malic enzyme, which may carboxylate pyruvate, was recently detected in neurons. The available data suggest that neuronal and glial pyruvate carboxylation could operate at as much as 30% and 40-60% of the TCA cycle rate, respectively. Cerebral carboxylation reactions are probably balanced by decarboxylation reactions,, because cerebral CO2 formation equals O2 consumption. The finding of pyruvate carboxylation in neurons entails a major revision of the concept of the glutamine cycle.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defence Research Establishment, Kjeller
| |
Collapse
|
31
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
32
|
Abstract
We review the information obtained by 13C NMR methods on the metabolic compartmentation of the adult mammalian brain with emphasis on its quantitative aspects. Classical radiotracer evidence and more recent 13C NMR results support the presence in the brain of at least two glutamate pools, small and large, associated with two kinetically different tricarboxylic acid cycles localized in glia and neurons, respectively. Neuronal and glial cycles interact closely, utilizing common substrates like glucose and oxygen and exchanging a variety of metabolites including glutamate, glutamine and GABA. A model for the cerebral metabolism of (1,2-13C2) acetate has made it possible to calculate fluxes through both cycles and evaluate the exchanges of glutamate, glutamine and GABA under different physiopathological conditions. Calculated flux values through the neuronal and glial tricarboxylic acid cycles are 1.0 and 0.4 mumol/min g, respectively. In the adult normoxic brain, the small and large glutamate pools account for approximately 10% and 90% of cerebral glutamate with estimated turnover times of 1.25 and 5.8/min, respectively. Net transfers of neuronal glutamate and GABA to the glial compartment are calculated to be 0.1 and 0.04 mumol/min g while transfer of glial glutamine to the neuronal compartment is estimated as 0.1 mumol/min g. Pyruvate recycling in the adult brain occurs mainly in the synaptic terminals with a calculated flux of 0.3 mumol/min g. These flux values are altered severely in pathological states such as hypothyroidism or ischemia.
Collapse
Affiliation(s)
- F Cruz
- Instituto de Investigaciones Biomédicas C.S.I.C., Madrid, Spain
| | | |
Collapse
|
33
|
|
34
|
Aschner M, Allen JW, Kimelberg HK, LoPachin RM, Streit WJ. Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 1999; 39:151-73. [PMID: 10331080 DOI: 10.1146/annurev.pharmtox.39.1.151] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroglial cells of the central nervous system include the astrocytes, oligodendrocytes, and microglia. Their counterparts in the peripheral nervous system are the Schwann cells. The term neuroglia comes from an erroneous concept originally coined by Virchow (1850), in which he envisioned the neurons to be embedded in a layer of connective tissue. The term, or its shortened form--glia, has persisted as the preferred generic term for these cells. A reciprocal relationship exists between neurons and glia, and this association is vital for mutual differentiation, development, and functioning of these cell types. Therefore, perturbations in glial cell function, as well as glial metabolism of chemicals to active intermediates, can lead to neuronal dysfunction. The purpose of this review is to explore neuroglial sites of neurotoxicant actions, discuss potential mechanisms of glial-induced or glial-mediated central nervous system and peripheral nervous system damage, and review the role of glial cells in neurotoxicity development.
Collapse
Affiliation(s)
- M Aschner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | |
Collapse
|
35
|
Erlichman JS, Li A, Nattie EE. Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol (1985) 1998; 85:1599-604. [PMID: 9804558 DOI: 10.1152/jappl.1998.85.5.1599] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glia are thought to be important in brain extracellular fluid ion and pH regulation, but their role in brain stem sites that sense pH and stimulate breathing is unknown. Using a diffusion pipette, we administered the glial toxin, fluorocitrate (FC; 1 mM) into one such brain stem region, the retrotrapezoid nucleus (RTN) for 45-60 min. This dose and time period were chosen so that the effects of FC would be largely reversible. Within minutes, tissue pH decreased, and respiratory output increased. Both recovered almost completely after cessation of FC administration. The response to systemic CO2 stimulation was unaffected by FC treatment compared with that following control diffusion. Anatomic analysis showed, at the center of FC administration, some small (mean diameter = 5.1 micrometer) cells that stained for DEAD Red, a marker for altered cell membrane permeability, and some fragmented glia (glial fibrillary acidic protein immunohistochemistry). The average RTN tissue volume that contained such DEAD Red-positive cells was 271 nl, approximately 23% of the volume of one RTN region. Reversible disruption of glia in the RTN, a region known to contain central chemoreception, results in an acidic local pH and in stimulation of respiratory output.
