1
|
Antonucci F, Bozzi Y. Action of Botulinum Neurotoxin E Type in Experimental Epilepsies. Toxins (Basel) 2023; 15:550. [PMID: 37755976 PMCID: PMC10536604 DOI: 10.3390/toxins15090550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary approaches and models of experimental epilepsy, we investigated the pharmacological potential of BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies, we go back over the hypotheses and experimental approaches that led us to the conclusion that intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its pharmacological potential in humans.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, via Fratelli Cervi 93, 20054 Milan, Italy
- CNR Institute of Neuroscience, via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy
- CNR Institute of Neuroscience, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
2
|
Feng X, Xiong D, Li J, Xiao L, Xie W, Qiu Y. Direct Inhibition of Microglia Activation by Pretreatment With Botulinum Neurotoxin A for the Prevention of Neuropathic Pain. Front Neurosci 2021; 15:760403. [PMID: 34949981 PMCID: PMC8688716 DOI: 10.3389/fnins.2021.760403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Peripheral injection of botulinum neurotoxin A (BoNT/A) has been demonstrated to have a long-term analgesic effect in treating neuropathic pain. Around peripheral nerves, BoNT/A is taken up by primary afferent neurons and inhibits neuropeptide release. Moreover, BoNT/A could also be retrogradely transported to the spinal cord. Recent studies have suggested that BoNT/A could attenuates neuropathic pain by inhibiting the activation of spinal glial cells. However, it remains unclear whether BoNT/A directly interacts with these glial cells or via their interaction with neurons. Our aim here is to determine the direct effect of BoNT/A on primary microglia and astrocytes. We show that BoNT/A pretreatment significantly inhibits lipopolysaccharide (LPS) -induced activation and pro-inflammatory cytokine release in primary microglia (1 U/mL BoNT/A in medium), while it has no effect on the activation of astrocytes (2 U/mL BoNT/A in medium). Moreover, a single intrathecal pre-administration of a low dose of BoNT/A (1 U/kg) significantly prohibited the partial sciatic nerve ligation (PSNL)- induced upregulation of pro-inflammatory cytokines in both the spinal cord dorsal horn and dorsal root ganglions (DRGs), which in turn prevented the PSNL-induced mechanical allodynia and thermal hyperalgesia. In conclusion, our results indicate that BoNT/A pretreatment prevents PSNL-induced neuropathic pain by direct inhibition of spinal microglia activation.
Collapse
Affiliation(s)
- Xiaona Feng
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Donglin Xiong
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jie Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lizu Xiao
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weijiao Xie
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunhai Qiu
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
3
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
4
|
Affiliation(s)
- M Marziniak
- Department of Neurology, Saarland University, Homburg/Saar and Department of Neurology, University of Münster, Münster, Germany.
| | | | | |
Collapse
|
5
|
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 2016; 35:239-57. [PMID: 26758544 DOI: 10.15252/embj.201592705] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy Humanitas Research Hospital, Rozzano, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix-Marseille University CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
6
|
Rummel A. Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. Curr Top Microbiol Immunol 2016; 406:1-37. [PMID: 27921176 DOI: 10.1007/82_2016_48] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The extraordinary potency of botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid and spastic paralysis, respectively, and successive respiratory failure. Complex polysialo gangliosides accumulate BoNT and TeNT on the plasma membrane. The ganglioside binding in BoNT/A, B, E, F, G, and TeNT occurs via a conserved ganglioside-binding pocket within the most carboxyl-terminal 25 kDa domain HCC, whereas BoNT/C, DC, and D display here two different ganglioside binding sites. This enrichment step facilitates subsequent binding of BoNT/A, B, DC, D, E, F, and G to the intraluminal domains of the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C and synaptotagmin-I/-II, respectively. Whereas an induced α-helical 20-mer Syt peptide binds via side chain interactions to the tip of the HCC domain of BoNT/B, DC and G, the preexisting, quadrilateral β-sheet helix of SV2C-LD4 binds the clinically most relevant serotype BoNT/A mainly through backbone-backbone interactions at the interface of HCC and HCN. In addition, the conserved, complex N559-glycan branch of SV2C establishes extensive interactions with BoNT/A resulting in delayed dissociation providing BoNT/A more time for endocytosis into synaptic vesicles. An analogous interaction occurs between SV2A/B and BoNT/E. Altogether, the nature of BoNT-SV2 recognition clearly differs from BoNT-Syt. Subsequently, the synaptic vesicle is recycled and the bound neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain, pore formation, and finally translocation of the enzymatically active light chain into the neuronal cytosol to halt release of neurotransmitters.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut Für Toxikologie, Medizinische Hochschule Hannover, 30623, Hannover, Germany.
| |
Collapse
|
7
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
8
|
da Silva LB, Poulsen JN, Arendt-Nielsen L, Gazerani P. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells. J Cell Mol Med 2015; 19:1900-9. [PMID: 25754332 PMCID: PMC4549040 DOI: 10.1111/jcmm.12562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
This study investigated the presence of cell membrane docking proteins synaptosomal-associated protein, 25 and 23 kD (SNAP-25 and SNAP-23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time- and calcium-dependent manner following calcium-ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose-dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre-incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin-stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP-25 and SNAP-23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP-25 and/or SNAP-23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non-neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA.
Collapse
Affiliation(s)
- Larissa Bittencourt da Silva
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Jeppe Nørgaard Poulsen
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Parisa Gazerani
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
- Laboratory for Cancer Biology, Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| |
Collapse
|
9
|
Cirnaru MD, Marte A, Belluzzi E, Russo I, Gabrielli M, Longo F, Arcuri L, Murru L, Bubacco L, Matteoli M, Fedele E, Sala C, Passafaro M, Morari M, Greggio E, Onofri F, Piccoli G. LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Front Mol Neurosci 2014; 7:49. [PMID: 24904275 PMCID: PMC4034499 DOI: 10.3389/fnmol.2014.00049] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex.
