1
|
Ringseis R, Wächter S, Cohrs I, Eder K, Grünberg W. Effect of dietary phosphorus deprivation during the dry period on the liver transcriptome of high-yielding periparturient dairy cows. J Dairy Sci 2024; 107:5178-5189. [PMID: 38395399 DOI: 10.3168/jds.2023-24099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Although dietary phosphorus (P) deprivation extending from the dry period into early lactation impairs health and productivity of cows, restricting dietary P supply during the dry period not only appears to be innocuous but rather effectively mitigates hypocalcemia during the first wk of lactation. To investigate possible negative metabolic effects of P deprivation during the dry period, the present study tested the hypothesis that restricted dietary P supply during the dry period alters the liver transcriptome of dairy cows during the periparturient period. Thirty late-pregnant multiparous Holstein-Friesian dairy cows entering their second, third, or fourth lactation were assigned to either a dry cow ration with low (LP, 0.16% P in DM) or adequate P content (AP, 0.35% in DM) during the last 4 wk of the dry period (n = 15/group). Liver transcriptomics, which was carried out in a subset of 5 second-parity cows of each group (n = 5), and determination of selected hormones and metabolites in blood of all cows, was performed ∼1 wk before calving and on d 3 postpartum. Liver tissue specimens and blood samples were obtained by a micro-invasive biopsy technique from the right tenth intercostal space and puncture of a jugular vein, respectively. One hundred seventy-five hepatic transcripts were expressed differentially between LP versus AP cows in late pregnancy, and 165 transcripts differed between LP versus AP cows in early lactation (fold change >1.3 and <-1.3, P < 0.05). In late pregnancy, the enriched biological processes of the upregulated and the downregulated transcripts were mainly related to immune processes and signal transduction (P < 0.05), respectively. In early lactation, the enriched biological processes of the upregulated and the downregulated transcripts were involved in mineral transport and biotransformation (P < 0.05), respectively. The plasma concentrations of the hormones and acute-phase proteins (progesterone, insulin-like growth factor 1, serum amyloid α, haptoglobin, and 17β-estradiol) determined were not affected by P supply. These results suggest that P deprivation during the dry period moderately affects the liver transcriptome of cows in late pregnancy and early lactation, and causes no effects on important plasma hormones and acute-phase proteins indicating no obvious impairment of health or metabolism of the cows.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sophia Wächter
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany
| | - Imke Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany; Clinic for Ruminants and Herd Health Management, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Walter Grünberg
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hanover, Germany; Clinic for Ruminants and Herd Health Management, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Synaptotagmin IV Acts as a Multi-Functional Regulator of Ca2+-Dependent Exocytosis. Neurochem Res 2010; 36:1222-7. [DOI: 10.1007/s11064-010-0352-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/26/2010] [Indexed: 02/06/2023]
|
3
|
Flannery AR, Czibener C, Andrews NW. Palmitoylation-dependent association with CD63 targets the Ca2+ sensor synaptotagmin VII to lysosomes. ACTA ACUST UNITED AC 2010; 191:599-613. [PMID: 21041449 PMCID: PMC3003310 DOI: 10.1083/jcb.201003021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Posttranslational lipid modifications promote association of Syt VII with the tetraspanin CD63, determining its exit from the Golgi and targeting to lysosomes. Syt VII is a Ca2+ sensor that regulates lysosome exocytosis and plasma membrane repair. Because it lacks motifs that mediate lysosomal targeting, it is unclear how Syt VII traffics to these organelles. In this paper, we show that mutations or inhibitors that abolish palmitoylation disrupt Syt VII targeting to lysosomes, causing its retention in the Golgi complex. In macrophages, Syt VII is translocated simultaneously with the lysosomal tetraspanin CD63 from tubular lysosomes to nascent phagosomes in a Ca2+-dependent process that facilitates particle uptake. Mutations in Syt VII palmitoylation sites block trafficking of Syt VII, but not CD63, to lysosomes and phagosomes, whereas tyrosine replacement in the lysosomal targeting motif of CD63 causes both proteins to accumulate on the plasma membrane. Complexes of CD63 and Syt VII are detected only when Syt VII palmitoylation sites are intact. These findings identify palmitoylation-dependent association with the tetraspanin CD63 as the mechanism by which Syt VII is targeted to lysosomes.
