1
|
|
2
|
Marini P, Romanelli L, Valeri D, Cascio MG, Tucci P, Valeri P, Palmery M. Biphasic regulation of the acute μ-withdrawal and CCk-8 contracture responses by the ORL-1 system in guinea pig ileum. Pharmacol Res 2012; 65:100-10. [PMID: 21875667 DOI: 10.1016/j.phrs.2011.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/26/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
The cloning of the opioid-receptor-like receptor (ORL-1) and the identification of the orphaninFQ/nociceptin (OFQ/N) as its endogenous agonist has revealed a new G-protein-coupled receptor signalling system. The structural and functional homology of ORL-1 to the opioid receptor systems has posed a number of challenges in the understanding the often competing physiological responses elicited by these G-protein-coupled receptors. We had previously shown that in guinea pig ileum (GPI), the acute μ-withdrawal response is under the inhibitory control of several systems. Specifically, we found that the exposure to a μ-opioid receptor agonist activates indirectly the κ-opioid, the A(1)-adenosine and the cannabinoid CB(1) systems, that in turn inhibit the withdrawal response. The indirect activation of these systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the ORL-1 system is also involved in the regulation of the acute μ-withdrawal response. Interestingly, we found that in GPI preparation, the ORL-1 system is not indirectly activated by the μ-opioid receptor stimulation, but instead the system is able by itself to directly regulate the acute μ-withdrawal response. Moreover, we have demonstrated that the ORL-1 system behaves both as anti-opioid or opioid-like system based on the level of activation. The same behaviour has also been observed in presence of CCk-8. Furthermore, in GPI, the existence of an endogenous tone of the ORL-1 system has been demonstrated. We concluded that the ORL-1 system acts as a neuromodulatory system, whose action is strictly related to the modulation of excitatory neurotrasmitters released in GPI enteric nervous system.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Xanthos DN, Kumar N, Theodorsson E, Coderre TJ. The roles of nerve growth factor and cholecystokinin in the enhancement of morphine analgesia in a rodent model of central nervous system inflammation. Neuropharmacology 2009; 56:684-91. [PMID: 19103210 PMCID: PMC4486384 DOI: 10.1016/j.neuropharm.2008.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 11/24/2022]
Abstract
Animal models of inflammatory pain are characterized by the release of inflammatory mediators such as cytokines and neurotrophic factors, and enhanced analgesic sensitivity to opioids. In this study, we examine the mechanisms underlying this effect, in particular the roles of cholecystokinin (CCK) and nerve growth factor (NGF), in an animal model of central nervous system (CNS) inflammation induced by spinal administration of lipopolysaccharide (LPS). Although spinal administration of LY-225910 (25 ng), a CCK-B antagonist, enhanced morphine analgesia in naïve rats, it was unable to do so in LPS-treated animals. Conversely, spinal CCK-8S administration (1 ng) decreased morphine analgesia in LPS-treated rats, but not in naïve animals. Further, spinal anti-NGF (3 microg) was able to reduce morphine analgesia in LPS-treated rats, but not in naïve animals, an effect that was reversed by spinal administration of LY-225910. While CCK-8S concentration was increased in spinal cord extracts of LPS animals as compared to controls, morphine-induced spinal CCK release in the extracellular space, as measured by in-vivo spinal cord microdialysis was inhibited in LPS animals as compared to controls, and this was reversed by anti-NGF pretreatment. Finally, chronic spinal administration of beta-NGF (7 microg/day) for 7 days enhanced spinal morphine analgesia, possibly by mimicking a CNS inflammatory state. We suggest that in intrathecally LPS-treated rats, spinal CCK release is altered resulting in enhanced morphine analgesia, and that this mechanism may be regulated to an important extent by NGF.