Collapse
Affiliation(s)
- Maria D Cirnaru
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University Milan, Italy ; Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova Genova, Italy
| | - Elisa Belluzzi
- Department of Biology, University of Padova Padova, Italy
| | - Isabella Russo
- Department of Biology, University of Padova Padova, Italy
| | - Martina Gabrielli
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy ; Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Francesco Longo
- Department of Medical Science and National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | - Ludovico Arcuri
- Department of Medical Science and National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | - Luca Murru
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova Padova, Italy
| | - Michela Matteoli
- Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy ; Humanitas Clinical and Research Center, Pharmacology and Brain Pathology Rozzano, Italy
| | - Ernesto Fedele
- Department of Pharmacy, University of Genoa Genoa, Italy
| | - Carlo Sala
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy ; Department of Medical Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Maria Passafaro
- Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| | - Michele Morari
- Department of Medical Science and National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova Padova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova Genova, Italy
| | - Giovanni Piccoli
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University Milan, Italy ; Department of Molecular and Cellular Pharmacology, National Research Council, Neuroscience Institute Milan, Italy
| |
Collapse
|
10
|
Pischedda F, Szczurkowska J, Cirnaru MD, Giesert F, Vezzoli E, Ueffing M, Sala C, Francolini M, Hauck SM, Cancedda L, Piccoli G. A cell surface biotinylation assay to reveal membrane-associated neuronal cues: Negr1 regulates dendritic arborization. Mol Cell Proteomics 2013; 13:733-48. [PMID: 24382801 DOI: 10.1074/mcp.m113.031716] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A complex and still not comprehensively resolved panel of transmembrane proteins regulates the outgrowth and the subsequent morphological and functional development of neuronal processes. In order to gain a more detailed description of these events at the molecular level, we have developed a cell surface biotinylation assay to isolate, detect, and quantify neuronal membrane proteins. When we applied our assay to investigate neuron maturation in vitro, we identified 439 differentially expressed proteins, including 20 members of the immunoglobulin superfamily. Among these candidates, we focused on Negr1, a poorly described cell adhesion molecule. We demonstrated that Negr1 controls the development of neurite arborization in vitro and in vivo. Given the tight correlation existing among synaptic cell adhesion molecules, neuron maturation, and a number of neurological disorders, our assay results are a useful tool that can be used to support the understanding of the molecular bases of physiological and pathological brain function.
Collapse
|
11
|
Höltje M, Schulze S, Strotmeier J, Mahrhold S, Richter K, Binz T, Bigalke H, Ahnert-Hilger G, Rummel A. Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons. Toxicon 2013; 75:108-21. [DOI: 10.1016/j.toxicon.2013.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/09/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
|
12
|
Wahlert A, Funkelstein L, Fitzsimmons B, Yaksh T, Hook V. Spinal astrocytes produce and secrete dynorphin neuropeptides. Neuropeptides 2013; 47:109-15. [PMID: 23290538 PMCID: PMC3606903 DOI: 10.1016/j.npep.2012.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/13/2012] [Accepted: 10/02/2012] [Indexed: 01/02/2023]
Abstract
Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.
Collapse
Affiliation(s)
- Andrew Wahlert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - Lydiane Funkelstein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | | | - Tony Yaksh
- Dept. of Anesthesiology, University of California, San Diego, La Jolla, CA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
- Depts. of Neurosciences, Pharmacology, and Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
13
|
Wang J, Zurawski TH, Meng J, Lawrence GW, Aoki KR, Wheeler L, Dolly JO. Novel chimeras of botulinum and tetanus neurotoxins yield insights into their distinct sites of neuroparalysis. FASEB J 2012; 26:5035-48. [PMID: 22942075 DOI: 10.1096/fj.12-210112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxin (BoNT) A or E and tetanus toxin (TeTx) bind to motor-nerve endings and undergo distinct trafficking; their light-chain (LC) proteases cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) peripherally or centrally and cause flaccid or spastic paralysis, respectively. To seek protein domains responsible for local blockade of transmitter release (BoNTs) rather than retroaxonal transport to spinal neurons (TeTx), their acceptor-binding moieties (H(C))--or in one case, heavy chain (HC)--were exchanged by gene recombination. Each chimera, expressed and purified from Escherichia coli, entered rat cerebellar neurons to cleave their substrates, blocked in vitro nerve-induced muscle contractions, and produced only flaccid paralysis in mice. Thus, the local cytosolic delivery of BoNT/A or BoNT/E proteases and the contrasting retrograde transport of TeTx are not specified solely by their HC or H(C); BoNT/A LC translocated locally irrespective of being targeted by either of the latter TeTx domains. In contrast, BoNT/E protease fused to a TeTx enzymatically inactive mutant (TeTIM) caused spastic paralysis and cleaved SNAP-25 in spinal cord but not the injected muscle. Apparently, TeTIM precludes cytosolic release of BoNT/E protease at motor nerve endings. It is deduced that the LCs of the toxins, acting in conjunction with HC domains, dictate their local or distant destinations.
Collapse
Affiliation(s)
- Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
14
|
Couesnon A, Molgó J, Connan C, Popoff MR. Preferential entry of botulinum neurotoxin A Hc domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine. PLoS Pathog 2012; 8:e1002583. [PMID: 22438808 PMCID: PMC3305446 DOI: 10.1371/journal.ppat.1002583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 01/27/2012] [Indexed: 12/12/2022] Open
Abstract
Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain) which interacts with cell surface receptor(s). We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90–120 min) in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined. Botulism is a severe and often fatal disease in man and animals characterized by flaccid paralysis. Clostridium botulinum produces a potent neurotoxin (botulinum neurotoxin) responsible for all the symptoms of botulism. Botulism is most often acquired by ingesting preformed botulinum neurotoxin in contaminated food or after intestinal colonization by C. botulinum under certain circumstances, such as in infant botulism, and toxin production in the intestine. The first step of the disease consists in the passage of the botulinum neurotoxin through the intestinal barrier, which is still poorly understood. We investigated the trafficking of the botulinum neurotoxin in a mouse intestinal loop model, using fluorescent HcA (half C-terminal domain of the heavy chain). We observed that HcA preferentially recognizes neuroendocrine intestinal crypt cells, which likely represent the entry site of the toxin through the intestinal barrier, then targets specific neurons, mainly cholinergic neurons, in the submucosa, and later (90–120 min) in the musculosa leading to local paralytic effects such as inhibition of intestinal peristaltism. These results represent an important advance in the understanding of the initial steps of botulism intoxication and can be the basis for the development of new specific countermeasures against botulism.
