1
|
Halliwell B. Reflections of an Aging Free Radical Part 2: Meeting Inspirational People. Antioxid Redox Signal 2022; 38:792-802. [PMID: 35651275 DOI: 10.1089/ars.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: During my long career in the field of redox biology, I met many inspiring people, especially Lester Packer. Recent Advances: This special issue of Antioxidants & Redox Signaling is dedicated to Lester Packer. Critical Issues: In this short review, I explore how Lester and other pioneers helped to develop the redox biology field and how I interacted with them. Future Directions: In our research to advance the field of redox biology, we stand on the shoulders of giants, including Lester Packer.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Tang H, Zheng Z, Wang H, Wang L, Zhao G, Wang P. Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop. Nutrients 2022; 14:1504. [PMID: 35406117 PMCID: PMC9003256 DOI: 10.3390/nu14071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K2, a natural fat-soluble vitamin, is a potent neuroprotective molecule, owing to its antioxidant effect, but its mechanism has not been fully elucidated. Therefore, we stimulated SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) in a proper dose-dependent manner, followed by a treatment of vitamin K2. In the presence of 6-OHDA, cell viability was reduced, the mitochondrial membrane potential was decreased, and the accumulation of reactive oxygen species (ROS) was increased. Moreover, the treatment of 6-OHDA promoted mitochondria-mediated apoptosis and abnormal mitochondrial fission and fusion. However, vitamin K2 significantly suppressed 6-OHDA-induced changes. Vitamin K2 played a significant part in apoptosis by upregulating and downregulating Bcl-2 and Bax protein expressions, respectively, which inhibited mitochondrial depolarization, and ROS accumulation to maintain mitochondrial structure and functional stabilities. Additionally, vitamin K2 significantly inhibited the 6-OHDA-induced downregulation of the MFN1/2 level and upregulation of the DRP1 level, respectively, and this enabled cells to maintain the dynamic balance of mitochondrial fusion and fission. Furthermore, vitamin K2 treatments downregulated the expression level of p62 and upregulated the expression level of LC3A in 6-OHDA-treated cells via the PINK1/Parkin signaling pathway, thereby promoting mitophagy. Moreover, it induced mitochondrial biogenesis in 6-OHDA damaged cells by promoting the expression of PGC-1α, NRF1, and TFAM. These indicated that vitamin K2 can release mitochondrial damage, and that this effect is related to the participation of vitamin K2 in the regulation of the mitochondrial quality-control loop, through the maintenance of the mitochondrial quality-control system, and repair mitochondrial dysfunction, thereby alleviating neuronal cell death mediated by mitochondrial damage.
Collapse
Affiliation(s)
- Hengfang Tang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei 230026, China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
| | - Peng Wang
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- CAS (Hefei) Institute of Technology Innovation Co., Ltd., Hefei 230088, China
| |
Collapse
|
3
|
Bashkatova V. Metabotropic glutamate receptors and nitric oxide in dopaminergic neurotoxicity. World J Psychiatry 2021; 11:830-840. [PMID: 34733645 PMCID: PMC8546773 DOI: 10.5498/wjp.v11.i10.830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons. Parkinson's disease (PD) is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra. Therefore, the study of the mechanisms, as well as the search for new targets for the prevention and treatment of neurodegenerative diseases, is an important focus of modern neuroscience. PD is primarily caused by dysfunction of dopaminergic neurons; however, other neurotransmitter systems are also involved. Research reports have indicated that the glutamatergic system is involved in different pathological conditions, including dopaminergic neurotoxicity. Over the last two decades, the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors (mGluRs) in the development of extrapyramidal disorders. However, the specific mechanisms driving these processes are presently unclear. The participation of the universal neuronal messenger nitric oxide (NO) in the mechanisms of dopaminergic neurotoxicity has attracted increased attention. The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity. More precisely, we focused on studies conducted on the rotenone-induced PD model. This review is also an outline of our own results obtained using the method of electron paramagnetic resonance, which allows quantitation of NO radicals in brain structures.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Laboratory of Physiology Reinforcements, Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| |
Collapse
|
4
|
Varešlija D, Tipton KF, Davey GP, McDonald AG. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm (Vienna) 2020; 127:213-230. [DOI: 10.1007/s00702-019-02133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
|
5
|
Subthalamic Nucleus Deep Brain Stimulation Does Not Modify the Functional Deficits or Axonopathy Induced by Nigrostriatal α-Synuclein Overexpression. Sci Rep 2017; 7:16356. [PMID: 29180681 PMCID: PMC5703955 DOI: 10.1038/s41598-017-16690-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human-Snca expression and no effect on rat-Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown.