Collapse
Affiliation(s)
- J S Erlichman
- Department of Biology, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | | |
Collapse
|
36
|
Hassel B, Ilebekk A, Tønnessen T. Cardiac accumulation of citrate during brief myocardial ischaemia and reperfusion in the pig in vivo. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:53-9. [PMID: 9777025 DOI: 10.1046/j.1365-201x.1998.0400e.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Citrate is a key intermediate in energy metabolism and an inhibitor of phosphofructokinase of the glycolytic pathway. During myocardial ischaemia glycolysis is the main source of cardiac ATP. The aim of the present study was to determine if myocardial ischaemia and reperfusion alter cardiac tissue levels of citrate. Open-chest, anaesthetized pigs were subjected to 10 min of regional myocardial ischaemia by occlusion of the left anterior descending coronary artery, with and without reperfusion, and to 10 min of global ischaemia by circulatory arrest. Citrate, amino acids, glucose and NH3 were measured in biopsies. Ischaemia, whether regional or global, caused a 60-70% increase in tissue levels of citrate. During 1 min of reperfusion following regional ischaemia the level of citrate increased 460%, to approximately 600 nmol g-1 wet weight. The level of glutamate decreased by 20-33% (corresponding to 1300-2200 nmol g-1 wet weight), indicating net consumption of this amino acid during ischaemia. The level of aspartate decreased 50% indicating conversion of aspartate to oxaloacetate for the synthesis of citrate. Theoretically, the accumulation of myocardial citrate during brief ischaemia and early reperfusion is large enough to significantly inhibit phosphofructokinase activity and could therefore affect the ability of the myocardium to increase the glycolytic rate in response to ischaemia. This could, however, be partly compensated by the metabolism of myocardial glutamate.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller, Norway
| | | | | |
Collapse
|
37
|
Allen CB, White CW. Glucose modulates cell death due to normobaric hyperoxia by maintaining cellular ATP. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L159-64. [PMID: 9458814 DOI: 10.1152/ajplung.1998.274.1.l159] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To determine whether glucose depletion is a principal determinant of hyperoxic cell death in vitro, human lung epithelial-like cells (A549) were exposed to hyperoxia (95% O2) in either 10, 30, or 50 ml of medium (Ham's F-12K). Glucose was depleted in the medium after 36, 60, or 96 h, respectively. Medium lactate dehydrogenase (LDH) activity increased only after glucose was depleted. To confirm that glucose depletion was critical to cell death, cells exposed to 95% O2 were supplemented with glucose at regular intervals to reestablish initial medium glucose concentrations. Other cells received no supplements. Without supplementation, glucose was depleted within 48 h, followed within 12 h by an almost complete loss of cell ATP and elevated medium LDH activity. Glucose-supplemented cells appeared normal microscopically and did not release LDH activity despite an extracellular pH of 6.5 due to fermentation. Additional experiments at sea-level pressure confirmed that glucose supplementation prevents extensive cell death in hyperoxia in cultured A549 cells.