Collapse
Affiliation(s)
- Aurélie Couesnon
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Jordi Molgó
- CNRS, Institut de Neurobiologie Alfred Fessard – FRC2118, Laboratoire de Neurobiologie– et Développement UPR3294, Gif sur Yvette, France
| | - Chloé Connan
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 2011; 13:1731-43. [PMID: 21790947 DOI: 10.1111/j.1462-5822.2011.01654.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tetanus and botulinum neurotoxins are di-chain proteins that cause paralysis by inhibiting neuroexocytosis. These neurotoxins enter into nerve terminals via endocytosis inside synaptic vesicles, whose acidic pH induces a structural change of the neurotoxin molecule that becomes capable of translocating its L chain into the cytosol, via a transmembrane protein-conducting channel made by the H chain. This is the least understood step of the intoxication process primarily because it takes place inside vesicles within the cytosol. In the present study, we describe how this passage was made accessible to investigation by making it to occur at the surface of neurons. The neurotoxin, bound to the plasma membrane in the cold, was exposed to a warm low pH extracellular medium and the entry of the L chain was monitored by measuring its specific metalloprotease activity with a ratiometric method. We found that the neurotoxin has to be bound to the membrane via at least two anchorage sites in order for a productive low-pH induced structural change to take place. In addition, this process can only occur if the single inter-chain disulfide bond is intact. The pH dependence of the conformational change of tetanus neurotoxin and botulinum neurotoxin B, C and D is similar and take places in the same slightly acidic range, which comprises that present inside synaptic vesicles. Based on these and previous findings, we propose a stepwise sequence of molecular events that lead from toxin binding to membrane insertion.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
16
|
Prada I, Marchaland J, Podini P, Magrassi L, D'Alessandro R, Bezzi P, Meldolesi J. REST/NRSF governs the expression of dense-core vesicle gliosecretion in astrocytes. ACTA ACUST UNITED AC 2011; 193:537-49. [PMID: 21536750 PMCID: PMC3087003 DOI: 10.1083/jcb.201010126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The REST/NRSF transcriptional repressor prevents cultured astrocytes from forming DCVs, and its variable expression in human brain cortex astrocytes may account for their functional heterogeneity. Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1–silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of a dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY–monomeric red fluorescent protein–labeled DCVs to undergo Ca2+-dependent exocytosis, which was largely prevented by botulinum toxin B. In the I–II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte REST was variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the well-known structural/functional heterogeneity of astrocytes.
Collapse
Affiliation(s)
- Ilaria Prada
- San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Mendez M, Gross KW, Glenn ST, Garvin JL, Carretero OA. Vesicle-associated membrane protein-2 (VAMP2) mediates cAMP-stimulated renin release in mouse juxtaglomerular cells. J Biol Chem 2011; 286:28608-18. [PMID: 21708949 PMCID: PMC3151102 DOI: 10.1074/jbc.m111.225839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Renin is essential for blood pressure control. Renin is stored in granules in juxtaglomerular (JG) cells, located in the pole of the renal afferent arterioles. The second messenger cAMP stimulates renin release. However, it is unclear whether fusion and exocytosis of renin-containing granules is involved. In addition, the role of the fusion proteins, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment proteins), in renin release from JG cells has not been studied. The vesicle SNARE proteins VAMP2 (vesicle associated membrane protein 2) and VAMP3 mediate cAMP-stimulated exocytosis in other endocrine cells. Thus, we hypothesized that VAMP2 and/or -3 mediate cAMP-stimulated renin release from JG cells. By fluorescence-activated cell sorting, we isolated JG cells expressing green fluorescent protein and compared the relative abundance of VAMP2/3 in JG cells versus total mouse kidney mRNA by quantitative PCR. We found that VAMP2 and VAMP3 mRNA are expressed and enriched in JG cells. Confocal imaging of primary cultures of JG cells showed that VAMP2 (but not VAMP3) co-localized with renin-containing granules. Cleavage of VAMP2 and VAMP3 with tetanus toxin blocked cAMP-stimulated renin release from JG cells by ∼50% and impaired cAMP-stimulated exocytosis by ∼50%, as monitored with FM1–43. Then we specifically knocked down VAMP2 or VAMP3 by adenoviral-mediated delivery of short hairpin silencing RNA. We found that silencing VAMP2 blocked cAMP-induced renin release by ∼50%. In contrast, silencing VAMP3 had no effect on basal or cAMP-stimulated renin release. We conclude that VAMP2 and VAMP3 are expressed in JG cells, but only VAMP2 is targeted to renin-containing granules and mediates the stimulatory effect of cAMP on renin exocytosis.
Collapse
Affiliation(s)
- Mariela Mendez
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | |
Collapse
|
18
|
Pavone F, Luvisetto S. Botulinum neurotoxin for pain management: insights from animal models. Toxins (Basel) 2010; 2:2890-913. [PMID: 22069581 PMCID: PMC3153188 DOI: 10.3390/toxins2122890] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023] Open
Abstract
The action of botulinum neurotoxins (BoNTs) at the neuromuscular junction has been extensively investigated and knowledge gained in this field laid the foundation for the use of BoNTs in human pathologies characterized by excessive muscle contractions. Although much more is known about the action of BoNTs on the peripheral system, growing evidence has demonstrated several effects also at the central level. Pain conditions, with special regard to neuropathic and intractable pain, are some of the pathological states that have been recently treated with BoNTs with beneficial effects. The knowledge of the action and potentiality of BoNTs utilization against pain, with emphasis for its possible use in modulation and alleviation of chronic pain, still represents an outstanding challenge for experimental research. This review highlights recent findings on the effects of BoNTs in animal pain models.
Collapse
Affiliation(s)
- Flaminia Pavone
- CNR, Institute of Neuroscience-Roma, via del Fosso di Fiorano 64, I-00143 Roma, Italy.
| | | |
Collapse
|
19
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
20
|
Abstract
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.
Collapse
Affiliation(s)
- Thomas Binz
- Institut für Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | |
Collapse
|
21
|
Bozzi Y, Costantin L, Antonucci F, Caleo M. Action of botulinum neurotoxins in the central nervous system: Antiepileptic effects. Neurotox Res 2009; 9:197-203. [PMID: 16785118 DOI: 10.1007/bf03033939] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are metalloproteases which act on nerve terminals and cause a long-lasting inhibition of neurotransmitter release. BoNTs act by cleaving core proteins of the neurotransmitter release machinery, namely the SNARE (soluble NSF-attachment receptors) proteins. The action of BoNTs in the peripheral nervous system (PNS) has been extensively documented, and knowledge gained in this field laid the foundations for the use of BoNTs in human disorders characterized by hyperfunction of peripheral nerve terminals. Much less is known about the action of BoNTs on the central nervous system (CNS). In vitro studies have demonstrated that BoNTs can affect the release of several neurotransmitters from central neurons. Recent studies have provided the first characterization of the effects of BoNT/E on CNS neurons in vivo. It has been shown that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. Intrahippocampal injection of BoNT/E resulted in significant inhibition of seizure activity in experimental models of epilepsy, suggesting a potential therapeutic use of BoNTs in the CNS.