Collapse
Affiliation(s)
- Andrew R Flannery
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
4
|
JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J 2007; 27:76-87. [PMID: 18046461 DOI: 10.1038/sj.emboj.7601935] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/06/2007] [Indexed: 11/08/2022] Open
Abstract
Ca2+ influx induced by membrane depolarization triggers the exocytosis of secretory vesicles in various cell types such as endocrine cells and neurons. Peptidyl growth factors enhance Ca2+-evoked release, an effect that may underlie important adaptive responses such as the long-term potentiation of synaptic transmission induced by growth factors. Here, we show that activation of the c-Jun N-terminal kinase (JNK) plays an essential role in nerve growth factor (NGF) enhancement of Ca2+-evoked release in PC12 neuroendocrine cells. Moreover, JNK associated with phosphorylated synaptotagmin-4 (Syt 4), a key mediator of NGF enhancement of Ca2+-evoked release in this system. NGF treatment led to phosphorylation of endogenous Syt 4 at Ser135 and translocation of Syt 4 from immature to mature secretory vesicles in a JNK-dependent manner. Furthermore, mutation of Ser135 abrogated enhancement of Ca2+-evoked release by Syt 4. These results provide a molecular basis for the effect of growth factors on Ca2+-mediated secretion.
Collapse
|
5
|
Gauthier BR, Duhamel DL, Iezzi M, Theander S, Saltel F, Fukuda M, Wehrle-Haller B, Wollheim CB. Synaptotagmin VII splice variants alpha, beta, and delta are expressed in pancreatic beta-cells and regulate insulin exocytosis. FASEB J 2007; 22:194-206. [PMID: 17709608 DOI: 10.1096/fj.07-8333com] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synaptotagmins (SYT) are calcium-binding proteins that participate in regulated exocytosis. Although SYTI to IX isoforms are expressed in insulin-producing cell lines, hitherto only SYTIX has been associated with native beta-cell insulin granules and implicated in exocytosis. SYTVII was also proposed to regulate insulin exocytosis, but its subcellular location and number of alternative splice variants produced remain controversial. Only transcripts of SYTVII alpha, beta, and a novel splice variant delta are expressed in beta-cells and INS-1E cells. Western blotting revealed that INS-1E cells predominantly produced SYTVII alpha and low levels of SYTVII beta, whereas SYTVII delta was undetectable. The protein colocalized with insulin granules but not with synaptic-like microvesicles. Overexpression of SYTVII alpha resulted in decreased insulin granule content with a concomitant translocation of the variant to the plasma membrane, while SYTVII beta retained largely a granular pattern. Overexpressed SYTVII delta exhibited a distribution different to that of insulin granules and inhibited exocytosis when assessed by whole cell patch clamp capacitance recording. Silencing of SYTVII alpha by targeted RNA interference suppressed secretion, while repression of beta slightly increased release. Our results demonstrate that SYTVII is expressed on insulin granules and that only SYTVII alpha is implicated in exocytosis under physiological conditions.
Collapse
Affiliation(s)
- Benoit R Gauthier
- Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Musch MW, Arvans DL, Walsh-Reitz MM, Uchiyama K, Fukuda M, Chang EB. Synaptotagmin I binds intestinal epithelial NHE3 and mediates cAMP- and Ca2+-induced endocytosis by recruitment of AP2 and clathrin. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1549-58. [PMID: 17307723 DOI: 10.1152/ajpgi.00388.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apical membrane sodium hydrogen exchanger 3 (NHE3), a major pathway for non-nutrient-dependent intestinal Na(+) absorption, is tightly regulated by second messenger systems that affect its functional activity and membrane trafficking. However, the events and components involved in NHE3 regulation are only partially understood. We report that the adaptor protein synaptotagmin I (Syt I) plays a pivotal role in cAMP- and Ca(2+)-induced cargo recognition of NHE3 and initiation of its endocytosis. Both mouse small intestine (jejunum) and Caco-2BBe Syt I coimmunoprecipitated with NHE3, particularly following increases in cellular cAMP or Ca(2+). Following short interfering RNA (siRNA) suppression of Syt I expression, cAMP- and Ca(2+)-induced inhibition of NHE3 activity were still observed but NHE3 endocytosis was blocked, as assessed by (22)Na influx and apical membrane biotin labeling, respectively. Similar effects on NHE3 inhibition and endocytosis were observed by siRNA suppression of either the mu-subunit of the adaptor protein 2 (AP2) complex or the heavy chain of clathrin. Coimmunoprecipitation analyses of NHE3 with these adaptor proteins revealed that cAMP- and Ca(2+)-induced NHE3-Syt I interaction preceded and was required for recruitment of AP2 and the clathrin complex. Confocal microscopy confirmed both the time sequence and protein associations of these events. We conclude that Syt I plays a pivotal role in mediating cAMP- and Ca(2+)-induced endocytosis of NHE3 (but not in inhibition of activity) through cargo recognition of NHE3 and subsequent recruitment of AP2-clathrin assembly required for membrane endocytosis.