Collapse
Affiliation(s)
- C B Allen
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | |
Collapse
|
38
|
Hassel B, Bachelard H, Jones P, Fonnum F, Sonnewald U. Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J Cereb Blood Flow Metab 1997; 17:1230-8. [PMID: 9390655 DOI: 10.1097/00004647-199711000-00012] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glial-neuronal interchange of amino acids was studied by 13C nuclear magnetic resonance spectroscopy of brain extracts from fluoroacetate-treated mice that received [1,2-(13)C]acetate and [1-(13)C]glucose simultaneously. [13C]Acetate was found to be a specific marker for glial metabolism even with the large doses necessary for nuclear magnetic resonance spectroscopy. Fluoroacetate, 100 mg/kg, blocked the glial, but not the neuronal tricarboxylic acid cycles as seen from the 13C labeling of glutamine, glutamate, and gamma-aminobutyric acid. Glutamine, but not citrate, was the only glial metabolite that could account for the transfer of 13C from glia to neurons. Massive glial uptake of transmitter glutamate was indicated by the labeling of glutamine from [1-(13)C]glucose in fluoroacetate-treated mice. The C-3/C-4 enrichment ratio, which indicates the degree of cycling of label, was higher in glutamine than in glutamate in the presence of fluoroacetate, suggesting that transmitter glutamate (which was converted to glutamine after release) is associated with a tricarboxylic acid cycle that turns more rapidly than the overall cerebral tricarboxylic acid cycle.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| | | | | | | | | |
Collapse
|
39
|
Aureli T, Di Cocco ME, Calvani M, Conti F. The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res 1997; 765:218-27. [PMID: 9313894 DOI: 10.1016/s0006-8993(97)00514-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glial-neuronal interactions were investigated in rats injected intraperitoneally with [1-13C]glucose and killed after 15, 30, 45, or 60 min. Brain extracts were analyzed by 13C-NMR spectroscopy and the fractional 13C-enrichment at individual carbon positions was measured for amino acids, lactate, and N-acetyl-aspartate. [1-13C]Glucose was shown to be metabolized by both neurons and glia, with the anaplerotic pathway through pyruvate carboxylase (PC) accounting for 10% of total cerebral glucose metabolism. The PC-mediated pathway accounted for 39% of the glutamine synthesis, and for 8, 6, 14% of glutamate, GABA, and aspartate synthesis, respectively. These results reflect a compartmentation of the cerebral amino acids synthesis within glial and neuronal cells. The appearance of the 13C-label in C5 of glutamate and glutamine, C1 of GABA and C2 of lactate, is suggestive of pyruvate, formation from TCA cycle intermediates and provides evidence of metabolite trafficking between astrocytes and neurons.
Collapse
Affiliation(s)
- T Aureli
- Department of Chemistry, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
40
|
Largo C, Ibarz JM, Herreras O. Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J Neurophysiol 1997; 78:295-307. [PMID: 9242281 DOI: 10.1152/jn.1997.78.1.295] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DC extracellular potential shifts (deltaVo) associated with spreading depression (SD) reflect massive cell depolarization, but their cellular generators remain obscure. We have recently reported that the glial specific metabolic poison fluorocitrate (FC) delivered by microdialysis in situ caused a rapid impairment of glial function followed some hours later by loss of neuronal electrogenic activity and neuron death. We have used the time windows for selective decay of cell types so created to study the relative participation of glia and neurons in SD, and we report a detailed analysis of the effects of FC on evoked SD waves and glial membrane potential (Vm). Extracellular potential (Vo), interstitial potassium concentration ([K+]o), evoked potentials, and transmembrane glial potentials were monitored in the CA1 area before, during, and after administration of FC with or without elevated K+ concentration in the dialysate. SD waves propagated faster and lasted longer during FC treatment. DeltaVo in stratum pyramidale, which normally are much shorter and of smaller amplitude than those in stratum radiatum, expanded during FC treatment to match those in stratum radiatum. The coalescing SD waves that develop late during prolonged high-K+ dialysis and are typically limited to stratum radiatum, also expanded into stratum pyramidale under the influence of FC. SD provoked in neocortex normally does not spread to the CA1, but during FC treatment it readily reached CA1 via entorhinal cortex. Once neuronal function began to deteriorate, SD waves became smaller and slower, and eventually failed to enter the region around the FC source. Slow, moderately negative deltaVo that mirrored [K+]o increments could still be recorded well after neuronal function and SD-associated Vo had disappeared. Glial cell Vm gradually depolarized during FC administration, beginning much before depression of neuronal antidromic action potentials. Calculations based on the results predict a large decrease in glial potassium content during FC treatment. The results are compatible with neurons being the major generator of the deltaVo associated with SD. We conclude that energy shortage in glial cells makes brain tissue more susceptible to SD and therefore it may increase the risk of neuron damage.
