1
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
2
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
3
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang S, Yao H, Xu Y, Hao R, Zhang W, Liu H, Huang Y, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease. Theranostics 2020; 10:6854-6874. [PMID: 32550908 PMCID: PMC7295064 DOI: 10.7150/thno.44165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Repeated failures of "Aβ-lowering" therapies call for new targets and therapeutic approaches for Alzheimer's disease (AD). We propose to treat AD by halting neuronal death and repairing synapses using a BDNF-based therapy. To overcome the poor druggability of BDNF, we have developed an agonistic antibody AS86 to mimic the function of BDNF, and evaluate its therapeutic potential for AD. Method: Biochemical, electrophysiological and behavioral techniques were used to investigate the effects of AS86 in vitro and in vivo. Results: AS86 specifically activated the BDNF receptor TrkB and its downstream signaling, without affecting its other receptor p75NTR. It promoted neurite outgrowth, enhanced spine growth and prevented Aβ-induced cell death in cultured neurons, and facilitated Long-Term Potentiation (LTP) in hippocampal slices. A single-dose tail-vein injection of AS86 activated TrkB signaling in the brain, with a half-life of 6 days in the blood and brain. Bi-weekly peripheral administration of AS86 rescued the deficits in object-recognition memory in the APP/PS1 mouse model. AS86 also reversed spatial memory deficits in the 11-month, but not 14-month old AD mouse model. Conclusion: These results demonstrate the potential of AS86 in AD therapy, suggesting that neuronal and/or synaptic repair as an alternative therapeutic strategy for AD.
Collapse
Affiliation(s)
- Shudan Wang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Hongyang Yao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Rui Hao
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wen Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Ying Huang
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| |
Collapse
|
5
|
Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 2018; 19:ijms19113650. [PMID: 30463271 PMCID: PMC6274766 DOI: 10.3390/ijms19113650] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
It is well known that brain-derived neurotrophic factor, BDNF, has an important role in a variety of neuronal aspects, such as differentiation, maturation, and synaptic function in the central nervous system (CNS). BDNF stimulates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide-3kinase (PI3K), and phospholipase C (PLC)-gamma pathways via activation of tropomyosin receptor kinase B (TrkB), a high affinity receptor for BDNF. Evidence has shown significant contributions of these signaling pathways in neurogenesis and synaptic plasticity in in vivo and in vitro experiments. Importantly, it has been demonstrated that dysfunction of the BDNF/TrkB system is involved in the onset of brain diseases, including neurodegenerative and psychiatric disorders. In this review, we discuss actions of BDNF and related signaling molecules on CNS neurons, and their contributions to the pathophysiology of brain diseases.
Collapse
|
6
|
Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res 2017; 12:549-557. [PMID: 28553325 PMCID: PMC5436343 DOI: 10.4103/1673-5374.205084] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise essential secreted proteins that have several functions in neural and non-neural tissues, mediating the development, survival and maintenance of peripheral and central nervous system. Therefore, neurotrophic factor issue has been extensively investigated into the context of neurodegenerative diseases. Alzheimer's disease and Parkinson's disease show changes in the regulation of specific neurotrophic factors and their receptors, which appear to be critical for neuronal degeneration. Indeed, neurotrophic factors prevent cell death in degenerative processes and can enhance the growth and function of affected neurons in these disorders. Based on recent reports, this review discusses the main findings related to the neurotrophic factor support – mainly brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor – in the survival, proliferation and maturation of affected neurons in Alzheimer's disease and Parkinson's disease as well as their putative application as new therapeutic approach for these diseases management.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.,Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Anne Suely Savall
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | | | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| |
Collapse
|
7
|
Mandriota SJ, Valentijn LJ, Lesne L, Betts DR, Marino D, Boudal-Khoshbeen M, London WB, Rougemont AL, Attiyeh EF, Maris JM, Hogarty MD, Koster J, Molenaar JJ, Versteeg R, Ansari M, Gumy-Pause F. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism. Oncotarget 2015; 6:18558-76. [PMID: 26053094 PMCID: PMC4621910 DOI: 10.18632/oncotarget.4061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Stefano J. Mandriota
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Linda J. Valentijn
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Laurence Lesne
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David R. Betts
- Department of Clinical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - Denis Marino
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary Boudal-Khoshbeen
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wendy B. London
- Division of Pediatric Hematology/Oncology, Harvard Medical School, Dana-Farber/Children's Hospital Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Edward F. Attiyeh
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - John M. Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D. Hogarty
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jan J. Molenaar
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Marc Ansari
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics, Onco-hematology Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Department of Pediatrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics, Onco-hematology Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014; 129:756-69. [PMID: 24517464 PMCID: PMC4314671 DOI: 10.1111/jnc.12675] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.