Collapse
Affiliation(s)
- Mark W Musch
- Dept. of Medicine, MC 6084, The Univ. of Chicago Hospitals, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
7
|
Poopatanapong A, Teramitsu I, Byun JS, Vician LJ, Herschman HR, White SA. Singing, but not seizure, induces synaptotagmin IV in zebra finch song circuit nuclei. ACTA ACUST UNITED AC 2007; 66:1613-29. [PMID: 17058190 PMCID: PMC2694668 DOI: 10.1002/neu.20329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptotagmins are a family of proteins that function in membrane fusion events, including synaptic vesicle exocytosis. Within this family, synaptotagmin IV (Syt IV) is unique in being a depolarization-induced immediate early gene (IEG). Experimental perturbation of Syt IV modulates neurotransmitter release in mice, flies, and PC12 cells, and modulates learning in mice. Despite these features, induction of Syt IV expression by a natural behavior has not been previously reported. We used the zebra finch, a songbird species, to investigate Syt IV because song is a naturally learned behavior whose neuroanatomical basis is largely identified. We observed that, similar to rodents, Syt IV is inducible in songbirds. This induction was selective and depended on the nature of neuronal depolarization. Generalized seizures caused by the GABA(A) receptor antagonist, metrazole, induced the IEG, ZENK, in zebra finch brain. However, these same seizures failed to induce Syt IV in song control areas. In contrast, when nontreated birds sang, three song control areas showed striking Syt IV induction. Further, this induction appeared sensitive to the social context in which song was sung. Together, these data suggest that neural activity during singing can drive Syt IV expression within song circuitry whereas generalized seizure activity fails to do so even though song control areas are depolarized. Our findings indicate that, within this neural circuit for a procedurally learned sensorimotor behavior, Syt IV is selective and requires precisely patterned neural activity and/or neuromodulation associated with singing.
Collapse
Affiliation(s)
- A Poopatanapong
- Department of Physiological Science, University of California at Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
8
|
Fukuda M. RNA interference-mediated silencing of synaptotagmin IX, but not synaptotagmin I, inhibits dense-core vesicle exocytosis in PC12 cells. Biochem J 2004; 380:875-9. [PMID: 15015935 PMCID: PMC1224215 DOI: 10.1042/bj20040096] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/08/2004] [Accepted: 03/11/2004] [Indexed: 11/17/2022]
Abstract
Although PC12 cells express three synaptotagmin isoforms (Syts I, IV and IX), all of which have been proposed to regulate dense-core vesicle exocytosis, it remains unknown which of the Sytisoforms acts as the major Ca2+ sensor for dense-core vesicle exocytosis. In the present study, it has been shown by immunoaffinity purification and immunocytochemistry that Syts I and IX, but not Syt IV, are present on the same secretory vesicles in PC12 cells. Silencing of Syt IX with specific small interfering RNA significantly reduced high KCl-dependent neuropeptide Y secretion from PC12 cells, whereas silencing of Syt I with specific small interfering RNA had no significant effect. The results indicate that Syts I and IX are not functionally equivalent and that Syt IX, and not Syt I, is indispensable for the regulation of Ca2+-dependent dense-core vesicle exocytosis in PC12 cells.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Fukuda M. Alternative splicing in the first alpha-helical region of the Rab-binding domain of Rim regulates Rab3A binding activity: is Rim a Rab3 effector protein during evolution? Genes Cells 2004; 9:831-42. [PMID: 15330860 DOI: 10.1111/j.1365-2443.2004.00767.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rim1 and Rim2 were originally described as specific Rab3A-effector proteins involved in the regulation of secretory vesicle exocytosis. The putative Rab3A-binding domain (RBD) of Rim consists of two alpha-helical regions (named RBD1 and RBD2) separated by two zinc finger motifs. Although alternative splicing in the RBD1 of Rim is known to produce long and short forms of RBD (named Rim1 and Rim1Delta56-105, and Rim2(+40A) and Rim2, respectively), with the long form of Rim1 and short form of Rim2 being dominant in mouse brain, the physiological significance of the alternative splicing in RBD1 has never been elucidated. In the present study I discovered that alternative splicing in Rim RBD1 alters Rab3A binding affinity to Rims, and found that insertion of 40 amino acids into the RBD1 of Rim2 (i.e. Rim2(+40A)) dramatically reduced its Rab3A binding activity (more than a 50-fold decrease in affinity). Similarly, Rim1Delta56-105 exhibited higher affinity binding to Rab3A than the long form of Rim1. Expression of the short forms of the Rim RBD in PC12 cells co-localized well with endogenous Rab3A, whereas expression of the long forms of the Rim RBD in PC12 cells resulted in cytoplasimc and nuclear localization. Moreover, I found that Caenorhabditis elegans Rim/UNC-10 (ce-Rim) and Drosophila Rim (dm-Rim) do not interact with ce-Rab3 and dm-Rab3, respectively, indicating that the Rab3-effector function of Rim has not been retained during evolution. Based on these findings, I propose that the Rab3A-effector function of Rim during secretory vesicle exocytosis is limited to the short form of the mammalian Rim RBD alone.