Collapse
Affiliation(s)
- Dimitris N. Xanthos
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Naresh Kumar
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | | | - Terence J. Coderre
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Esmaeili-Mahani S, Shimokawa N, Javan M, Maghsoudi N, Motamedi F, Koibuchi N, Ahmadiani A. Low-dose morphine induces hyperalgesia through activation of G alphas, protein kinase C, and L-type Ca 2+ channels in rats. J Neurosci Res 2008; 86:471-9. [PMID: 17893922 DOI: 10.1002/jnr.21489] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Opioids can induce analgesia and also hyperalgesia in humans and in animals. It has been shown that systemic administration of morphine induced a hyperalgesic response at an extremely low dose. However, the exact mechanism(s) underlying opioid-induced hyperalgesia has not yet been clarified. Here, we have investigated cellular events involved in low-dose morphine hyperalgesia in male Wistar rats. The data showed that morphine (0.01 microg i.t.) could elicit hyperalgesia as assessed by the tail-flick test. G(alphas) mRNA and protein levels increased significantly following exposure to the hyperalgesic dose of morphine. Furthermore, morphine at an analgesic dose (20 microg i.t.) significantly decreased cAMP levels in the dorsal half of the lumbar spinal cord, whereas the tissue cAMP levels were not affected by morphine treatment at a hyperalgesic dose. Intrathecal administration of nifedipine, an L-type calcium channel blocker, antagonized the hyperalgesia induced by the low-dose of morphine. Furthermore, pretreatment with the selective protein kinase C (PKC) inhibitor chelerytrine resulted in prevention of the morphine-induced hyperalgesia. KT 5720, a specific inhibitor of protein kinase A (PKA), did not show any effect on low-dose morphine-induced hyperalgesia. These results indicate a role for G(alphas), the PLC-PKC pathway, and L-type calcium channels in intrathecal morphine-induced hyperalgesia in rats. Activation of ordinary G(alphas) signaling through cAMP levels did not appear to play a major role in the induction of hyperalgesia by low-dose of morphine.
Collapse
Affiliation(s)
- Saeed Esmaeili-Mahani
- Department of Physiology, Neuroscience Research Center, Shahid Beheshti Medical University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
5
|
Fukazawa Y, Maeda T, Kiguchi N, Tohya K, Kimura M, Kishioka S. Activation of spinal cholecystokinin and neurokinin-1 receptors is associated with the attenuation of intrathecal morphine analgesia following electroacupuncture stimulation in rats. J Pharmacol Sci 2007; 104:159-66. [PMID: 17558184 DOI: 10.1254/jphs.fp0070475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We previously demonstrated that electroacupuncture (EA) stimulation both produced antinociception and attenuated intrathecal (i.t.) morphine analgesia, suggesting that EA is capable of inducing two opposing systems, that is, opioid and anti-opioid mechanisms. This study examined the involvement of cholecystokinin (CCK) in the anti-opioid effects following EA in the spinal cord. EA was applied to commonly used acupoints for antinociception, ST-36 located 5-mm lateral to the anterior tubercle of the tibia, and analgesia was assessed by the hind-paw pressure test in male Sprague-Dawley rats. I.t. administration of CCK (0.01 - 10 microg) attenuated i.t. morphine analgesia (10 microg) dose-dependently. The attenuation of morphine analgesia following EA was reversed by i.t. proglumide, a CCK-receptor antagonist (0.01 microg). CCK-like immunoreactivity was increased in lamina I and II in the dorsal horn, and expression of spinal CCK mRNA increased after EA. Moreover, i.t. pretreatment with the neurokinin-1 (NK1)-receptor antagonist L-703,606 (18 microg) reversed both EA- and CCK-induced attenuation of morphine analgesia. These results suggest that CCK-mediated neural systems in the spinal cord may be involved in the attenuation of morphine analgesia following EA and that substance P-induced activation of NK1 receptors may be responsible for the downstream neuronal transmission of the CCK-mediated neuronal system.