Collapse
Affiliation(s)
- Y Bozzi
- Istituto di Neuroscienze del CNR, Pisa, Italy
| | | | | | | |
Collapse
|
22
|
Scarlatos A, Cadotte AJ, DeMarse TB, Welt BA. Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J Food Sci 2008; 73:E129-36. [PMID: 18387107 DOI: 10.1111/j.1750-3841.2008.00690.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Botulinum toxin (BoNT) is a potent neurotoxin produced by toxigenic strains of Clostridium botulinum. Botulinum toxin poses a major threat since it could be employed in a deliberate attack on the U.S. food supply. Furthermore, BoNT may be liberated in any insufficiently processed food containing a reduced oxygen atmosphere. Hence, rapid and reliable detection of BoNT in foods is necessary to reduce risks posed through food contamination. We present a BoNT biosensor employing living neural cultures grown in vitro on microelectrode arrays (MEAs). An MEA is a culture dish with a grid of electrodes embedded in its surface, enabling extracellular recording of action potentials of neural cultures grown over the array. Pharmaceutical grade BoNT A was applied to the media bath of mature cortical networks cultured on MEAs. Both spontaneous and evoked activities were monitored over 1 wk to quantify changes in the neural population produced by BoNT A. Introduction of BoNT A resulted in an increased duration and number of spikes in spontaneous and evoked bursts relative to control cultures. Increases were significant within 48 h of BoNT A dosage (P < 0.05). Application of BoNT A also induced unique oscillatory behavior within each burst that is reminiscent of early developmental activity patterns rather than the mature cultures used here. Three or more activity peaks were observed in 50% of the BoNT dosed cultures. Control cultures exhibited only a single activity peak. Thus activity of these cortical networks measured with MEAs could provide a valuable substrate for BoNT detection.
Collapse
Affiliation(s)
- A Scarlatos
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611-0570, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Botulinum toxin (BTX) injection is being increasingly used 'off label' in the management of chronic pain. Data support the hypothesis of a direct analgesic effect of BTX, different to that exerted on muscle. Although the pain-reducing effect of BTX is mainly due to its ability to block acetylcholine release at the synapse, other effects on the nervous system are also thought to be involved. BTX affects cholinergic transmission in both the somatic and the autonomic nervous systems. Proposed mechanisms of action of BTX for pain relief of trigger points, muscular spasms, fibromyalgia and myofascial pain include direct action on muscle and indirect effects via action at the neuromuscular junction. Invitro and invivo data have shown that BTX has specific antinociceptive activity relating to its effects on inflammation, axonal transport, ganglion inhibition, and spinal and suprasegmental level inhibition. Our review of the mechanisms of action, efficacy, administration techniques and therapeutic dosage of BTX for the management of chronic pain in a variety of conditions shows that although muscular tone and movement disorders remain the most important therapeutic applications for BTX, research suggests that BTX can also provide benefits related to effects on cholinergic control of the vascular system, autonomic function, and cholinergic control of nociceptive and antinociceptive systems. Furthermore, it appears that BTX may influence the peripheral and central nervous systems. The therapeutic potential of BTX depends mainly on the ability to deliver the toxin to the target structures, cholinergic or otherwise. Evidence suggests that BTX can be administered at standard dosages in pain disorders, where the objective is alteration of muscle tone. For conditions requiring an analgesic effect, the optimal therapeutic dosage of BTX remains to be defined.
Collapse
Affiliation(s)
- Roberto Casale
- Department of Clinical Neurophysiology and Pain Rehabilitation Unit, Foundation Salvatore Maugeri, IRCCS, Scientific Institute of Montescano, Montescano (PV), Italy
| | | |
Collapse
|
24
|
Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER. Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. ACTA ACUST UNITED AC 2007; 179:1511-22. [PMID: 18158333 PMCID: PMC2373501 DOI: 10.1083/jcb.200707184] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Botulinum neurotoxins (BoNTs) target presynaptic nerve terminals by recognizing specific neuronal surface receptors. Two homologous synaptic vesicle membrane proteins, synaptotagmins (Syts) I and II, bind toxins BoNT/B and G. However, a direct demonstration that Syts I/II mediate toxin binding and entry into neurons is lacking. We report that BoNT/B and G fail to bind and enter hippocampal neurons cultured from Syt I knockout mice. Wild-type Syts I and II (but not Syt I loss-of-function toxin-binding domain mutants) restored binding and entry of BoNT/B and G in Syt I–null neurons, thus demonstrating that Syts I/II are protein receptors for BoNT/B and G. Furthermore, mice lacking complex gangliosides exhibit reduced sensitivity to BoNT/G, and binding and entry of BoNT/A, B, and G into hippocampal neurons lacking gangliosides is diminished. These data suggest that gangliosides are the shared coreceptor for BoNT/A, B, and G, supporting a double-receptor model for these three BoNTs for which the protein receptors are known.
Collapse
Affiliation(s)
- Min Dong
- Howard Hughes Medical Institute, Department of Physiology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
25
|
Paluzzi S, Alloisio S, Zappettini S, Milanese M, Raiteri L, Nobile M, Bonanno G. Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization. J Neurochem 2007; 103:1196-207. [PMID: 17935604 DOI: 10.1111/j.1471-4159.2007.04826.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamate release induced by mild depolarization was studied in astroglial preparations from the adult rat cerebral cortex, that is acutely isolated glial sub-cellular particles (gliosomes), cultured adult or neonatal astrocytes, and neuron-conditioned astrocytes. K+ (15, 35 mmol/L), 4-aminopyridine (0.1, 1 mmol/L) or veratrine (1, 10 micromol/L) increased endogenous glutamate or [3H]D-aspartate release from gliosomes. Neurotransmitter release was partly dependent on external Ca2+, suggesting the involvement of exocytotic-like processes, and partly because of the reversal of glutamate transporters. K+ increased gliosomal membrane potential, cytosolic Ca2+ concentration [Ca2+]i, and vesicle fusion rate. Ca2+ entry into gliosomes and glutamate release were independent from voltage-sensitive Ca2+ channel opening; they were instead abolished by 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiurea (KB-R7943), suggesting a role for the Na+/Ca2+ exchanger working in reverse mode. K+ (15, 35 mmol/L) elicited increase of [Ca2+]i and Ca2+-dependent endogenous glutamate release in adult, not in neonatal, astrocytes in culture. Glutamate release was even more marked in in vitro neuron-conditioned adult astrocytes. As seen for gliosomes, K+-induced Ca2+ influx and glutamate release were abolished by KB-R7943 also in cultured adult astrocytes. To conclude, depolarization triggers in vitro glutamate exocytosis from in situ matured adult astrocytes; an aptitude grounding on Ca2+ influx driven by the Na+/Ca2+ exchanger working in the reverse mode.
Collapse
Affiliation(s)
- Silvio Paluzzi
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Verderio C, Grumelli C, Raiteri L, Coco S, Paluzzi S, Caccin P, Rossetto O, Bonanno G, Montecucco C, Matteoli M. Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 2007; 8:142-53. [PMID: 17241445 DOI: 10.1111/j.1600-0854.2006.00520.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs), proteases specific for the SNARE proteins, are used to study the molecular machinery supporting exocytosis and are used to treat human diseases characterized by cholinergic hyperactivity. The recent extension of the use of BoNTs to central nervous system (CNS) pathologies prompted the study of their traffic in central neurons. We used fluorescent BoNT/A and BoNT/E to study the penetration, the translocation and the catalytic action of these toxins in excitatory and inhibitory neurons. We show that BoNT/A and BoNT/E, besides preferentially inhibiting synaptic vesicle recycling at glutamatergic relative to Gamma-aminobutyric acid (GABA)-ergic neurons, are more efficient in impairing the release of excitatory than inhibitory neurotransmitter from brain synaptosomes. This differential effect does not result from a defective penetration of the toxin in line with the presence of the BoNT/A receptor, synaptic vesicle protein 2 (SV2), in both types of neurons. Interestingly, exogenous expression of SNAP-25 in GABAergic neurons confers sensitivity to BoNT/A. These results indicate that the expression of the toxin substrate, and not the toxin penetration, most likely accounts for the distinct effects of the two neurotoxins at the two types of terminals and support the use of BoNTs for the therapy of CNS diseases caused by the altered activity of selected neuronal populations.