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Machado HB, Liu W, Vician LJ, Herschman HR. Synaptotagmin IV overexpression inhibits depolarization-induced exocytosis in PC12 cells. J Neurosci Res 2004; 76:334-41. [PMID: 15079862 DOI: 10.1002/jnr.20072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Depolarization-induced vesicle exocytosis is a complex mechanism involving a number of proteins. In this process, synaptotagmins work as members of the Ca(2+)-sensing system that triggers the fusion of the synaptic vesicle with the plasma membrane. Synaptotagmin IV (SytIV), an immediate-early gene induced by depolarization in PC12 pheochromocytoma cells and in the hippocampus, has been suggested to work as a negative regulator of neurotransmitter release. Unlike other synaptotagmins, SytIV has an evolutionarily conserved substitution of an aspartate to a serine in the Ca(2+) coordination site of its C2A domain, preventing SytIV from binding anionic lipids in a Ca(2+)-dependent fashion. We used the secretion of human growth hormone (hGH) as a reporter system with which to examine the effects of overexpressing SytIV and other depolarization-induced immediate-early genes (the protein kinases KID-1, SIK, and PIM-1 and the transcription factors rTLE3 and Nurr1) on depolarization-induced vesicle exocytosis in PC12 cells. SytIV overexpression resulted in decreased depolarization-induced hGH release. However, conversion of the unique serine in SytIV to an aspartate eliminated this inhibitory activity. In addition, rTLE3 overexpression produced only a modest increase in spontaneous vesicle exocytosis, whereas KID-1, SIK, PIM-1, and Nurr1 overexpression had no effect on depolarization-induced exocytosis.
Collapse
Affiliation(s)
- Hidevaldo B Machado
- Department of Biological Chemistry, UCLA Center for the Health Sciences, Los Angeles, California, USA
| | | | | | | |
Collapse
|
11
|
Fukuda M, Itoh T. Slac2-a/Melanophilin Contains Multiple PEST-like Sequences That Are Highly Sensitive to Proteolysis. J Biol Chem 2004. [DOI: 10.1074/jbc.m401791200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Fukuda M, Kanno E, Yamamoto A. Rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A in PC12 cells. J Biol Chem 2004; 279:13065-75. [PMID: 14722103 DOI: 10.1074/jbc.m306812200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
13
|
Chakrabarti S, Kobayashi KS, Flavell RA, Marks CB, Miyake K, Liston DR, Fowler KT, Gorelick FS, Andrews NW. Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J Cell Biol 2003; 162:543-9. [PMID: 12925704 PMCID: PMC2173791 DOI: 10.1083/jcb.200305131] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Members of the synaptotagmin family have been proposed to function as Ca2+ sensors in membrane fusion. Syt VII is a ubiquitously expressed synaptotagmin previously implicated in plasma membrane repair and Trypanosoma cruzi invasion, events which are mediated by the Ca2+-regulated exocytosis of lysosomes. Here, we show that embryonic fibroblasts from Syt VII-deficient mice are less susceptible to trypanosome invasion, and defective in lysosomal exocytosis and resealing after wounding. Examination of mutant mouse tissues revealed extensive fibrosis in the skin and skeletal muscle. Inflammatory myopathy, with muscle fiber invasion by leukocytes and endomysial collagen deposition, was associated with elevated creatine kinase release and progressive muscle weakness. Interestingly, similar to what is observed in human polymyositis/dermatomyositis, the mice developed a strong antinuclear antibody response, characteristic of autoimmune disorders. Thus, defective plasma membrane repair in tissues under mechanical stress may favor the development of inflammatory autoimmune disease.
Collapse
Affiliation(s)
- Sabyasachi Chakrabarti
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
We discovered a novel alternatively spliced form of synaptotagmin I (Syt I). This splicing event is conserved over evolution and, in Aplysia, results in a two amino acid insert in the juxtamembrane domain of Syt I (Syt IVQ). Both Syt I and Syt IVQ are localized to synaptic vesicles; however, we also observed punctae that contained one or the other spliced products. Both Syt I and Syt IVQ are phosphorylated at the adjacent PKC site. Overexpression of Syt IVQ, but not of Syt I, in Aplysia neurons blocked the ability of serotonin to reverse synaptic depression. This effect is upstream of PKC activation, because neither Syt IVQ nor Syt I blocked the effects of phorbol esters on reversing synaptic depression or the effects of serotonin on facilitating nondepressed synapses. Our results demonstrate a physiological role for splicing in the juxtamembrane domain of Syt I.