Collapse
MESH Headings
- Acupuncture Points
- Analgesia
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Cholecystokinin/physiology
- Dose-Response Relationship, Drug
- Electroacupuncture
- Gene Expression
- Hindlimb
- Injections, Spinal
- Male
- Morphine/administration & dosage
- Morphine/pharmacology
- Pain
- RNA, Messenger
- Rats
- Rats, Sprague-Dawley
- Receptors, Cholecystokinin/drug effects
- Receptors, Cholecystokinin/metabolism
- Receptors, Neurokinin-1/drug effects
- Receptors, Neurokinin-1/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Substance P/physiology
Collapse
Affiliation(s)
- Yohji Fukazawa
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-8509, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Skyba DA, Lisi TL, Sluka KA. Excitatory amino acid concentrations increase in the spinal cord dorsal horn after repeated intramuscular injection of acidic saline. Pain 2005; 119:142-149. [PMID: 16297556 DOI: 10.1016/j.pain.2005.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022]
Abstract
Chronic muscle pain is common and often difficult to treat. In this study, we further characterize a model of chronic muscle pain induced by repeated intramuscular injection of acidic saline. Two injections of acid into muscle separated by 5 days result in secondary mechanical hyperalgesia that lasts for up to 4 weeks. Blockade of spinal NMDA receptors prior to the second injection intramuscular acid injection delays the onset of hyperalgesia, where as the maintenance phase of hyperalgesia, evaluated 1 week after the second intramuscular injection, is dependent on activation of spinal AMPA/kainate and NMDA receptors. In order to determine if behavioral hyperalgesia and glutamate receptor involvement are associated with increased concentrations of excitatory amino acids (EAA), we utilized microdialysis to evaluate extracellular glutamate and aspartate concentrations in the spinal dorsal horn during the first and second intramuscular acid injections, and 1 week after the development of mechanical hyperalgesia. The second intramuscular injection evoked a calcium-dependent increase in both spinal glutamate and aspartate concentrations. Glutamate concentrations within the dorsal horn were also increased 1 week after the second acid injection. Our data suggest increased release of spinal EAAs in the dorsal horn contributes to the development and maintenance of hyperalgesia.
Collapse
Affiliation(s)
- D A Skyba
- Department of Basic Sciences, Palmer College-Florida, Port Orange, FL 32129, USA Neuroscience Graduate Program and Graduate Program in Physical Therapy and Rehabilitation Sciences, The University of Iowa, Iowa City, IA 52241, USA
| | | | | |
Collapse
|
7
|
Lane DA, Patel PA, Morgan MM. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Neuroscience 2005; 135:227-34. [PMID: 16084660 DOI: 10.1016/j.neuroscience.2005.06.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 04/22/2005] [Accepted: 06/09/2005] [Indexed: 11/26/2022]
Abstract
Repeated microinjections of morphine into the ventrolateral periaqueductal gray produce antinociceptive tolerance. This tolerance may be a direct effect of morphine on cells within the ventrolateral periaqueductal gray or may require activation of downstream structures such as the rostral ventromedial medulla or spinal cord. Experiment 1 examined whether tolerance develops when opioid receptors in the ventrolateral periaqueductal gray are blocked prior to repeated systemic morphine administration. Microinjections of naltrexone hydrochloride (1microg/0.4microl) into the ventrolateral periaqueductal gray blocked antinociception and significantly attenuated the development of antinociceptive tolerance produced from systemic morphine administration. Experiment 2 examined whether tolerance develops when the effects of morphine are isolated to the ventrolateral periaqueductal gray. This was accomplished by microinjecting morphine (5microg/0.4microl) into the ventrolateral periaqueductal gray while simultaneously blocking the descending output through the rostral ventromedial medulla. Inhibition of neurons within the rostral ventromedial medulla by microinjecting the GABA(A) agonist muscimol (10ng/0.5microl) blocked the antinociception produced by microinjection of morphine into the ventrolateral periaqueductal gray but did not block the development of tolerance. These data demonstrate that the ventrolateral periaqueductal gray is both necessary and sufficient to produce tolerance to the antinociceptive effect of morphine. The ventrolateral periaqueductal gray is necessary in that tolerance does not develop if opiate action within the ventrolateral periaqueductal gray is blocked (experiment 1). The ventrolateral periaqueductal gray is sufficient in that tolerance occurs even when morphine's effects are restricted to the ventrolateral periaqueductal gray (experiment 2).
Collapse
Affiliation(s)
- D A Lane
- Washington State University Vancouver, 14204 Northeast Salmon Creek Avenue, Vancouver, WA 98686, USA
| | | | | |
Collapse
|
8
|
Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev 2003; 55:1065-79. [PMID: 12935945 DOI: 10.1016/s0169-409x(03)00104-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vivo microdialysis has been used in preclinical pain research for more than a decade. This valuable tool allows correlations between nociceptive behavior and neurotransmitter release in pain-related CNS sites. However, several methodological issues must be considered to adequately interpret microdialysis data. Thus, the aim of this review is to describe key considerations, potential pitfalls, and important control experiments. We focus on animal experiments which evaluate the effects of noxious stimulation on CNS neurotransmitter release, particularly those that address clinically relevant problems in patients with long-lasting painful conditions.