Collapse
|
6
|
Nuriel T, Whitehouse J, Ma Y, Mercer EJ, Brown N, Gross SS. ANSID: A Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites. Front Chem 2016; 3:70. [PMID: 26779476 PMCID: PMC4703760 DOI: 10.3389/fchem.2015.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative, and cardiovascular diseases—importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has often involved painstaking 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications, and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitration Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.
Collapse
Affiliation(s)
- Tal Nuriel
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA; Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical CollegeNew York, NY, USA
| | - Julia Whitehouse
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Yuliang Ma
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Emily J Mercer
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA; Department of Surgery, Weill Cornell Medical CollegeNew York, NY, USA
| | - Neil Brown
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
7
|
Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:189239. [PMID: 25788961 PMCID: PMC4348598 DOI: 10.1155/2015/189239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/11/2015] [Accepted: 01/16/2015] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production.
Collapse
|
8
|
Gu H, Wang J, Du N, Tan J, Johnstone B, Du Y. Adipose stromal cells-conditioned medium blocks 6-hydroxydopamine-induced neurotoxicity and reactive oxygen species. Neurosci Lett 2013; 544:15-9. [PMID: 23562515 DOI: 10.1016/j.neulet.2013.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022]
Abstract
A recent in vivo study suggested that the delivery of adipose stromal cells (ASCs) protected rat brains from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. However, the molecular mechanism that underlies this neuroprotection remains unknown. It was suggested that ASCs-induced neuroprotection possibly resulting from released factors from ASCs. In this study, we investigated whether and how cell-free conditioned media collected from ASCs (ASC-CM) protect neurons against neurotoxicity induced by 6-OHDA in cultured rat rostral mesencephalic neurons (RMN) and cerebellar granule neurons (CGN). We now report that ASC-CM protects both RMN and CGN against 6-OHDA neurotoxicity. Exposure of CGN to 6-OHDA resulted in a significant increases in neuronal ROS and cell death. As expected, pretreatments with ASC-CM dramatically block both 6-OHDA-induced ROS and neurotoxicity. Additionally, ASC-CM also directly attenuated H2O2-induced neuronal death. Our results suggest that ASC-CM could block 6-OHDA-induced neuronal death by inhibiting both 6-OHDA-induced ROS generation and ROS-induced neurotoxicity in neurons. Both antioxidative and neuroprotective effects of ASC-CM may be beneficial in the therapy for Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
9
|
Sawicki G. Intracellular regulation of matrix metalloproteinase-2 activity: new strategies in treatment and protection of heart subjected to oxidative stress. SCIENTIFICA 2013; 2013:130451. [PMID: 24455428 PMCID: PMC3886579 DOI: 10.1155/2013/130451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/03/2013] [Indexed: 05/15/2023]
Abstract
Much is known regarding cardiac energy metabolism in ischemia/reperfusion (I/R) injury. Under aerobic conditions, the heart prefers to metabolize fatty acids, which contribute to 60-80% of the required ATP. During ischemia, anaerobic glycolysis increases and becomes an important source of ATP for preservation of ion gradients. With reperfusion, fatty acid oxidation quickly recovers and again predominates as the major source of mitochondrial oxidative metabolism. Although a number of molecular mechanisms have been implicated in the development of I/R injury, their relative contributions remain to be determined. One such mechanism involves the proteolytic degradation of contractile proteins, such as troponin I (TnI), myosin heavy chain, titin, and the myosin light chains (MLC1 and MLC2) by matrix metalloproteinase-2 (MMP-2). However, very little is known about intracellular regulation of MMP-2 activity under physiological and pathological conditions. Greater understanding of the mechanisms that govern MMP-2 activity may lead to the development of new therapeutic strategies aimed at preservation of the contractile function of the heart subjected to myocardial infarction (MI) or I/R. This review discusses the intracellular mechanisms controlling MMP-2 activity and highlights a new intracellular therapeutic direction for the prevention and treatment of heart injury.