Collapse
|
15
|
Fukuda M, Kanno E, Ogata Y, Saegusa C, Kim T, Loh YP, Yamamoto A. Nerve growth factor-dependent sorting of synaptotagmin IV protein to mature dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J Biol Chem 2003; 278:3220-6. [PMID: 12446703 DOI: 10.1074/jbc.m208323200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin IV (Syt IV) is a fourth member of the Syt family and has been shown to regulate some forms of memory and learning by analysis of Syt IV null mutant mice (Ferguson, G. D., Anagnostaras, S. G., Silva, A. J., and Herschman, H. R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5598-5603). However, the involvement of Syt IV protein in vesicular trafficking and even its localization in secretory vesicles are still matters of controversy. Here we present several lines of evidence showing that the Syt IV protein in PC12 cells is normally localized in the Golgi or immature vesicles at the cell periphery and is sorted to fusion-competent mature dense-core vesicles in response to short nerve growth factor (NGF) stimulation. (i) In undifferentiated PC12 cells, Syt IV protein is mainly localized in the Golgi and small amounts are also present at the cell periphery, but according to the results of an immunocytochemical analysis, they do not colocalize with conventional secretory vesicle markers (Syt I, Syt IX, Rab3A, Rab27A, vesicle-associated membrane protein 2, and synaptophysin) at all. By contrast, limited colocalization of Syt IV protein with dense-core vesicle markers is found in the distal parts of the neurites of NGF-differentiated PC12 cells. (ii) Immunoelectron microscopy with highly specific anti-Syt IV antibody revealed that the Syt IV protein in undifferentiated PC12 cells is mainly present on the Golgi membranes and immature secretory vesicles, whereas after NGF stimulation Syt IV protein is also present on the mature dense-core vesicles. (iii) An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in the neurites of NGF-differentiated PC12 cells undergo Ca(2+)-dependent exocytosis, whereas no uptake of the anti-Syt IV-N antibody was observed in undifferentiated PC12 cells. Our results suggest that Syt IV is a stimulus (e.g. NGF)-dependent regulator for exocytosis of dense-core vesicles.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Peng W, Premkumar A, Mossner R, Fukuda M, Lesch KP, Simantov R. Synaptotagmin I and IV are differentially regulated in the brain by the recreational drug 3,4-methylenedioxymethamphetamine (MDMA). BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 108:94-101. [PMID: 12480182 DOI: 10.1016/s0169-328x(02)00518-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or Ecstasy) is a widely abused drug. In brains of mice exposed to MDMA, we recently detected altered expression of several cDNAs and genes by using the differential display polymerase chain reaction (PCR) method. Expression of one such cDNA, which exhibited 98% sequence homology with the synaptic vesicle protein synaptotagmin IV, decreased 2 h after MDMA treatment. Herein, the effect of MDMA on expression of both synaptotagmin I and IV was studied in detail, since the two proteins are functionally interrelated. PCR analyses (semi-quantitative and real-time) confirmed that upon treatment with MDMA, expression of synaptotagmin IV decreased both in the midbrain and frontal cortex of mice. Decreases in the protein levels of synaptotagmin IV were confirmed by Western immunoblotting with anti-synaptotagmin IV antibodies. In contrast, the same exposure to MDMA increased expression of synaptotagmin I in the midbrain, a region rich in serotonergic neurons, but not in the frontal cortex. This differential expression was confirmed at the protein level with anti-synaptotagmin I antibodies. MDMA did not induce down- or up-regulation of synaptotagmin IV and I, respectively, in serotonin transporter knockout mice (-/-) that are not sensitive to MDMA. Therefore, psychoactive drugs, such as MDMA, appear to modulate expression of synaptic vesicle proteins, and possibly vesicle trafficking, in the brain.