Collapse
Affiliation(s)
- Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
9
|
Mora N, Santa Bárbara Ruiz P, Ferreira N, Serras F. Ras signal triggers β-amyloid precursor protein (APP) expression. Small GTPases 2013; 4:171-3. [PMID: 23648941 DOI: 10.4161/sgtp.24768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has recently been discovered that the Drosophila β-amyloid protein precursor like (Appl) gene, the ortholog of the human β-Amyloid Precursor Protein (APP) gene, is transcriptionally activated by receptor tyrosine kinase activity that involves Ras/MAPK signaling in vivo. This regulation is specifically controlled in photoreceptor neurons of the Drosophila retina. This suggests that some cases of Alzheimer disease, those which have been associated with high expression of the APP gene, may involve Ras signal transduction.
Collapse
Affiliation(s)
- Natalia Mora
- Departament de Genètica; Facultat de Biologia; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona; Barcelona, Spain; Laboratory of Neurogenetics; Department of Molecular and Developmental Genetics; VIB; Leuven, Belgium
| | - Paula Santa Bárbara Ruiz
- Departament de Genètica; Facultat de Biologia; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona; Barcelona, Spain
| | - Nuno Ferreira
- Departament de Genètica; Facultat de Biologia; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona; Barcelona, Spain
| | - Florenci Serras
- Departament de Genètica; Facultat de Biologia; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona; Barcelona, Spain
| |
Collapse
|
10
|
Mora N, Almudi I, Alsina B, Corominas M, Serras F. β amyloid protein precursor-like (Appl) is a Ras1/MAPK-regulated gene required for axonal targeting in Drosophila photoreceptor neurons. J Cell Sci 2012. [PMID: 23178937 DOI: 10.1242/jcs.114785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a genome-wide expression profile search for genes required for Drosophila R7 photoreceptor development we found β amyloid protein precursor-like (Appl), the ortholog of human APP, which is a key factor in the pathogenesis of Alzheimer's disease. We analyzed Appl expression in the eye imaginal disc and found that is highly accumulated in R7 photoreceptor cells. The R7 photoreceptor is responsible for UV light detection. To explore the link between high expression of Appl and R7 function, we have analyzed Appl null mutants and found reduced preference for UV light, probably because of mistargeted R7 axons. Moreover, axon mistargeting and inappropriate light discrimination are enhanced in combination with neurotactin mutants. R7 differentiation is triggered by the inductive interaction between R8 and R7 precursors, which results in a burst of Ras1/MAPK, activated by the tyrosine kinase receptor Sevenless. Therefore, we examined whether Ras1/MAPK is responsible for the high Appl expression. Inhibition of Ras1 signaling leads to reduced Appl expression, whereas constitutive activation drives ectopic Appl expression. We show that Appl is directly regulated by the Ras/MAPK pathway through a mechanism mediated by PntP2, an ETS transcription factor that specifically binds ETS sites in the Appl regulatory region. We also found that zebrafish appb expression increased after ectopic fgfr activation in the neural tube of zebrafish embryos, suggesting a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Natalia Mora
- Departament de Genètica, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Genetic knockdown of brain-derived neurotrophic factor in 3xTg-AD mice does not alter Aβ or tau pathology. PLoS One 2012; 7:e39566. [PMID: 22870188 PMCID: PMC3411687 DOI: 10.1371/journal.pone.0039566] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/27/2012] [Indexed: 11/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critically involved in cell survival, synaptic plasticity, and memory. BDNF has recently garnered significant attention as a potential therapeutic target for neurodegenerative diseases such as Alzheimer disease (AD), but emerging evidence suggests that BDNF may also be mechanistically involved in the pathogenesis of AD. AD patients have substantially reduced BDNF levels, which may be a result of Aβ and tau pathology. Recent evidence, however, indicates reduced BDNF levels may also serve to drive pathology in neuronal cultures, although this has not yet been established in vivo. To further investigate the mechanistic role of BDNF in AD, we generated 3xTg-AD mice with a heterozygous BDNF knockout (BDNF+/−) and analyzed Aβ and tau pathology. Aged 3xTg-AD/BDNF+/− mice have significantly reduced levels of brain BDNF, but have comparable levels of Aβ and tau pathology to 3xTg-AD/BDNF+/+ mice. These findings indicate that chronic reduction of BDNF does not exacerbate the development of Aβ and tau pathology, and instead suggests the reduced BDNF levels found in AD patients are a consequence of these pathologies.