Collapse
Affiliation(s)
- Carl-Olav Stiller
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Hospital, SE-17177, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
10
|
Abstract
The high abundance of the cholecystokinin octapeptide in various brain regions is expressed by involvement of this neuropeptide in diverse brain functions. This peptide is mostly, if not always, co-localized with classic transmitters in central nerve terminals. Since the functions of the coexisting transmitters are often different, differential regulation of their release is obvious. This differentiation is realized by differences in presynaptic localization, release dynamics, and calcium regulation. In addition, CCK release is locally modulated by receptors, kinases and phosphatases. The regulatory mechanisms of CCK release are placed into physiological perspective.
Collapse
Affiliation(s)
- W E Ghijsen
- Graduate School for the Neurosciences, Swammerdam Institute for Life Sciences, Section Neurobiology, University of Amsterdam, Kruislaan 320, 1090 GB Amsterdam, The Netherlands.
| | | | | |
Collapse
|
11
|
Gustafsson H, Afrah AW, Stiller CO. Morphine-induced in vivo release of spinal cholecystokinin is mediated by delta-opioid receptors--effect of peripheral axotomy. J Neurochem 2001; 78:55-63. [PMID: 11432973 DOI: 10.1046/j.1471-4159.2001.00393.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphine and other opioid agonists induce spinal in vivo release of cholecystokinin (CCK), a neuropeptide with anti-opioid properties. However, so far the opioid receptor subtype responsible for this effect has not been determined. In the present in vivo microdialysis study, the morphine-induced release of cholecystokinin-like immunoreactivity (CCK-LI) in the dorsal horn was completely blocked by the delta-opioid antagonist naltrindole (10 microM in the perfusion fluid). Neither the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; 10 microM in the perfusion fluid), nor the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI); 10 microM in the perfusion fluid) had any significant effect in this respect. In addition, systemic administration of the delta-opioid receptor agonist BW373U86 (1 mg/kg, s.c.) and spinal administration of the delta(2)-opioid receptor agonist, Tyr-D-Ala-Phe-Glu-Val-Val-Gly amide ([D-Ala(2)] deltorphin II) (1 microM in the perfusion fluid) induced a significant increase of the CCK-LI level. The effect of BW373U86 on spinal CCK-LI release was completely blocked by spinal administration of naltrindole. The mu-opioid receptor agonist [D-ala(2)-N-Me-Phe(4)-Gly(5)-ol]-enkephalin (DAMGO) (1 microM in the perfusion fluid or 1 mg/kg, s.c.) failed to alter the CCK-LI level. Peripheral nerve lesions have previously been shown to down-regulate mu- and delta-opioid receptors in the dorsal horn, to increase the gene-expression of CCK and CCK-receptor mRNA in dorsal root ganglion neurons and to alter the potassium-induced spinal CCK-LI release. After complete sciatic nerve transection, administration of the two selective delta-opioid receptor agonists induced a significant release of CCK-LI, which was comparable to controls. In contrast, neither systemic nor spinal administration of morphine and DAMGO altered the spinal CCK-LI release in axotomized animals. The present data indicate that the delta-opioid receptor mediates morphine-induced CCK-LI release in the spinal cord.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Axotomy
- Cholecystokinin/metabolism
- Injections, Spinal
- Male
- Morphine/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Sciatic Nerve/physiology
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- H Gustafsson
- Department of Physiology and Pharmacology, Division of Pharmacological Pain Research, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
12
|
Doğrul A, Yeşilyurt Ö, Işmer A, Güzeldemir EM. L-type and T-type calcium channel blockade potentiate the analgesic effects of morphine and selective mu opioid agonist, but not to selective delta and kappa agonist at the level of the spinal cord in mice. Pain 2001; 93:61-68. [PMID: 11406339 DOI: 10.1016/s0304-3959(01)00293-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We examined the effects of amlodipine, a selective L-type voltage dependent Ca(2+) channel (VDCC) blocker, and mibefradil, a selective T-type VDCC blocker on the antinociceptive effects of morphine, and mu, delta and kappa opioid receptor selective agonist-induced antinociception at the spinal level. Intrathecally administered amlodipine and mibefradil potentiated morphine and [D-Ala(2), N mePhe(4), Gly-ol(5)] enkephalin (DAMGO)-induced antinociception by shifting their dose response curves to the left. However, intrathecally administered amlodipine and mibefradil did not affect [D-Pen(2), D-Pen(5)]enkephalin (DPDPE) and [trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrolidinyl)cyclohexyl] benzene acetamide (U-50, 488H)-induced antinociception. These data indicate that L-type and T-type VDCC blockers synergistically potentiate the analgesic effects of mu opioid receptor agonists, but not delta and kappa opioid receptor agonists, at the spinal level. Additionally, these data suggest that there is an important functional interaction between L-type and/ or T-type VDCC and mu opioid receptors in the process of analgesia.