Collapse
Affiliation(s)
- Weiping Peng
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Fukuda M, Kanno E, Saegusa C, Ogata Y, Kuroda TS. Slp4-a/granuphilin-a regulates dense-core vesicle exocytosis in PC12 cells. J Biol Chem 2002; 277:39673-8. [PMID: 12176990 DOI: 10.1074/jbc.m205349200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a was originally identified as a protein specifically associated with insulin-containing vesicles in pancreatic beta-cells (Wang, J., Takeuchi, T., Yokota, H., and Izumi, T. (1999) J. Biol. Chem. 274, 28542-28548). Previously, we showed that the N-terminal Slp homology domain of Slp4-a interacts with the GTP-bound form of Rab3A, Rab8, and Rab27A both in vitro and in intact cells (Kuroda, T. S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 9212-9218). How Slp4-a.Rab complex controls regulated secretion, and which Rab isoforms dominantly interact with Slp4-a in vivo, however, have remained unknown. In this study, we showed by immunocytochemistry and subcellular fractionation that three Rabs, Rab3A, Rab8, and Rab27A, and Slp4-a are endogenously expressed in neuroendocrine PC12 cells and localized on dense-core vesicles, and we discovered that the Slp4-a.Rab8 and Slp4-a.Rab27A complexes, but not Slp4-a.Rab3A complexes, are formed on dense-core vesicles in PC12 cells, although the majority of Rab8 is present in the cell body and is free of Slp4-a. We further showed that expression of Rab27A, but not of Rab8, promotes high KCl-dependent secretion of neuropeptide Y (NPY) in PC12 cells, whereas expression of Slp4-a, but not of an Slp4-a mutant incapable of Rab27A binding, inhibits NPY secretion in PC12 cells. In contrast, expression of Slp3-a, but not of Slp3-b lacking an N-terminal Rab27A-binding domain, promotes NPY secretion. These findings suggest that the Slp family controls regulated dense-core vesicle exocytosis via binding to Rab27A.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
18
|
Fukuda M. Vesicle-associated membrane protein-2/synaptobrevin binding to synaptotagmin I promotes O-glycosylation of synaptotagmin I. J Biol Chem 2002; 277:30351-8. [PMID: 12048209 DOI: 10.1074/jbc.m204056200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin I (Syt I), an evolutionarily conserved integral membrane protein of synaptic vesicles, is now known to regulate Ca2+-dependent neurotransmitter release. Syt I protein should undergo several post-translational modifications before maturation and subsequent functioning on synaptic vesicles (e.g. N-glycosylation and fatty acylation in vertebrate Syt I), because the apparent molecular weight of Syt I on synaptic vesicles (mature form, 65,000) was much higher than the calculated molecular weight (47,400) predicted from the cDNA sequences both in vertebrates and invertebrates. Common post-translational modification(s) of Syt I conserved across phylogeny, however, have never been elucidated. In the present study, I discovered that dithreonine residues (Thr-15 and Thr-16) at the intravesicular domain of mouse Syt I are post-translationally modified by a complex form of O-linked sugar (i.e. the addition of sialic acids) in PC12 cells and that the O-glycosylation of Syt I in COS-7 cells depends on the coexpression of vesicle-associated membrane protein-2 (VAMP-2)/synaptobrevin. I also showed that a transmembrane domain of Syt I directly interacts with isolated VAMP-2, but not VAMP-2, in the heterotrimeric SNARE (SNAP receptor) complex (vesicle SNARE, VAMP-2, and two target SNAREs, syntaxin IA and SNAP-25). Since di-Thr or di-Ser residues are often found at the intravesicular domain of invertebrate Syt I, and VAMP-dependent O-glycosylation was also observed in squid Syt expressed in COS-7 cells, I propose that VAMP-dependent O-glycosylation of Syt I is a common modification during evolution and may have important role(s) in synaptic vesicle trafficking.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
19
|
Ibata K, Hashikawa T, Tsuboi T, Terakawa S, Liang F, Mizutani A, Fukuda M, Mikoshiba K. Non-polarized distribution of synaptotagmin IV in neurons: evidence that synaptotagmin IV is not a synaptic vesicle protein. Neurosci Res 2002; 43:401-6. [PMID: 12135783 DOI: 10.1016/s0168-0102(02)00066-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synaptotagmin IV (Syt IV) expression is regulated by neuronal development and by depolarization in the brain and in neuronal cell cultures. In cultures, immunocytochemical analysis has shown that Syt IV is localized at the Golgi and at the tips of growing neurites, but little was known about associations between Syt IV and vesicles or organelles [J. Neurochem. 74 (2000) 518]. In this study we performed an electron microscopic (EM) analysis of developing mouse neocortex to determine the exact localization of Syt IV in native mouse tissues. In neurons of layer II/III, Syt IV was found to be localized in the dendrites and axons, and at the Golgi in the cell body. Some Syt IV signals were clearly associated with vesicles and/or organelles, but EM and cell fractionation studies showed no Syt IV signals at synaptic vesicles. Detection of fluorescence protein-tagged Syt IV (Syt IV-EGFP) in hippocampal neurons also showed the presence of Syt IV-EGFP vesicles or organelles in the axons and dendrites. These results suggest that Syt IV regulates non-polarized membrane trafficking in neurons, which may be involved in synaptic plasticity or neuronal development.
Collapse
Affiliation(s)
- Keiji Ibata
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Phosphoinositides act as precursors of second messengers and membrane ligands for protein modules. Specific lipid kinases and phosphatases are located and differentially regulated in cell organelles, generating a non-uniform distribution of phosphoinositides. Although it is not clear whether and how the phosphoinositide pools are integrated, it is certain that they locally control fundamental processes, including membrane trafficking. This applies to the Golgi complex, where a direct, central role of the phosphatidylinositol 4,5-bisphosphate precursor phosphatidylinositol 4-phosphate has recently been reported.