Collapse
|
12
|
Yi P, Schrott L, Castor TP, Alexander JS. Bryostatin-1 vs. TPPB: dose-dependent APP processing and PKC-α, -δ, and -ε isoform activation in SH-SY5Y neuronal cells. J Mol Neurosci 2012; 48:234-44. [PMID: 22700373 PMCID: PMC3413820 DOI: 10.1007/s12031-012-9816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/16/2012] [Indexed: 01/17/2023]
Abstract
Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer’s disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD.
Collapse
Affiliation(s)
- P. Yi
- Department of Molecular and Cellular Physiology, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| | - L. Schrott
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| | | | - J. S. Alexander
- Department of Molecular and Cellular Physiology, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| |
Collapse
|
13
|
Vella LJ, Cappai R. Identification of a novel amyloid precursor protein processing pathway that generates secreted N-terminal fragments. FASEB J 2012; 26:2930-40. [PMID: 22490781 DOI: 10.1096/fj.11-200295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.
Collapse
Affiliation(s)
- Laura J Vella
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
14
|
Ray B, Long JM, Sokol DK, Lahiri DK. Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011; 6:e20405. [PMID: 21731612 PMCID: PMC3120811 DOI: 10.1371/journal.pone.0020405] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/23/2011] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Justin M. Long
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Deborah K. Sokol
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
15
|
Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol Learn Mem 2011; 96:68-78. [PMID: 21419233 DOI: 10.1016/j.nlm.2011.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022]
Abstract
Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.
Collapse
|
16
|
Ansaloni S, Leung BP, Sebastian NP, Samudralwar R, Gadaleta M, Saunders AJ. TrkB Isoforms Differentially Affect AICD Production through Their Intracellular Functional Domains. Int J Alzheimers Dis 2011; 2011:729382. [PMID: 21423675 PMCID: PMC3056454 DOI: 10.4061/2011/729382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 12/30/2022] Open
Abstract
We report that NTRK2, the gene encoding for the TrkB receptor, can regulate APP metabolism, specifically AICD levels. Using the human neuroblastoma cell line SH-SY5Y, we characterized the effect of three TrkB isoforms (FL, SHC, T) on APP metabolism by knockdown and overexpression. We found that TrkB FL increases AICD-mediated transcription and APP levels while it decreases sAPP levels. These effects were mainly mediated by the tyrosine kinase activity of the receptor and partially by the PLC-γ- and SHC-binding sites. The TrkB T truncated isoform did not have significant effects on APP metabolism when transfected by itself, while the TrkB SHC decreased AICD-mediated transcription. TrkB T abolished TrkB FL effects on APP metabolism when cotransfected with it while TrkB SHC cotransfected with TrkB FL still showed increased APP levels. In conclusion, we demonstrated that TrkB isoforms have differential effects on APP metabolism.
Collapse
Affiliation(s)
- Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, PA 19027, USA
| | | | | | | | | | | |
Collapse
|
17
|
Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 2010; 404:889-95. [PMID: 21172309 DOI: 10.1016/j.bbrc.2010.12.053] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
The full repertoire of regulatory interactions utilized by human cells to control expression of amyloid-β precursor protein (APP) is still undefined. We investigated here the contribution of microRNA (miRNA) to this regulatory network. Several bioinformatic algorithms predicted miR-101 target sites within the APP 3'-untranslated region (3'-UTR). Using reporter assays, we confirmed that, in human cell cultures, miR-101 significantly reduced the expression of a reporter under control of APP 3'-UTR. Mutation of predicted site 1, but not site 2, eliminated this reporter response. Delivery of miR-101 directly to human HeLa cells significantly reduced APP levels and this effect was eliminated by co-transfection with a miR-101 antisense inhibitor. Delivery of a specific target protector designed to blockade the interaction between miR-101 and its functional target site within APP 3'-UTR enhanced APP levels in HeLa. Therefore, endogenous miR-101 regulates expression of APP in human cells via a specific site located within its 3'-UTR. Finally, we demonstrate that, across a series of human cell lines, highest expression of miR-101 levels was observed in model NT2 neurons.