Collapse
Affiliation(s)
- Grzegorz Sawicki
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
- Department of Clinical Chemistry, Medical University of Wroclaw, Wrovasc Integrated Cardiovascular Centre, 50-556 Wroclaw, Poland
- *Grzegorz Sawicki:
| |
Collapse
|
10
|
|
11
|
Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, König S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 2011; 71:833-44. [PMID: 21903077 DOI: 10.1016/j.neuron.2011.07.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2011] [Indexed: 12/21/2022]
Abstract
Part of the inflammatory response in Alzheimer's disease (AD) is the upregulation of the inducible nitric oxide synthase (NOS2) resulting in increased NO production. NO contributes to cell signaling by inducing posttranslational protein modifications. Under pathological conditions there is a shift from the signal transducing actions to the formation of protein tyrosine nitration by secondary products like peroxynitrite and nitrogen dioxide. We identified amyloid β (Aβ) as an NO target, which is nitrated at tyrosine 10 (3NTyr(10)-Aβ). Nitration of Aβ accelerated its aggregation and was detected in the core of Aβ plaques of APP/PS1 mice and AD brains. NOS2 deficiency or oral treatment with the NOS2 inhibitor L-NIL strongly decreased 3NTyr(10)-Aβ, overall Aβ deposition and cognitive dysfunction in APP/PS1 mice. Further, injection of 3NTyr(10)-Aβ into the brain of young APP/PS1 mice induced β-amyloidosis. This suggests a disease modifying role for NOS2 in AD and therefore represents a potential therapeutic target.
Collapse
Affiliation(s)
- Markus P Kummer
- Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, Della Corte L. Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 2011; 68:2067-79. [PMID: 21533983 PMCID: PMC11114910 DOI: 10.1007/s00018-011-0682-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/27/2011] [Accepted: 03/29/2011] [Indexed: 12/16/2022]
Abstract
The so-called reactive oxygen species (ROS) are defined as oxygen-containing species that are more reactive than O(2) itself, which include hydrogen peroxide and superoxide. Although these are quite stable, they may be converted in the presence of transition metal ions, such as Fe(II), to the highly reactive oxygen species (hROS). hROS may exist as free hydroxyl radicals (HO·), as bound ("crypto") radicals or as Fe(IV)-oxo (ferryl) species and the somewhat less reactive, non-radical species, singlet oxygen. This review outlines the processes by which hROS may be formed, their damaging potential, and the evidence that they might have signaling functions. Since our understanding of the formation and actions of hROS depends on reliable procedures for their detection, particular attention is given to procedures for hROS detection and quantitation and their applicability to in vivo studies.
Collapse
Affiliation(s)
- Wolfhardt Freinbichler
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Maria A. Colivicchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Chiara Stefanini
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Loria Bianchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
- Present Address: Azienda USL 3 di Pistoia, 51100 Pistoia, Italy
| | - Chiara Ballini
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Bashkim Misini
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Peter Weinberger
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Wolfgang Linert
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Damir Varešlija
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | - Keith F. Tipton
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | - Laura Della Corte
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
13
|
Analysis of hydroxylation and nitration products of D-phenylalanine for in vitro and in vivo radical determination using high-performance liquid chromatography and photodiode array detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1501-8. [PMID: 19345620 DOI: 10.1016/j.jchromb.2009.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/23/2009] [Accepted: 03/20/2009] [Indexed: 12/21/2022]
Abstract
D-phenylalanine is capable of trapping reactive oxygen species (ROS) and reactive nitrogen species (RNS) by forming three major hydroxylation (o-, m-, p-tyrosine) and two major nitration products (nitrophenylalanine, nitrotyrosine). Here, we show how a method for the analysis of these phenylalanine derivatives was established using isocratic HPLC (Nucleosil120, C18 column) coupled with photodiode array detection and validated for cell-free in vitro and in vivo determination of radical formation. An ideal separation was achieved using a mobile phase consisting of 5% acetonitrile, 50mM KH(2)PO(4), pH 3.0, a column temperature of 35 degrees C and a flow rate of 1.0 mL/min. Limits of detection were in the range of 5-100 nM. Linearity was given within 5 nM-100 microM (correlation coefficient >0.999). Retention times as well as peak heights exhibited a high precision (RSD: <or=0.1% and <1.5%, respectively). The feasibility of d-phenylalanine for ROS/RNS measurement was demonstrated in a cell-free in vitro assay using peroxynitrite and by analysis of brain samples of mice treated with the dopaminergic neurotoxin 6-hydroxydopamine.