Collapse
Affiliation(s)
- Claudia Verderio
- Department of Medical Pharmacology, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Reports and studies on botulinum toxin A in headache treatment are increasing. The studies available from reference systems and published congress contributions on the prophylactic treatment of idiopathic and symptomatic headache with botulinum toxin were analyzed with respect to the study design, the headache diagnosis, and the significance of results. RECENT FINDINGS For the prophylactic treatment of tension-type headache and migraine, no sufficient positive evidence for a treatment with botulinum toxin A is obtained from randomized, double-blind, and placebo-controlled trials to date. For the treatment of chronic daily headache (including medication overuse headache), there is inconsistent positive evidence for subgroups (e.g. patients without other prophylactic treatment). SUMMARY The majority of double-blind and placebo-controlled studies do not confirm the assumption that botulinum toxin A is efficacious in the treatment of idiopathic headache disorders. It is possible that subgroups of patients with chronic daily headache benefit from a long-term treatment with this substance. Future clinical trials should focus on these defined patient groups.
Collapse
Affiliation(s)
- Stefan Evers
- Department of Neurology, University of Münster, Germany.
| |
Collapse
|
28
|
Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V. Vesicular transmitter release from astrocytes. Glia 2006; 54:700-715. [PMID: 17006898 DOI: 10.1002/glia.20367] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Astrocytes can release a variety of transmitters, including glutamate and ATP, in response to stimuli that induce increases in intracellular Ca(2+) levels. This release occurs via a regulated, exocytotic pathway. As evidence of this, astrocytes express protein components of the vesicular secretory apparatus, including synaptobrevin 2, syntaxin, and SNAP-23. Additionally, astrocytes possess vesicular organelles, the essential morphological elements required for regulated Ca(2+)-dependent transmitter release. The location of specific exocytotic sites on these cells, however, remains to be unequivocally determined.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Erik B Malarkey
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Claudia Verderio
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Michela Matteoli
- Department of Medical Pharmacology, Consiglio Nazionalle delle Ricerche Institute of Neuroscience, University of Milano, Milano, Italy
| | - Vladimir Parpura
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California, Riverside, California
| |
Collapse
|
29
|
Verderio C, Rossetto O, Grumelli C, Frassoni C, Montecucco C, Matteoli M. Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Rep 2006; 7:995-9. [PMID: 17016457 PMCID: PMC1618376 DOI: 10.1038/sj.embor.7400796] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 07/27/2006] [Indexed: 11/08/2022] Open
Abstract
Botulinum toxins are metalloproteases that act inside nerve terminals and block neurotransmitter release through their cleavage of components of the exocytosis machinery. These toxins are used to treat human diseases that are characterized by hyperfunction of cholinergic terminals. Recently, evidence has accumulated that gangliosides and synaptic vesicle proteins cooperate to mediate toxin binding to the presynaptic terminal. The differential distribution of synaptic vesicle protein receptors, gangliosides and toxin substrates in distinct neuronal populations opens up the possibility of using different serotypes of botulinum toxins for the treatment of central nervous system diseases caused by altered activity of selected neuronal populations.
Collapse
Affiliation(s)
- Claudia Verderio
- Department of Pharmacology and CNR Institute of Neuroscience, Center of Excellence for Neurodegenerative Diseases, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Via G. Colombo 3, 35121 Padova, Italy
| | - Carlotta Grumelli
- Department of Pharmacology and CNR Institute of Neuroscience, Center of Excellence for Neurodegenerative Diseases, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | | | - Cesare Montecucco
- Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Via G. Colombo 3, 35121 Padova, Italy
| | - Michela Matteoli
- Department of Pharmacology and CNR Institute of Neuroscience, Center of Excellence for Neurodegenerative Diseases, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
30
|
Grumelli C, Verderio C, Pozzi D, Rossetto O, Montecucco C, Matteoli M. Internalization and Mechanism of Action of Clostridial Toxins in Neurons. Neurotoxicology 2005; 26:761-7. [PMID: 15925409 DOI: 10.1016/j.neuro.2004.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Botulinum toxins are metalloproteases that act inside nerve terminals and block neurotransmitter release via their activity directed specifically on SNARE proteins. This review summarizes data on botulinum toxin modes of binding, sites of action, and biochemical activities. Their use in cell biology and neuroscience is considered, as well as their therapeutic utilization in human diseases characterized by hyperfunction of cholinergic terminals.
Collapse
Affiliation(s)
- Carlotta Grumelli
- Department of Medical Pharmacology and CNR Institute of Neuroscience, Center of Excellence for Neurodegenerative Diseases, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Allam N, Brasil-Neto JP, Brown G, Tomaz C. Injections of botulinum toxin type a produce pain alleviation in intractable trigeminal neuralgia. Clin J Pain 2005; 21:182-4. [PMID: 15722812 DOI: 10.1097/00002508-200503000-00010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To report the effects of local injections of botulinum toxin type A regarding pain relief and long-term control in a patient with intractable trigeminal neuralgia. The patient was a 75-year-old man with trigeminal neuralgia in the left hemifacial region. His pain was unbearable and could not be controlled by carbamazepine, amitriptyline, or blocked by infiltration of a glycerol solution or phenol. The authors evaluated pain intensity, quality, and location using a Visual Analog Scale to establish the efficacy of botulinum toxin type A injections. Two units of botulinum toxin type A (Botox) were subcutaneously injected once in eight points distributed along the territory of V1 and V2. Visual Analog Scores were measured at baseline and at 7, 30, 60, and 90 days after treatment. The authors also examined the patient's general condition and daily life activities. The Visual Analog values were, respectively, 82, 54, 25, 25, and 45 mm at each follow-up examination. No side effects were observed on the site of injection and on the patient's clinical state. The authors have been able to reduce trigeminal neuralgia pain with botulinum toxin type A injections in the V1, V2 territory during all the period of study, as well as to withdraw all medication. Interestingly, there was concomitant reduction of pain also in V3, which was not injected.