Collapse
Affiliation(s)
- Justin M Long
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
18
|
Lim JS, Cho H, Hong HS, Kwon H, Mook-Jung I, Kwon YK. Upregulation of amyloid precursor protein by platelet-derived growth factor in hippocampal precursor cells. Neuroreport 2007; 18:1225-9. [PMID: 17632272 DOI: 10.1097/wnr.0b013e3281ac2306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid precursor protein generates the secreted amyloid precursor protein alpha, which protects hippocampal neurons from ischemic injury and facilitates neuronal survival and synaptogenesis in the developing nervous system. Here, we examined whether platelet-derived growth factor regulates the generation of secreted amyloid precursor protein alpha during the neuronal differentiation of hippocampal precursor cells, HiB5. We showed that platelet-derived growth factor promoted amyloid precursor protein production and secreted amyloid precursor protein alpha secretion. These effects of platelet-derived growth factor were diminished by the PI3K-specific inhibitor wortmannin and the protein kinase C-specific inhibitor GF109203X, suggesting the involvement of the PI3K and protein kinase C-signaling pathway. Furthermore, the conditioned media enriched with secreted amyloid precursor protein alpha promoted the survival of HiB5 cells during neuronal differentiation. These results suggest that the neurotrophic effect of platelet-derived growth factor is mediated in part via upregulation of the expression and release of secreted amyloid precursor protein alpha.
Collapse
Affiliation(s)
- Jung Su Lim
- Department of Biology and Life and Nanopharmaceutical Science, Institute of Age-related and Brain Disease, Kyunghee University, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Miller RL, Sun GY, Sun AY. Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res 2007; 1167:129-39. [PMID: 17662968 PMCID: PMC2084263 DOI: 10.1016/j.brainres.2007.06.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/22/2022]
Abstract
Excess production of reactive oxygen species (ROS) is an important mechanism underlying the pathogenesis of a number of neurodegenerative diseases including Parkinson's disease (PD) which is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. Exposure to paraquat, an herbicide with structure similar to the dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), has been shown to produce PD-like symptoms. Despite previous focus on the dopaminergic neurons and signaling pathways involved in their cell death, recent studies have implicated microglial cells as a major producer of ROS for damaging neighboring neurons. In this study, we examined the source of ROS and the underlying signaling pathway for paraquat-induced cytotoxicity to BV-2 microglial cells. Paraquat-induced ROS production (including superoxide anions) in BV-2 cells was accompanied by translocation of the p67phox cytosolic subunit of NADPH oxidase to the membrane. Paraquat-induced ROS production was inhibited by NADPH oxidase inhibitors, apocynin and diphenylene iodonium (DPI), but not the xanthine/xanthine oxidase inhibitor, allopurinol. Apocynin and DPI also rescued cells from paraquat-induced toxicity. The inhibitors for protein kinase C delta (PKCdelta) or extracellular signal-regulated kinases (ERK1/2) could partially attenuate paraquat-induced ROS production and cell death. Rottlerin, a selective PKCdelta inhibitor, also inhibited paraquat-induced translocation of p67phox. Taken together, this study demonstrates the involvement of ROS from NADPH oxidase in mediating paraquat cytotoxicity in BV-2 microglial cells and this process is mediated through PKCdelta- and ERK-dependent pathways.
Collapse
Affiliation(s)
- Rebecca L Miller
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
20
|
Fernandes ND, Sun Y, Price BD. Activation of the Kinase Activity of ATM by Retinoic Acid Is Required for CREB-dependent Differentiation of Neuroblastoma Cells. J Biol Chem 2007; 282:16577-84. [PMID: 17426037 DOI: 10.1074/jbc.m609628200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.
Collapse
Affiliation(s)
- Norvin D Fernandes
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
21
|
Lv H, Jia L, Jia J. Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer's disease. Neurobiol Aging 2006; 29:194-202. [PMID: 17112637 DOI: 10.1016/j.neurobiolaging.2006.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/17/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
Increasing evidence indicates that variants in promoter of the beta-amyloid precursor protein (APP) gene could up-regulate the APP gene expression and aggravate the amyloid beta protein (A beta) accumulation, thus contributing to the development of Alzheimer's disease (AD). In Chinese Han populations we found three polymorphisms in APP promoter: -877T/C(rs466433), -955A/G(rs364048) and -9G/C. The -877T and -955A alleles were over-represented in 209 sporadic AD (SAD) patients when compared to those in 437 healthy individuals. Furthermore, -877T/C and -955A/G were in strong linkage disequilibrium and they constructed a relatively risky -877T/-955A and a relatively protective -877C/-955G. Luciferase reporter assay indicated -877T/-955A had four times higher transcriptional activity than -877C/-955G. A more marked increase in -877T/-955A transcriptional activity was seen when under A beta(25-35) treatment. As for the -9G/C polymorphism, significant differences between the two alleles were not observed either in genetic evaluation or in functional assay. The present study provides strong evidence that APP promoter polymorphisms that significantly increase APP expression levels are associated with development of SAD.