Collapse
|
14
|
Di Giovanni G, Esposito E, Di Matteo V. In vivo microdialysis in Parkinson's research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:223-43. [PMID: 20411781 DOI: 10.1007/978-3-211-92660-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, G. Pagano, Universitá degli Studi di Palermo, 90134, Palermo, Italy
| | | | | |
Collapse
|
15
|
Freinbichler W, Colivicchi MA, Fattori M, Ballini C, Tipton KF, Linert W, Della Corte L. Validation of a robust and sensitive method for detecting hydroxyl radical formation together with evoked neurotransmitter release in brain microdialysis. J Neurochem 2008; 105:738-49. [DOI: 10.1111/j.1471-4159.2007.05168.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Freinbichler W, Bianchi L, Colivicchi MA, Ballini C, Tipton KF, Linert W, Corte LD. The detection of hydroxyl radicals in vivo. J Inorg Biochem 2008; 102:1329-33. [DOI: 10.1016/j.jinorgbio.2007.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/12/2007] [Accepted: 12/14/2007] [Indexed: 12/21/2022]
|
17
|
Alvarez-Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Höglinger GU, Oertel WH, Hartmann A. Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and α-synuclein-deleted mice. Exp Neurol 2008; 210:182-93. [DOI: 10.1016/j.expneurol.2007.10.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/03/2007] [Accepted: 10/21/2007] [Indexed: 12/21/2022]
|
18
|
Abstract
NO(*) alone is a poorly reactive species; however, it is able to undergo secondary reactions to form highly oxidizing and nitrating species, NO(2)(*), N(2)O(3), and ONOO(-). These secondary reactive nitrogen species (RNS) are capable of modifying a diversity of biomolecular structures in the cell. The chemical properties of individual RNS will be discussed, along with their ability to react with amino acids, metal cofactors, lipids, cholesterol, and DNA bases and sugars. Many of the identified RNS-induced modifications have been observed both in vitro and in vivo. Several of these chemical modifications have been attributed with a functional role in the cell, such as the modulation of enzyme activity. Other areas in the field will be discussed, including the ability of RNS to react with metabolites, RNA, and substrates in the mitochondrion, and the cellular removal/repair of RNS-modified structures.
Collapse
Affiliation(s)
- Tiffany A Reiter
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
19
|
Ma Z, Wei X, Fontanilla C, Noelker C, Dodel R, Hampel H, Du Y. Caffeic acid phenethyl ester blocks free radical generation and 6-hydroxydopamine-induced neurotoxicity. Life Sci 2006; 79:1307-11. [PMID: 16707141 DOI: 10.1016/j.lfs.2006.03.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 03/01/2006] [Accepted: 03/30/2006] [Indexed: 12/21/2022]
Abstract
Neurotoxicity induced by 6-hydroxydopamine (6-OHDA) is believed to be due, in part, to the production of reactive oxygen species (ROS). Antioxidants protect neurons against 6-OHDA-induced neurotoxicity by inhibiting free radical generation. In this study, we investigated whether or not caffeic acid phenethyl ester (CAPE) could protect neurons against 6-OHDA-induced neurotoxicity in cultured rat rostral mesencephalic neurons (RMN) and cerebellar granule neurons (CGN). We now report that exposure of RMN and CGN to 6-OHDA (40 microM for RMN and 70 microM for CGN) resulted in significant increases in free radical production and death of both neuron types. Pretreatment with CAPE (10 microM) for 2 h prevented both 6-OHDA-induced free radical generation and neurotoxicity. Furthermore, CAPE also attenuated H(2)O(2)-induced neurotoxicity. Our results strongly suggest that CAPE blocks 6-OHDA-induced neuronal death possibly by inhibiting 6-OHDA-induced free radical generation and blocking free radical-induced neurotoxicity in neurons. Both the antioxidative and neuroprotective effects of CAPE may be beneficial in the therapy for Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhizhong Ma
- Department of Neurology, Indiana University School of Medicine, 975 West Walnut Street, Rm 457, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Datla KP, Zbarsky V, Dexter DT. Effects of anaesthetics on the loss of nigrostriatal dopaminergic neurons by 6-hydroxydopamine in rats. J Neural Transm (Vienna) 2005; 113:583-91. [PMID: 16082506 DOI: 10.1007/s00702-005-0353-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Accepted: 06/25/2005] [Indexed: 12/21/2022]
Abstract