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Amlodipine/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, T-Type/drug effects
- Drug Synergism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Male
- Mibefradil/pharmacology
- Mice
- Morphine/pharmacology
- Pain Measurement/drug effects
- Postural Balance/drug effects
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Spinal Cord/drug effects
Collapse
Affiliation(s)
- Ahmet Doğrul
- Department of Medical Pharmacology, Faculty of Medicine, Gülhane Military Academy of Medicine, Ankara, Turkey Department of Anesthesiology, Faculty of Medicine, Gülhane Military Academy of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
13
|
Kim JA, Siegel S. The role of cholecystokinin in conditional compensatory responding and morphine tolerance in rats. Behav Neurosci 2001; 115:704-9. [PMID: 11439459 DOI: 10.1037/0735-7044.115.3.704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As elaborated in the conditioning analysis of tolerance, cues present at the time of drug administration become associated with the drug effect. A particularly salient cue that may become associated with the drug effect is the pharmacological drug-onset cue inherent to drug administration. Drug-associated cues contribute to tolerance by eliciting a conditional compensatory response that attenuates the drug effect. For example, the early drug effect, having been paired with the subsequent larger drug effect, may elicit the release of antiopioid peptides that counter opioid effects. The role of a putative antiopioid peptide, cholecystokinin-8 (CCK), in the associative mechanisms of opiate tolerance was evaluated. The results of these experiments suggest that a CCK2 receptor antagonist attenuates both the expression of opiate tolerance and the conditional compensatory response hypothesized to mediate such tolerance.
Collapse
Affiliation(s)
- J A Kim
- Department of Psychology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
14
|
Coudoré-Civiale MA, Courteix C, Boucher M, Méen M, Fialip J, Eschalier A, Ardid D. Potentiation of morphine and clomipramine analgesia by cholecystokinin -B antagonist CI-988 in diabetic rats. Neurosci Lett 2000; 286:37-40. [PMID: 10822147 DOI: 10.1016/s0304-3940(00)01080-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the influence of an intrathecally injected cholecystokinin-B (CCK-B) receptor antagonist, CI-988, on the analgesic effect of morphine and clomipramine in diabetic rats. Administered alone, morphine (0.1 mg/kg, i.v.) and clomipramine (3 mg/kg, i.v.) have respectively no effect and only a slight effect on vocalization thresholds to paw pressure in diabetic rats, but, when coadministered with CI-988 (0.1 microg/rat, i.t.), an appreciable antinociceptive effect was observed. This suggests that a spinal blockade of cholecystokininergic system increases the analgesia induced by morphine or clomipramine. A CCK-B receptor antagonist could thus be used to lower dosages of morphine or antidepressant drugs in the management of neuropathic pain in humans, and thereby reduce their side effects.
Collapse
MESH Headings
- Analgesia
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Anxiety Agents/pharmacology
- Antidepressive Agents, Tricyclic/pharmacology
- Clomipramine/pharmacology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions/physiology
- Indoles/pharmacology
- Male
- Meglumine/analogs & derivatives
- Meglumine/pharmacology
- Morphine/pharmacology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/drug therapy
- Pain/physiopathology
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Peripheral Nervous System Diseases/drug therapy
- Peripheral Nervous System Diseases/etiology
- Peripheral Nervous System Diseases/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cholecystokinin B
- Receptors, Cholecystokinin/antagonists & inhibitors
- Receptors, Cholecystokinin/drug effects
- Receptors, Cholecystokinin/metabolism
- Time Factors
Collapse
Affiliation(s)
- M A Coudoré-Civiale
- INSERM EPI 9904, Laboratoire de Physiologie, Faculté de Pharmacie, place Henri-Dunant, 63001 Cedex 1, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|