Collapse
Affiliation(s)
- Haiyan Lv
- Department of Neurology, Xuanwu Hospital of the Capital University of Medical Sciences, Beijing 100053, PR China
| | | | | |
Collapse
|
22
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
23
|
Holback S, Adlerz L, Iverfeldt K. Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 2005; 95:1059-68. [PMID: 16150056 DOI: 10.1111/j.1471-4159.2005.03440.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. We have previously shown that all members of the APP protein family are up-regulated upon retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. Here, we demonstrate that RA also affects the processing of APLP2 and APP, as shown by increased shedding of both sAPLP2 and sAPPalpha, as well as elevated levels of the APP intracellular domains (AICDs). Brain-derived neurotrophic factor (BDNF) has been reported to induce APP promoter activity and RA induces expression of the tyrosine kinase receptor B (TrkB) in neuroblastoma cells. We show that the increase in shedding of both APLP2 and APP in response to RA is not mediated through the TrkB receptor. However, BDNF concomitant with RA increased the expression of APP even further. In addition, the secretion of sAPLP2 and sAPPalpha as well as the levels of AICDs were increased in response to BDNF. In contrast, the levels of membrane-bound APP C-terminal fragment C99 significantly decreased. Our results suggest that RA and BDNF shifts APP processing towards the alpha-secretase pathway. In addition, we show that RA and BDNF regulate N-linked glycosylation of APLP1.
Collapse
Affiliation(s)
- Sofia Holback
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Hellström-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I, Nordberg A. Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 2004; 19:2703-10. [PMID: 15147304 DOI: 10.1111/j.0953-816x.2004.03377.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ten days treatment with nicotine reduced insoluble amyloid A beta 1-40 and Alpha beta 1-42 peptides by 80% in the cortex of 9-month-old APPsw mice, which is more than that observed in 14.5-month-old mice following nicotine treatment for 5.5 months. A reduction in A beta associated with cerebral vessels was observed in addition to that deposited as parenchymal plaques after 5.5 months treatment. The diminution in A beta peptides observed was not accompanied by changes in brain alpha, beta or gamma secretase-like activities, NGF or BDNF protein expression measured in brain homogenates. A significant increase in sAPP was observed after nicotine treatment of SH-SY5Yneuroblastoma cells that could be blocked by the nicotinic antagonist mecamylamine. Attenuation of elevated [(125)I]-alpha bungarotoxin binding (alpha 7) in APPsw mice was observed after 5.5 months nicotine treatment. Both these observations suggest that the reduction in insoluble A beta by nicotine might be in part mediated via the alpha 7 nicotinic receptor. Further studies are required to identify potential mechanisms of the nicotine's amyloid-reducing effect.
Collapse
Affiliation(s)
- Ewa Hellström-Lindahl
- Karolinska Institutet, Neurotec Department, Division of Molecular Neuropharmacology, Karolinska University Hospital Huddinge B84, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tabuchi A, Ishii A, Fukuchi M, Kobayashi S, Suzuki T, Tsuda M. Activity-dependent increase in β-amyloid precursor protein mRNA expression in neurons. Neuroreport 2004; 15:1329-33. [PMID: 15167560 DOI: 10.1097/01.wnr.0000127140.54853.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although beta-amyloid precursor protein (APP) has been suggested to play a role in neuronal survival and plasticity, the mRNA expression of APP has not been studied in terms of neuronal activity. In cultures of mouse cerebellar granule cells, we found that the levels of APP mRNA increased when a high concentration of potassium was present in the medium. A deprivation of membrane depolarization caused by lowering the K+ concentration decreased both mRNA expression and protein synthesis of APP. Increasing the concentration, however, restored mRNA expression, which was driven by the influx of Ca2+ through L-type voltage-dependent calcium channels and mediated by de novo protein synthesis. Thus, APP mRNA expression is controlled in an activity-dependent manner in neurons.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ruiz-León Y, Pascual A. Regulation of beta-amyloid precursor protein expression by brain-derived neurotrophic factor involves activation of both the Ras and phosphatidylinositide 3-kinase signalling pathways. J Neurochem 2004; 88:1010-8. [PMID: 14756823 DOI: 10.1046/j.1471-4159.2003.02226.