Various studies use ketamine/xylazine, fentanyl/medetomidine, etorphine/methotrimeprazine, and isoflurane anaesthesia for creating the 6-hydroxydopamine (6-OHDA)-lesion rat model of Parkinson's disease. As these anaesthetics are known to modulate uptake and turnover of dopamine and that 6-OHDA-induced neurotoxicity is also dependents on uptake/turnover, we studied the effects of these anaesthetics on the extent of nigrostriatal dopaminergic damage caused by 6-OHDA. Infusion of 8 microg of 6-OHDA into the medial forebrain bundle significantly reduced the numbers of dopaminergic cells in nigra and striatal concentrations of dopamine in animals anaesthetized with fentanyl/medetomidine, etorphine/methotrimeprazine and isoflurane but not with ketamine/xylazine. In the latter group, however, increasing the dose of 6-OHDA to 10 and 12 microg resulted in a moderate (15 and 29%), but significant loss of dopaminergic cells. A severe loss of dopaminergic cells (59% and 81%) was seen with these doses in isoflurane-anaesthetized animals, but with only 8 microg in etorphine/methotrimeprazine-anaesthetized animals. Thus, these results suggest that the extent of nigrostriatal dopaminergic neuronal loss with 6-OHDA seems to be influenced by anaesthetic used during the surgery.
Collapse
Affiliation(s)
- K P Datla
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, Charing Cross Campus, London, United Kingdom
| | | | | |
Collapse
|
21
|
Henze C, Earl C, Sautter J, Schmidt N, Themann C, Hartmann A, Oertel WH. Reactive oxidative and nitrogen species in the nigrostriatal system following striatal 6-hydroxydopamine lesion in rats. Brain Res 2005; 1052:97-104. [PMID: 16005444 DOI: 10.1016/j.brainres.2005.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 06/05/2005] [Accepted: 06/07/2005] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a major contributing factor in the pathogenesis of Parkinson's disease. We therefore investigated the effect of the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) on hydroxyl-free radical and peroxynitrite formation in the intrastriatal 6-OHDA rat model of Parkinson's disease. The hydroxylation product of salicylate (2,3-dihydroxy-benzoic acid) as well as the hydroxylation and nitration products of d-phenylalanine (2- and 3-hydroxyl-phenylalanine, nitrotyrosine and nitrophenylalanine) were assessed in tissue samples of the striatum and, for the first time, the substantia nigra of adult rats at four different time points (25 min, 2 h, 4 h and 7 days) after unilateral stereotaxic intrastriatal injection of 6-OHDA. In the striatum, maxima of hydroxylating and nitrating markers were found at early time points after 6-OHDA lesion. These results suggest a direct interrelation between 6-OHDA-autoxidation and/or the increased dopamine turnover and hydroxyl-free radical and peroxynitrite formation. In the substantia nigra, i.e., at a distance from the injection site of the neurotoxin, an increase in hydroxyl-free radical formation was observed at 7 days after 6-OHDA lesion, with this modification possibly being independent of 6-OHDA autoxidation and rather representing a long-term effect of the toxin. Furthermore, we conclude that apart from the formation of reactive oxygen species, the production of reactive nitrogen species occurs in this experimental Parkinson's disease model. Finally, the similarity between the 6-OHDA model and Parkinson's disease supports the notion that reactive oxygen species as well as reactive nitrogen species may play an important role in the pathogenesis of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Carmen Henze
- Department of Neurology, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Böttcher T, Ren H, Goiny M, Gerber J, Lykkesfeldt J, Kuhnt U, Lotz M, Bunkowski S, Werner C, Schau I, Spreer A, Christen S, Nau R. Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. J Neurochem 2004; 91:1450-60. [PMID: 15584921 DOI: 10.1111/j.1471-4159.2004.02837.