Collapse
Affiliation(s)
- Nasser Allam
- Graduate Program in Health Sciences and Department of Physiological Sciences, University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|
32
|
Berliocchi L, Fava E, Leist M, Horvat V, Dinsdale D, Read D, Nicotera P. Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis. ACTA ACUST UNITED AC 2005; 168:607-18. [PMID: 15716378 PMCID: PMC2171755 DOI: 10.1083/jcb.200406126] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clostridial neurotoxins are bacterial endopeptidases that cleave the major SNARE proteins in peripheral motorneurons. Here, we show that disruption of synaptic architecture by botulinum neurotoxin C1 (BoNT/C) in central nervous system neurons activates distinct neurodegenerative programs in the axo-dendritic network and in the cell bodies. Neurites degenerate at an early stage by an active caspase-independent fragmentation characterized by segregation of energy competent mitochondria. Later, the cell body mitochondria release cytochrome c, which is followed by caspase activation, apoptotic nuclear condensation, loss of membrane potential, and, finally, cell swelling and lysis. Recognition and scavenging of dying processes by glia also precede the removal of apoptotic cell bodies, in line with a temporal and spatial segregation of different degenerative processes. Our results suggest that, in response to widespread synaptic damage, neurons first dismantle their connections and finally undergo apoptosis, when their spatial relationships are lost.
Collapse
|
33
|
Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 2005; 102:5606-11. [PMID: 15800046 PMCID: PMC556243 DOI: 10.1073/pnas.0408483102] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gliotransmitter D-serine is released upon (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and metabotropic glutamate receptor stimulation, but the mechanisms involved are unknown. Here, by using a highly sensitive bioassay to continuously monitor extracellular D-serine levels, we have investigated the pathways used in its release. We reveal that D-serine release is inhibited by removal of extracellular calcium and augmented by increasing extracellular calcium or after treatment with the Ca(2+) ionophore A23187. Furthermore, release of the amino acid is considerably reduced after depletion of thapsigargin-sensitive intracellular Ca(2+) stores or chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester. Interestingly, D-serine release also was markedly reduced by concanamycin A, a vacuolar-type H(+)-ATPase inhibitor, indicating a role for the vesicular proton gradient in the transmitter storage/release. In addition, agonist-evoked D-serine release was sensitive to tetanus neurotoxin. Finally, immunocytochemical and sucrose density gradient analysis revealed that a large fraction of D-serine colocalized with synaptobrevin/VAMP2, suggesting that it is stored in VAMP2-bearing vesicles. In summary, our study reveals the cellular mechanisms subserving D-serine release and highlights the importance of the glial cell exocytotic pathway in influencing CNS levels of extracellular D-serine.
Collapse
Affiliation(s)
- Jean-Pierre Mothet
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 9040, Institut Fédératif de Neurobiologie Alfred Fessard, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
For many years, astrocytes and oligodendrocytes were considered the inert partners of neurons in the central nervous system (CNS), but several recent studies have dramatically challenged this view. Glial cells express a large number of different voltage- and ligand-gated ion channels (Verkhratsky and Steinhäuser. Brain Res Rev 32:380-412, 2000) as well as G-protein-coupled receptors (Verkhratsky et al. Physiol Rev 78:99-141, 1998)-machinery necessary to sense and respond to neuronal activity. These findings raised the fundamental question as to whether glial receptors are stimulated under physiological conditions, and what sorts of events are triggered by such activation. During the early 1990s, P. Haydon and colleagues made the seminal observation that [Ca(2+)](i) rises in cultured astrocytes are associated with the release of glutamate, which suggested that astrocytes respond to activation and play active modulatory roles in intercellular communication (Parpura et al. Nature 369:744-747, 1994). Subsequent studies performed in situ confirmed and extended this initial observation. In this review, we will focus specifically on the hippocampus and sum up evidence of bidirectional communication between astrocytes and neurons emerging from recent studies using acute slice preparations.
Collapse
Affiliation(s)
- Andrea Volterra
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
- Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW There is an increasing number of reports on botulinum toxin in pain therapy, in particular in headache treatment. Therefore, the studies available from reference systems and published congress contributions on the prophylactic treatment of idiopathic and cervicogenic headache with botulinum toxin were analyzed with respect to study design, headache diagnosis, and the significance of results. RECENT FINDINGS For the prophylactic treatment of tension-type headache, migraine, and cervicogenic headache, no sufficient positive evidence for treatment with botulinum toxin is obtained from randomized, double-blind, placebo-controlled trials to date. For the treatment of miscellaneous headache, there is some but no consistent positive evidence. SUMMARY Most open studies and case reports suggest an efficacy of botulinum toxin in headache prophylaxis but double-blind, placebo-controlled studies do not confirm this assumption. Larger controlled studies are needed for a definite evaluation of subgroups that might possibly benefit from such a treatment. Migraine, tension-type headache, and cervicogenic headache cannot be regarded as a general indication for a treatment with botulinum toxin.
Collapse
Affiliation(s)
- Stefan Evers
- Department of Neurology, University of Münster, Germany.
| |
Collapse
|
36
|
Evanko DS, Zhang Q, Zorec R, Haydon PG. Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 2004; 47:233-240. [PMID: 15252812 DOI: 10.1002/glia.20050] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is becoming evident that glia, and astrocytes in particular, are intimately involved in neuronal signaling. Astrocytic modulation of signaling in neurons appears to be mediated by the release of neuroactive compounds such as the excitatory amino acid glutamate. Release of these transmitters appears to be driven by two different processes: (1) a volume regulatory response triggered by hypo-osmotic conditions that leads to the release of osmotically active solutes from the cytoplasm into the extracellular space, and (2) intracellular calcium-dependent vesicle-mediated excytotic release. The regulatory volume decrease may be mediated by any of several different pathways that increase membrane permeability, thus allowing osmolytes to travel down their concentration gradient into the extracellular space. Such pathways include anion channels, hemichannels, P2X receptor channels, and transporters or multidrug resistance proteins. The excytotic release process may use calcium triggered synaptic like vesicle fusion or alterations in constitutive vesicle trafficking to the membrane. Determining the contribution of any of these release mechanisms requires agents that can be used to specifically block pathways of interest. Currently, many of the pharmacological compounds being used exhibit a great deal of cross-reactivity between several of these pathways. For example, the popular anion channel inhibitor 5-nitro-2-(3-phenyl-propylamino)benzoic acid (NPPB) is an efficient blocker of both hemichannels and vesicle loading. This demonstrates the need to more fully characterize the activities of the agents currently available and to choose pathway blockers carefully when designing experiments.
Collapse
Affiliation(s)
- Daniel S Evanko
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Qi Zhang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical Sciences Center, Ljubljana, Slovenia
| | - Philip G Haydon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G. The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 2003; 11:431-7. [PMID: 13678859 DOI: 10.1016/s0966-842x(03)00210-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Anaerobic bacteria of the genus Clostridia are a major threat to human and animal health, being responsible for pathologies ranging from food poisoning to gas gangrene. In each of these, the production of sophisticated exotoxins is the main cause of disease. The most powerful clostridial toxins are tetanus and botulinum neurotoxins, the causative agents of tetanus and botulism. They are structurally organized into three domains endowed with distinct functions: high affinity binding to neurons, membrane translocation and specific cleavage of proteins controlling neuroexocytosis. Recent discoveries regarding the mechanism of membrane recruitment and sorting of these neurotoxins within neurons make them ideal tools to uncover essential aspects of neuronal physiology in health and disease.