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) stimulates beta-amyloid precursor protein (APP) promoter activity by a Ras-dependent mechanism in TrkB-expressing SH-SY5Y cells. To determine the signalling pathways involved in the BDNF-induced response, we have analysed the ability of TrkB mutated forms to mediate promoter stimulation. Brain-derived neurotrophic factor causes a significant induction of promoter activity and mutation K540R in the active site of TrkB completely abolishes the neurotrophin-induced response. A substitution of the Y484 residue by phenylalanine, which blocks binding of Shc, reduces the activation of APP promoter by BDNF by approximately 50% whereas mutation Y785P, which blocks binding of phospholipase C gamma, does not affect the response. In addition, the phosphatidylinositide 3-kinase (PI3K)-specific inhibitors wortmannin and LY294002 reduced BDNF-induced activation. In agreement with a participation of both Ras/MAPK- and PI3K/Akt-mediated mechanisms, transient expression of constitutive active forms of Ras, PI3K and other components of both signalling pathways led to a significant increase of APP promoter activity. Furthermore, the stimulation of the APP promoter by BDNF was completely precluded by expression of dominant-negative forms of Ras and PI3K effectors. Taken together, our results suggest that simultaneous activation of at least two signalling pathways, Ras/MAPK and PI3K/Akt, is necessary to mediate a full activation of the APP promoter by BDNF.
Collapse
Affiliation(s)
- Yolanda Ruiz-León
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
27
|
Ruiz-León Y, Pascual A. Induction of tyrosine kinase receptor b by retinoic acid allows brain-derived neurotrophic factor-induced amyloid precursor protein gene expression in human SH-SY5Y neuroblastoma cells. Neuroscience 2003; 120:1019-26. [PMID: 12927207 DOI: 10.1016/s0306-4522(03)00391-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoic acid (RA) is a potent regulator of morphogenesis, growth and cell differentiation. Incubation with RA causes arrest of proliferation and neurite extension in SH-SY5Y cells, a neuroblastoma cell line of human origin. In these cells, RA regulates the expression of the beta-amyloid precursor protein. The retinoid increases the levels of intracellular and secreted forms of APP (amyloid precursor protein), APP-mRNA levels and the activity of the APP promoter in transient transfection studies. These responses require long periods of exposition to the ligand, thus suggesting a nondirect effect of the RA receptors on the APP gene. Also in these cells, RA induces the expression of TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF), and 4 days of pretreatment with retinoic acid confers BDNF responsiveness to the APP promoter.
Collapse
Affiliation(s)
- Y Ruiz-León
- Consejo Superior de Investigaciones, Instituto de Investigaciones Biomédicas Científicas, Arturo Duperier, 4, 28029, Madrid, Spain
| | | |
Collapse
|
28
|
Adlerz L, Beckman M, Holback S, Tehranian R, Cortés Toro V, Iverfeldt K. Accumulation of the amyloid precursor-like protein APLP2 and reduction of APLP1 in retinoic acid-differentiated human neuroblastoma cells upon curcumin-induced neurite retraction. ACTA ACUST UNITED AC 2003; 119:62-72. [PMID: 14597230 DOI: 10.1016/j.molbrainres.2003.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. The function of these three proteins is not yet fully understood. One of the proposed roles of APP is to promote neurite outgrowth. The aim of this study was to investigate the regulation of the expression levels of APP family members during neurite outgrowth. We observed that retinoic acid (RA)-induced neuronal differentiation of human SH-SY5Y cells resulted in increased expression of APP, APLP1 and APLP2. We also examined the effect of the NFkappaB, AP-1 and c-Jun N-terminal kinase inhibitor curcumin (diferuloylmethane) on the RA-induced expression levels of these proteins. We found that treatment with curcumin counteracted the RA-induced mRNA expression of all APP family members. In addition, we observed that curcumin treatment resulted in neurite retraction without any effect on cell viability. Surprisingly, curcumin had differential effects on the APLP protein levels in RA-differentiated cells. RA-induced APLP1 protein expression was blocked by curcumin, while the APLP2 protein levels were further increased. APP protein levels were not affected by curcumin treatment. We propose that the sustained levels of APP and the elevated levels of APLP2, in spite of the reduced mRNA expression, are due to altered proteolytic processing of these proteins. Furthermore, our results suggest that APLP1 does not undergo the same type of regulated processing as APP and APLP2.
Collapse
Affiliation(s)
- Linda Adlerz
- Department of Neurochemistry and Neurotoxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|