Collapse
Affiliation(s)
- Maria De Matteis
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, 66030, Santa Maria Imbaro, Chieti, Italy.
| | | | | |
Collapse
|
21
|
Saegusa C, Fukuda M, Mikoshiba K. Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J Biol Chem 2002; 277:24499-505. [PMID: 12006594 DOI: 10.1074/jbc.m202767200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmins (Syts) III, V, VI, and X are classified as a subclass of Syt, based on their sequence similarities and biochemical properties (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273; Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Although they have been suggested to be involved in vesicular trafficking, as in the role of the Syt I isoform in synaptic vesicle exocytosis, their exact functions remain to be clarified, and even their precise subcellular localization is still a matter of controversy. In this study, we established rat pheochromocytoma (PC12) cell lines that stably express Syts III-, V-, VI-, and X-GFP (green fluorescence protein) fusion proteins, respectively, to determine their precise subcellular localizations. Surprisingly, Syts III-, V-, VI-, and X-GFP proteins were found to be targeted to specific organelles: Syt III-GFP to near the plasma membrane, Syt V-GFP to dense-core vesicles, Syt VI-GFP to endoplasmic reticulum-like structures, and Syt X-GFP to vesicles (other than dense-core vesicles) present in cytoplasm. We showed that Syt V-containing vesicles at the neurites of PC12 cells were processed to exocytosis in a Ca2+-dependent manner. Immunohistochemical analysis further showed that endogenous Syt V was also localized on dense-core vesicles in the mouse brain and specifically expressed in glucagon-positive alpha-cells in mouse pancreatic islets, but not in beta- or delta-cells. Based on these results, we propose that Syt V is a dense-core vesicle-specific Syt isoform that controls a specific type of Ca2+-regulated secretion.
Collapse
Affiliation(s)
- Chika Saegusa
- Fukuda Initiative Research Unit and the Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
22
|
Fukuda M, Ogata Y, Saegusa C, Kanno E, Mikoshiba K. Alternative splicing isoforms of synaptotagmin VII in the mouse, rat and human. Biochem J 2002; 365:173-80. [PMID: 12071850 PMCID: PMC1222667 DOI: 10.1042/bj20011877] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synaptotagmin VII (Syt VII) has been proposed to regulate several different types of Ca2+-dependent exocytosis, but its subcellular localization (lysosome or plasma membrane) and the number of alternative splicing isoforms of Syt VII (single or multiple forms) are matters of controversy. In the present study, we show by reverse transcriptase-PCR analysis that mouse Syt VII has one major isoform (Syt VIIalpha), the original Syt VII, and two minor isoforms (Syt VIIbeta and Syt VIIgamma), which contain unique insertions (of 44 and 116 amino acids respectively) in the spacer domain between the transmembrane and C2 domains of Syt VIIalpha. Similar results were obtained with respect to rat and human Syt VII mRNA expression. An antibody against the N-terminal domain of mouse Syt VII [anti-(Syt VII-N)], which specifically recognized recombinant Syt VII but not other Syt isoforms expressed in COS-7 cells, recognized two major, closely co-migrating bands (p58 and p60) and minor bands of approx. 65 kDa in mouse brain. Immunoaffinity purification of proteins that bind the anti-(Syt VII-N) antibody, and peptide sequence analysis revealed that: (i) the major p58 and p60 bands are identified as adenylate cyclase-associated protein 2; (ii) actin-binding protein is localized at the plasma membrane; and (iii) Syt VIIalpha (65 kDa) is the major Syt VII isoform, but with a much lower expression level than previously thought. It was also shown that FLAG-Syt VII-green-fluorescence-protein fusion protein stably expressed in PC12 cells is localized in the perinuclear region (co-localization with TGN38 protein, even after brefeldin A treatment) and in the tips of neurites (co-localization with Syt I), and not in the plasma membrane.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Thomas C Südhof
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
| |
Collapse
|
24
|
Fukuda M, Mikoshiba K. The N-terminal cysteine cluster is essential for membrane targeting of B/K protein. Biochem J 2001; 360:441-8. [PMID: 11716773 PMCID: PMC1222245 DOI: 10.1042/0264-6021:3600441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B/K protein belongs to a family of C-terminal-type (C-type) tandem C2 proteins that contain two C2 Ca(2+)-binding motifs at the C-terminus. Although other C-type tandem C2 proteins have been found to have a unique N-terminal domain that is involved in membrane anchoring (e.g. synaptotagmin) or specific ligand binding (e.g. rabphilin-3A and Doc2), no research has been conducted on the function of the N-terminal domain of B/K protein. In this study we showed that despite lacking a transmembrane domain, both native and recombinant B/K proteins are tightly bound to the membrane fraction, which was completely resistant to 0.1 M Na(2)CO(3), pH 11, or 1 M NaCl treatment. Deletion and mutation analyses indicated that the cysteine cluster at the N-terminal domain (consisting of seven cysteine residues, Cys-19, Cys-23, Cys-26, Cys-27, Cys-30, Cys-35 and Cys-36) is essential for the membrane localization of B/K protein. When wild-type B/K was expressed in PC12 cells, B/K proteins were localized mainly in the perinuclear region (trans-Golgi network), whereas mutant B/K proteins carrying Cys-to-Ala substitutions were present in the cytosol. Based on our findings, we propose that the N-terminal domain of B/K protein contains a novel cysteine-based protein motif that may allow B/K protein to localize in the trans-Golgi network.