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In animal models of Streptococcus pneumoniae meningitis, rifampin is neuroprotective in comparison to ceftriaxone. So far it is not clear whether this can be generalized for other protein synthesis-inhibiting antimicrobial agents. We examined the effects of the bactericidal protein synthesis-inhibiting clindamycin (n = 12) on the release of proinflammatory bacterial components, the formation of neurotoxic compounds and neuronal injury compared with the standard therapy with ceftriaxone (n = 12) in a rabbit model of pneumococcal meningitis. Analysis of the CSF and histological evaluation were combined with microdialysis from the hippocampal formation and the neocortex. Compared with ceftriaxone, clindamycin reduced the release of lipoteichoic acids from the bacteria (p = 0.004) into the CSF and the CSF leucocyte count (p = 0.011). This led to lower extracellular concentrations of hydroxyl radicals (p = 0.034) and glutamate (p = 0.016) in the hippocampal formation and a subsequent reduction of extracellular glycerol levels (p = 0.018) and neuronal apoptosis in the dentate gyrus (p = 0.008). The present data document beneficial effects of clindamycin compared with ceftriaxone on various parameters linked with the pathophysiology of pneumococcal meningitis and development of neuronal injury. This study suggests neuroprotection to be a group effect of bactericidal protein synthesis-inhibiting antimicrobial agents compared with the standard therapy with beta-lactam antibiotics in meningitis.
Collapse
Affiliation(s)
- Tobias Böttcher
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 2004; 89:822-33. [PMID: 15140182 DOI: 10.1111/j.1471-4159.2004.02399.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The impact of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in the pathology of Parkinson's disease (PD) and in MPTP neurotoxicity remains unclear. Here, male TNF-alpha (-/-) deficient mice and C57bL/6 mice were treated with MPTP (4 x 15 mg/kg, 24 h intervals) and in one series, thalidomide was administered to inhibit TNF-alpha synthesis. Real-time RT-PCR revealed that the striatal mRNA levels of TNF-alpha, of the astrocytic marker glial fibrillary acidic protein (GFAP) and of the marker for activated microglia, macrophage antigen complex-1 (MAC-1), were significantly enhanced after MPTP administration. Thalidomide (50 mg/kg, p.o.) partly protected against the MPTP-induced dopamine (DA) depletion, and TNF-alpha (-/-) mice showed a significant attenuation of striatal DA and DA metabolite loss as well as striatal tyrosine hydroxylase (TH) fiber density, but no difference in nigral TH and DA transporter immunoreactivity. TNF-alpha deficient mice suffered a lower mortality (10%) compared to the high mortality (75%) seen in wild-type mice after acute MPTP treatment (4 x 20 mg/kg, 2 h interval). HPLC measurement of MPP(+) levels revealed no differences in TNF-alpha (-/-), wild-type and thalidomide treated mice. This study demonstrates that TNF-alpha is involved in MPTP toxicity and that inhibition of TNF-alpha response may be a promising target for extending beyond symptomatic treatment and developing anti-parkinsonian drugs for the treatment of the inflammatory processes in PD.
Collapse
Affiliation(s)
- Boris Ferger
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231-55. [PMID: 15155533 PMCID: PMC1574951 DOI: 10.1038/sj.bjp.0705776] [Citation(s) in RCA: 1520] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 02/06/2023] Open
Abstract
Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent "probes" of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD 7 #03-08, 8 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
25
|
Kuhn DM, Sakowski SA, Sadidi M, Geddes TJ. Nitrotyrosine as a marker for peroxynitrite-induced neurotoxicity: the beginning or the end of the end of dopamine neurons? J Neurochem 2004; 89:529-36. [PMID: 15086510 DOI: 10.1111/j.1471-4159.2004.02346.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the involvement of nitrotyrosine as a marker for peroxynitrite-mediated damage in the dopamine neuronal system. We propose that the dopamine neuronal phenotype can influence the cytotoxic signature of peroxynitrite. Dopamine and tetrahydrobiopterin are concentrated in dopamine neurons, and both are essential for their proper neurochemical function. It is not well appreciated that dopamine and tetrahydrobiopterin are also powerful blockers of peroxynitrite-induced tyrosine nitration. What is more, the reaction of peroxynitrite with either dopamine or tetrahydrobiopterin forms chemical species (i.e. o-quinones and pterin radicals, respectively) whose cytotoxic effects may be manifested far earlier than nitrotyrosine formation in the course of dopamine neuronal damage. A better understanding of how the dopamine neuronal phenotype modulates the effects of reactive nitrogen species could reveal early steps in drug- and disease-induced damage to the dopamine neuron and form the basis for rational, protective therapies.