Collapse
Affiliation(s)
- Giovanna Lalli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
38
|
Abstract
In this review, the studies and case reports that are available from reference systems and published congress contributions on the treatment of migraine with botulinum toxin are evaluated. The studies and reports were analyzed with respect to the study design, the efficacy parameters, and the significance of results. One double-blind, placebo-controlled, randomized study with negative (for a 75 U dose of botulinum toxin) and positive (for a 25 U dose of botulinum toxin) evidence of efficacy, one that was a partly positive controlled study (pain intensity, but not attack-frequency improved), and four positive open studies were available. For the acute treatment of migraine with botulinum toxin, only positive case reports were published. As a result of this analysis, there is no sufficient scientific evidence for a treatment recommendation of migraine with botulinum toxin. Further studies are needed for a definite evaluation of subgroups with probable benefit from such a treatment and for the comparison of botulinum toxin with other migraine prophylactic drugs.
Collapse
Affiliation(s)
- Stefan Evers
- Department of Neurology, University of Münster, Albert-Schweitzer-Str. 33, 48129 Münster, Germany.
| |
Collapse
|
39
|
Jensen MJ, Smith TJ, Ahmed SA, Smith LA. Expression, purification, and efficacy of the type A botulinum neurotoxin catalytic domain fused to two translocation domain variants. Toxicon 2003; 41:691-701. [PMID: 12727273 DOI: 10.1016/s0041-0101(03)00042-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Clostridial neurotoxins are potent inhibitors of synaptic function, with the zinc-dependent proteolytic light chain (LC) portion of the toxin cleaving one of three neural SNARE proteins. In nature, the LC is expressed as a part of a much larger toxin and hemagglutinin complex, protecting it from environmental degradation and preserving its catalytic activity. We developed forms of the LC of type A botulinum neurotoxin (BoNT-A) with parts of the larger toxin gene, for use as reagents in high-throughput assays to screen for potential LC antagonists, to further elucidate the toxin's mechanism of action, and to study immunological responses to the toxin. Three BoNT-A constructs were engineered and expressed: the LC, LC with translocation region (LC+H(n)), and the LC with the belt portion of the translocation region (LC+Belt). Purification was optimized to a two-step process, with relatively high yields of all three constructs obtained. Activity assays showed all three constructs to be active, with the LC being the most active. Immunogenic protection against native BoNT-A toxin challenge was observed for all three constructs, with the best protection observed with the LC+H(n) and LC+Belt proteins.
Collapse
Affiliation(s)
- M J Jensen
- Division of Toxinology and Aerobiology, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Astrocytes play an important role in chemical signalling, acting as receptive as well as secretory elements. They can express receptors for essentially all classical neurotransmitter substances and for a large variety of peptides. Recent evidence indicates that astrocytes are involved in the information processing within the nervous system. Astrocytes respond to various neurotransmitters with elevations in intracellular calcium which can either be long-duration Ca(2+) spikes or oscillations in Ca(2+) levels. Astrocytic excitation can be propagated to adjacent astrocytes in the form of Ca(2+) waves. Due to their intimate spatial relationship with synaptic contacts, astrocytes can directly respond to synaptically released messengers and communicate, via signalling substances, with neurons in a reciprocal manner. Cultured astrocytes and astroglioma cells express synaptic vesicle proteins and members of the synaptic SNARE complex. Astrocytes can release a variety of messenger substances via receptor-mediated mechanisms implicating their potential for regulated exocytosis and the participation of proteins of the SNARE complex.
Collapse
Affiliation(s)
- Walter Volknandt
- Department of Neurochemistry, Zoological Institute, Biocenter, J.W. Goethe-University, Marie-Curie Street 9, D-60439, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Evers S, Rahmann A, Vollmer-Haase J, Husstedt IW. Treatment of headache with botulinum toxin A--a review according to evidence-based medicine criteria. Cephalalgia 2002; 22:699-710. [PMID: 12421155 DOI: 10.1046/j.1468-2982.2002.00390.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this review is to evaluate the studies available from reference systems and published congress contributions on the prophylactic treatment of idiopathic and cervicogenic headache with botulinum toxin A, and to classify these studies according to evidence-based medicine (EBM) criteria. The studies were analysed with respect to the study design, the number of patients enrolled, the efficacy parameters, and the significance of results. We used the following classification of EBM. I: randomized, controlled study with sufficient number of patients; II: well-designed, controlled study (or randomized, controlled study with insufficient number of patients, no exact diagnosis, missing data of botulinum toxin A dose); III: well-designed, descriptive study; IV: case reports, opinions of experts. For tension-type headache, two studies were found with negative evidence of I with respect to the primary endpoint. There are about as many positive as negative studies with evidence of II or III. For the therapy of migraine, one study with both negative and positive evidence of I, one in part positive study of II, and three positive studies classified as III are available. Two studies on cervicogenic headache with evidence of II and III are contradictory. In addition, we found several positive case reports. For patients with cluster headache, there are positive and negative case reports. We found one positive case report for the treatment of chronic paroxysmal hemicrania. As a result of this analysis, we consider no sufficient positive evidence for a general treatment of idiopathic and cervicogenic headaches with botulinum toxin A to date. Further studies are needed for a definite evaluation of subgroups with benefit from such treatment.
Collapse
Affiliation(s)
- S Evers
- Department of Neurology, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
42
|
Verastegui C, Lalli G, Bohnert S, Meunier FA, Schiavo G. CLOSTRIDIAL NEUROTOXINS. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Goodnough MC, Oyler G, Fishman PS, Johnson EA, Neale EA, Keller JE, Tepp WH, Clark M, Hartz S, Adler M. Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett 2002; 513:163-8. [PMID: 11904143 DOI: 10.1016/s0014-5793(02)02268-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A targeted delivery vehicle (DV) was developed for intracellular transport of emerging botulinum neurotoxin (BoNT) antagonists. The DV consisted of the isolated heavy chain (HC) of BoNT/A coupled to a 10-kDa amino dextran via the heterobifunctional linker 3-(2-pyridylthio)-propionyl hydrazide. The HC served to target BoNT-sensitive cells and promote internalization of the complex, while the dextran served as a platform to deliver model therapeutic molecules to the targeted cells. To determine the ability of this chimeric glycoprotein to enter neurons, dextran and HC were labeled independently with the fluorescent dyes Oregon green 488 and Cy3, respectively. Internalization of DV was monitored in primary cortical cells using laser confocal microscopy. Incubation of cells for 24 h with DV resulted in discrete punctate labeling of both soma and processes. The Cy3 and Oregon green 488 signals were generally co-localized, suggesting that the complex remained in the same intracellular compartment during the initial 24 h. The DV-associated fluorescence was reduced progressively by co-application of increasing concentrations of unlabeled BoNT/A holotoxin. The results suggest that the BoNT/A HC is able to mediate internalization of a coupled dextran, even though the latter bears no resemblance to the BoNT/A light chain (LC). The HC of BoNT/A thus offers promise as a selective carrier to deliver BoNT antagonists to the nerve terminal cytoplasm for inhibiting the proteolytic activity of internalized BoNT/A LC.