Collapse
Affiliation(s)
- C Largo
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | |
Collapse
|
41
|
Bakken IJ, Johnsen SF, White LR, Unsg�rd G, Aasly J, Sonnewald U. NMR spectroscopy study of the effect of 3-nitropropionic acid on glutamate metabolism in cultured astrocytes. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970315)47:6<642::aid-jnr10>3.0.co;2-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Aasly J, Gårseth M, Sonnewald U, Zwart JA, White LR, Unsgård G. Cerebrospinal fluid lactate and glutamine are reduced in multiple sclerosis. Acta Neurol Scand 1997; 95:9-12. [PMID: 9048978 DOI: 10.1111/j.1600-0404.1997.tb00060.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To analyse various metabolites in human cerebrospinal fluid from healthy controls and patients with multiple sclerosis. PATIENTS AND METHODS Cerebrospinal fluid was obtained from patients by lumbar puncture, frozen, redissolved, and analysed for metabolites by proton nuclear magnetic resonance spectroscopy. RESULTS Significantly lower values for lactate and glutamine were found in patients with multiple sclerosis in comparison with controls. No significant differences were found between patients with the relapsing-remitting and chronic progressive forms of the disease for any of the metabolites measured. CONCLUSION There is a concomitant reduction in both lactate and glutamine in the cerebrospinal fluid of patients with multiple sclerosis compared to controls. This may be related to altered astrocytic metabolism during the disease. The results clearly show the diagnostic potential of magnetic resonance spectroscopy in diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- J Aasly
- Norwegian University of Science and Technology, Department of Neurology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Metabolic integrity of glial cells in field CA1 of the guinea pig hippocampus is critical to maintenance of synaptic transmission (Keyser and Pellmar [1994] Glia 10:237-243). To determine if this tight glial-neuronal coupling is equally important in other brain regions, we compared the effect of fluoroacetate (FAC), a glial specific metabolic blocker, on synaptic transmission in field CA1 to synaptic transmission in area dentata (DG). FAC was significantly more effective in decreasing synaptic potentials in CA1 than in DG. A similar regional disparity in the FAC-induced decrease in ATP levels was evident. Isocitrate, a glial specific metabolic substrate, prevented the FAC-induced synaptic depression in both CA1 and DG. The results suggest that glia of CA1 and dentate respond differently to metabolic challenge. Modulation of this glial-neuronal coupling could provide a regionally specific mechanism for synaptic plasticity. Additionally, site-specific glial-neuronal interactions can impact on a variety of physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- D O Keyser
- Physiology Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889-5607, USA
| | | |
Collapse
|
44
|
Sonnewald U, White LR, Odegård E, Westergaard N, Bakken IJ, Aasly J, Unsgård G, Schousboe A. MRS study of glutamate metabolism in cultured neurons/glia. Neurochem Res 1996; 21:987-93. [PMID: 8897461 DOI: 10.1007/bf02532408] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[U-13C]Glutamate metabolism was studied in primary brain cell cultures. Cell extracts as well as redissolved lyophilized media were subjected to nuclear magnetic resonance spectroscopy in order to identify 13C labeled metabolites. Both neurons and astrocytes metabolized glutamate extensively with 13C label appearing in aspartate in all cultures. Additionally, GABA is synthesized in the GABAergic cortical neurons. Labeling of lactate and glutamine was prominent in medium from astrocytes, but not detectable in cerebral cortical neurons. Cerebellar granule neurons showed some labeling of lactate. Glutamate derived from the first turn of the tricarboxylic acid cycle (1,2,3-13C3-isotopomer) is present in all cell types analyzed. However, glutamate derived from the second turn of the cycle was only detected in granule neurons. In astrocytes, the transaminase inhibitor aminooxyacetic acid not only abolished the appearance of aspartate, but also of the 1,2,3-13C3-isotopomer of glutamate, thus showing that transamination is necessary for the conversion of 2-oxoglutarate to glutamate. The entry of glutamate into the tricarboxylic acid cycle was, however, not seriously impaired. 3-nitropropionic acid abolished the appearance of aspartate, the 1,2,3-13C3-isotopomer of glutamate and lactate in cerebellar granule neurons.
Collapse
|
45
|
Rist RJ, Romero IA, Chan MW, Abbott NJ. Effects of energy deprivation induced by fluorocitrate in immortalised rat brain microvessel endothelial cells. Brain Res 1996; 730:87-94. [PMID: 8883892 DOI: 10.1016/0006-8993(96)00438-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of the mitochondrial aconitase inhibitor, fluorocitrate on the immortalised rat brain endothelial cell line (RBE4) were investigated. Treatment with different concentrations of fluorocitrate (0-1 mM) for 24 h induced a significant, concentration-dependent decrease in the MTT reduction (an index of mitochondrial function), intracellular ATP content, glucose consumption and lactate production by RBE4 cell monolayers but did not alter the glucose to lactate ratio at concentrations lower than 0.5 mM. At all concentrations, fluorocitrate induced a significant decrease in the protein content per well. Fluorocitrate treatment of confluent RBE4 cells induced a marked redistribution of the F-actin cytoskeleton from a characteristic marginal band to a more diffuse cytosolic pattern. This redistribution of the cytoskeleton coincided with a reduction in the total cellular F-actin content of the RBE4 cells at fluorocitrate concentrations greater than 0.5 mM. Treatment of confluent RBE4 cells with fluorocitrate had no significant effect on RBE4 cell monolayer permeability measured by FITC-dextran or [14C]sucrose. These results show that whilst energy deprivation following fluorocitrate treatment induces significant changes in the RBE4 cell F-actin cytoskeleton and cellular metabolism, it does not have any significant effect on endothelial cell monolayer permeability. These results demonstrate that profound toxic effects on endothelial cell structure and metabolism are not necessarily accompanied by changes in endothelial cell monolayer permeability.