Collapse
Affiliation(s)
- Donald M Kuhn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
Huycke MM, Moore DR. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 2002; 33:818-26. [PMID: 12208369 DOI: 10.1016/s0891-5849(02)00977-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enterococcus faecalis is an intestinal commensal that produces extracellular superoxide (O(2)(*-)) through autoxidation of membrane-associated demethylmenaquinone. To assess free radical production by E. faecalis in vivo, intestinal tracts of rats were colonized using wild-type E. faecalis or a mutant strain with attenuated O(2)(*-) production. Ex vivo electron paramagnetic resonance spin trapping study of colonic contents (mean +/- SD) showed 1.4 +/- 1.5 and 0.094 +/- 0.24 microM 5,5-dimethyl-1-pyrroline-N-oxide-hydroxyl radical adduct/gm stool for rats colonized with wild-type and mutant strains, respectively (p = .002). In vivo hydroxyl radical production was further assayed by aromatic hydroxylation using phenyl N-tert-butylnitrone (PBN) and D-phenylalanine. Hydroxylated PBN and D-phenylalanine products were recovered from stool (microM/gm colonic contents/10(9) colony forming units) and urine (microM/h/ml), respectively, and quantified using electrochemical detection. Hydroxylated (OH) PBNs and isomeric tyrosines (hydroxylated phenylalanine) were significantly increased (mean +/- SD) for rats colonized with wild-type E. faecalis (2-OH PBN, 63 +/- 58; 3-OH PBN, 63 +/- 84; ortho-tyrosine, 31 +/- 27; meta-tyrosine, 17 +/- 14) compared to the mutant strain (2-OH PBN, 2.5 +/- 7.3 (p < .001); 3-OH PBN, 3.9 +/- 12.3 (p = .01); ortho-tyrosine, 1.9 +/- 6.0 (p < .001); meta-tyrosine, 1.5 +/- 3.4 (p = .03)). Similar differences were observed following in vitro incubations of these bacteria with aromatic targets. These results confirm in vivo production of hydroxyl radical by E. faecalis colonizing the intestine, and indicate this bacterium may be a potent source of oxidative stress on the intestinal epithelium.
Collapse
Affiliation(s)
- Mark M Huycke
- The Muchmore Laboratories for Infectious Diseases Research, Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
28
|
Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease. Neuroreport 2001; 12:3871-5. [PMID: 11726811 DOI: 10.1097/00001756-200112040-00053] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroprotective effects of a natural antioxidant tangeretin, a citrus flavonoid, were elucidated in the 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD), after bioavailability studies. Following the chronic oral administration (10 mg/kg/day for 28 days), significant levels of tangeretin were detected in the hypothalamus, striatum and hippocampus (3.88, 2.36 and 2.00 ng/mg, respectively). The levels in the liver and plasma were 0.59 ng/mg and 0.11 ng/ml respectively. Unilateral infusion of the dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA; 8 microg), onto medial forebrain bundle significantly reduced the number of tyrosine hydroxylase positive (TH+) cells in the substantia nigra and decreased striatal dopamine content in the vehicle treated rats. Sub-chronic treatment of the rats with high doses of tangeretin (20 mg/kg/day for 4 days; p.o.) before 6-OHDA lesioning markedly reduced the loss of both TH+ cells and striatal dopamine content. These studies, for the first time, give evidence that tangeretin crosses the blood-brain barrier. The significant protection of striato-nigral integrity and functionality by tangeretin suggests its potential use as a neuroprotective agent.
Collapse
Affiliation(s)
- K P Datla
- Department of Neuroinflammation, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Campus, Fulham Palace Road, London, UK
| | | | | | | | | |
Collapse
|