Collapse
Affiliation(s)
- Michael C Goodnough
- Department of Food Microbiology, Food Research Institute, University of Wisconsin, 1925 Willow Dr., Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
To obtain insights into the spatiotemporal characteristics and mechanism of Ca(2+)-dependent glutamate release from astrocytes, we developed a new experimental approach using human embryonic kidney (HEK) 293 cells transfected with the NMDA receptor (NMDAR), which act as glutamate biosensors, plated on cultured astrocytes. We here show that oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in astrocytes trigger synchronous and repetitive [Ca(2+)](i) elevations in sensor HEK cells, and that these elevations are sensitive to NMDAR inhibition. By whole-cell patch-clamp recordings, we demonstrate that the activation of NMDARs in HEK cells results in inward currents that often have extremely fast kinetics, comparable with those of glutamate-mediated NMDAR currents in postsynaptic neurons. We also show that the release of glutamate from stimulated astrocytes is drastically reduced by agents that are known to reduce neuronal exocytosis, i.e., tetanus toxin and bafilomycin A(1). We conclude that [Ca(2+)](i) oscillations represent a frequency-encoded signaling system that controls a pulsatile release of glutamate from astrocytes. The fast activation of NMDARs in the sensor cells and the dependence of glutamate release on the functional integrity of both synaptobrevin and vacuolar H(+) ATPase suggest that astrocytes are endowed with an exocytotic mechanism of glutamate release that resembles that of neurons.
Collapse
|
45
|
Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 2001; 39:27-41. [PMID: 10936621 DOI: 10.1016/s0041-0101(00)00163-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuroparalytic syndromes of tetanus and botulism are caused by neurotoxins produced by bacteria of the genus Clostridium. They are 150 kDa proteins consisting of three-domains, endowed with different functions: neurospecific binding, membrane translocation and specific proteolysis of three key components of the neuroexocytosis apparatus. After binding to the presynaptic membrane of motoneurons, tetanus neurotoxin (TeNT) is internalized and transported retroaxonally to the spinal cord, where it blocks neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven botulinum neurotoxins (BoNT) act at the periphery and inhibit acetylcholine release from peripheral cholinergic nerve terminals. TeNT and BoNT-B, -D, -F and -G cleave specifically at single but different peptide bonds, VAMP/synaptobrevin, a membrane protein of small synaptic vesicles. BoNT types -A, -C and -E cleave SNAP-25 at different sites within the COOH-terminus, whereas BoNT-C also cleaves syntaxin. BoNTs are increasingly used in medicine for the treatment of human diseases characterized by hyperfunction of cholinergic terminals.
Collapse
Affiliation(s)
- O Rossetto
- Centro CNR Biomembrane and Dipartmento de Scienze Biomediche, Università de Padova, Italy
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Over the past decade, a growing body of evidence has emerged on the existence in the brain of a close bidirectional communication system between neurones and astrocytes. This article reviews recent advances in understanding the rules governing these interactions and describes putative, novel functions attributable to astrocytes in neuronal transmission. Astrocytes can respond to the neurotransmitter released from active synaptic terminals, with cytosolic Ca(2+) oscillations whose frequency is under the dynamic control of neuronal activity. In response to these neuronal signals, astrocytes can signal back to neurones by releasing various neurone active compounds, such as the excitatory neurotransmitter glutamate. Interestingly, there is accumulating evidence that glutamate is released via a Ca(2+)-dependent mechanism which may share common properties with neurotransmitter exocytosis in neurones. This bidirectional communication system between neurones and astrocytes may lead to profound changes in neuronal excitability and synaptic transmission. While there clearly is an enormous amount of experimental and theoretical work yet to figure out, a coherent view is now emerging which incorporates the astrocyte, with the presynaptic terminal and the postsynaptic target neurone, as a possible third functional element of the synapse.
Collapse
Affiliation(s)
- G Carmignoto
- Department of Experimental Biomedical Sciences and CNR Center for the Study of Biomembranes, University of Padova, Via G. Colombo, 35121 Padova, Italy.
| |
Collapse
|
48
|
Abstract
The authors divide biological toxins into animal, plant, and bacterial classes and discuss each within a context of demographic, clinical and research examples. Advances in our knowledge are highlighted, and the authors relate the implications of this knowledge to target-specific neurologic involvement.
Collapse
Affiliation(s)
- C G Goetz
- Department of Neurological Sciences, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Il 60612, USA
| | | |
Collapse
|
49
|
Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J Neurosci 1999. [PMID: 10436029 DOI: 10.1523/jneurosci.19-16-06723.1999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recycling synaptic vesicles are already present in isolated axons of developing neurons (Matteoli et al., Zakharenko et al., 1999). This vesicle recycling is distinct from the vesicular traffic implicated in axon outgrowth. Formation of synaptic contacts coincides with a clustering of synaptic vesicles at the contact site and with a downregulation of their basal rate of exo-endocytosis (Kraszewski et al, 1995; Coco et al., 1998) We report here that tetanus toxin-mediated cleavage of synaptobrevin/vesicle-associated membrane protein (VAMP2), previously shown not to affect axon outgrowth, also does not inhibit synaptic vesicle exocytosis in isolated axons, despite its potent blocking effect on their exocytosis at synapses. This differential effect of tetanus toxin could be seen even on different branches of a same neuron. In contrast, botulinum toxins A and E [which cleave synaptosome-associated protein of 25 kDa. (SNAP-25)] and F (which cleaves synaptobrevin/VAMP1 and 2) blocked synaptic vesicle exocytosis both in isolated axons and at synapses, strongly suggesting that this process is dependent on "classical" synaptic SNAP receptor (SNARE) complexes both before and after synaptogenesis. A tetanus toxin-resistant form of synaptic vesicle recycling, which proceeds in the absence of external stimuli and is sensitive to botulinum toxin F, E, and A, persists at mature synapses. These data suggest the involvement of a tetanus toxin-resistant, but botulinum F-sensitive, isoform of synaptobrevin/VAMP in synaptic vesicle exocytosis before synapse formation and the partial persistence of this form of exocytosis at mature synaptic contacts.
Collapse
|