Collapse
Affiliation(s)
- R J Rist
- Biomedical Sciences Division, King's College London, Strand, UK
| | | | | | | |
Collapse
|
46
|
Gibbs ME, O'Dowd BS, Hertz L, Robinson SR, Sedman GL, Ng KT. Inhibition of glutamine synthetase activity prevents memory consolidation. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1996; 4:57-64. [PMID: 8813413 DOI: 10.1016/0926-6410(96)00020-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Methionine sulfoximine, a specific inhibitor of the exclusively glial enzyme glutamine synthetase, was shown, at a concentration of 3.5-4.5 mM, to prevent consolidation of memory for a passive avoidance task in day-old chicks. Provided the drug was administered 5-20 min before the learning task, significant retention loss was observed from the normal time of onset of the second of three postulated stages in the memory formation sequence but the drug had to be administered considerably earlier. The amnestic effect of methionine sulfoximine was successfully counteracted by L-glutamine (10 mM) and monosodium glutamate (4 mM), and also by a cocktail of alpha-ketoglutarate (5 mM) and alanine (5 mM). This effect of methionine sulfoximine is attributed to its blockade of the production of glutamine via the glutamate-glutamine cycle, leading to a reduced capacity of neurons to replenish their transmitter glutamate.
Collapse
Affiliation(s)
- M E Gibbs
- Department of Psychology, Monash University, Clayton, Vic, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Hertz L, Gibbs ME, O'Dowd BS, Sedman GL, Robinson SR, Syková E, Hajek I, Hertz E, Peng L, Huang R, Ng KT. Astrocyte-neuron interaction during one-trial aversive learning in the neonate chick. Neurosci Biobehav Rev 1996; 20:537-51. [PMID: 8880738 DOI: 10.1016/0149-7634(95)00020-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During two specific stages of the Gibbs-Ng model of one-trial aversive learning in the neonate chick, we have recently found unequivocal evidence for a crucial involvement of astrocytes. This evidence is metabolic (utilization of the astrocyte-specific energy store, glycogen, during normal learning and inhibition of memory formation by the astrocyte specific metabolic inhibitors, fluoroacetate and methionine sulfoximine) as well as physiological (abolition of memory formation in the presence of ethacrynic acid, an astrocyte-specific inhibitor of cellular reaccumulation of potassium ions). These findings are discussed in the present review in the framework of a more comprehensive description of metabolic and physiological neuronal-astrocytic interactions across an interstitial (extracellular) space bounded by minute processes from either cell type.
Collapse
Affiliation(s)
- L Hertz
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hassel B, Westergaard N, Schousboe A, Fonnum F. Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem Res 1995; 20:413-20. [PMID: 7651578 DOI: 10.1007/bf00973096] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Astrocytes and neurons cultured from mouse cerebellum and cerebral cortex were analyzed with respect to content and synthesis of amino acids as well as export of metabolites to the culture medium and the response to fluorocitrate, an inhibitor of aconitase. The intracellular levels of amino acids were similar in the two astrocytic populations. The release of citrate, lactate and glutamine, however, was markedly higher from cerebellar than from cortical astrocytes. Neurons contained higher levels of glutamate, aspartate and GABA than astrocytic cultures. Cortical neurons were especially high in GABA and aspartate, and the level of aspartate increased specifically when the extracellular level of glutamine was elevated. Fluorocitrate inhibited the TCA cycle in the astrocytes, but was less effective in cerebellar neurons. Whereas neurons responded to fluorocitrate with an increase in the formation of lactate, reflecting glycolysis, astrocytes decreased the formation of lactate in the presence of fluorocitrate, indicating that astrocytes to a high degree synthesize pyruvate and hence lactate from TCA cycle intermediates.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defense Research Establishment Division for Environmental Toxicology, Kjeller, Norway
| | | | | | | |
Collapse
|
49
|
Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47001-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|