Collapse
Affiliation(s)
- M Fukuda
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
25
|
Fukuda M, Yamamoto A, Mikoshiba K. Formation of crystalloid endoplasmic reticulum induced by expression of synaptotagmin lacking the conserved WHXL motif in the C terminus. Structural importance of the WHXL motif in the C2B domain. J Biol Chem 2001; 276:41112-9. [PMID: 11533032 DOI: 10.1074/jbc.m106209200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin (Syt) is a family of type I membrane proteins that consists of a single transmembrane domain, a spacer domain, two Ca(2+)-binding C2 domains, and a short C terminus. We recently showed that deletion of the short C terminus (17 amino acids) of Syt IV prevented the Golgi localization of Syt IV proteins in PC12 cells and induced granular structures of various sizes in the cell body by an unknown mechanism (Fukuda, M., Ibata, K., and Mikoshiba, K. (2001) J. Neurochem. 77, 730-740). In this study we showed by electron microscopy that these structures are crystalloid endoplasmic reticulum (ER), analyzed the mechanism of its induction, and demonstrated that: (a) mutation or deletion of the evolutionarily conserved WHXL motif in the C terminus of the synaptotagmin family (Syt DeltaC) destabilizes the C2B domain structure (i.e. causes misfolding of the protein), probably by disrupting the formation of stable anti-parallel beta-sheets between the beta-1 and beta-8 strands of the C2B domain; (b) the resulting malfolded proteins accumulate in the ER rather than being transported to other membrane structures (e.g. the Golgi apparatus), with the malfolded proteins also inducing the expression of BiP (immunoglobulin binding protein), one of the ER stress proteins; and (c) the ERs in which the Syt DeltaC proteins have accumulated associate with each other as a result of oligomerization capacity of the synaptotagmin family, because the Syt IDeltaC mutant, which lacks oligomerization activity, cannot induce crystalloid ER. Our findings indicate that the conserved WHXL motif is important not only for protein interaction site but for proper folding of the C2B domain.
Collapse
Affiliation(s)
- M Fukuda
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
26
|
Fukuda M, Kanno E, Ogata Y, Mikoshiba K. Mechanism of the SDS-resistant synaptotagmin clustering mediated by the cysteine cluster at the interface between the transmembrane and spacer domains. J Biol Chem 2001; 276:40319-25. [PMID: 11514560 DOI: 10.1074/jbc.m105356200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin I (Syt I), a proposed major Ca(2+) sensor in the central nervous system, has been hypothesized as functioning in an oligomerized state during neurotransmitter release. We previously showed that Syts I, II, VII, and VIII form a stable SDS-resistant, beta-mercaptoethanol-insensitive, and Ca(2+)-independent oligomer surrounding the transmembrane domain (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the molecular mechanism of the Ca(2+)-independent oligomerization by the synaptotagmin family. In this study, we analyzed the Ca(2+)-independent oligomerization properties of Syt I and found that it shows two distinct forms of self-oligomerization activity: stable SDS-resistant self-oligomerization activity and relatively unstable SDS-sensitive self-oligomerization activity. The former was found to be mediated by a post-translationally modified (i.e. fatty-acylated) cysteine (Cys) cluster (Cys-74, Cys-75, Cys-77, Cys-79, and Cys-82) at the interface between the transmembrane and spacer domains of Syt I. We also show that the number of Cys residues at the interface between the transmembrane and spacer domains determines the SDS- resistant oligomerizing capacity of each synaptotagmin isoform: Syt II, which contains seven Cys residues, showed the strongest SDS-resistant oligomerizing activity in the synaptotagmin family, whereas Syt XII, which has no Cys residues, did not form any SDS-resistant oligomers. The latter SDS-sensitive self-oligomerization of Syt I is mediated by the spacer domain, because deletion of the whole spacer domain, including the Cys cluster, abolished it, whereas a Syt I(CA) mutant carrying Cys to Ala substitutions still exhibited self-oligomerization. Based on these results, we propose that the oligomerization of the synaptotagmin family is regulated by two distinct mechanisms: the stable SDS-resistant oligomerization is mediated by the modified Cys cluster, whereas the relatively unstable (SDS-sensitive) oligomerization is mediated by the environment of the spacer domain.
Collapse
Affiliation(s)
- M Fukuda
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|