1
|
Hossain KA, Akhter R, Rashid MHO, Akter L, Utsunomiya M, Kitab B, Ngwe Tun MM, Hishiki T, Kohara M, Morita K, Tsukiyama-Kohara K. Suppression of dengue virus replication by the French maritime pine extract Pycnogenol®. Virus Res 2024; 339:199244. [PMID: 37832653 PMCID: PMC10613901 DOI: 10.1016/j.virusres.2023.199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Dengue virus (DENV) is mainly found in the tropics and infects approximately 400 million people annually. However, no clinically available therapeutic agents specific to dengue have been developed. Here, we examined the potential antiviral effects of the French maritime pine extract Pycnogenol® (PYC) against DENV because we previously found that the extract exerts antiviral effects on hepatitis C virus, which belongs to the Flavivirus family. First, we examined the efficacy of PYC against DENV1, 2, 3, and 4 serotypes and determined that it had a dose-dependent suppressive effect on the viral load, especially in the supernatant. This inhibitory effect of PYC may target the late stages of infection such as maturation and secretion, but not replication. Next, we examined the efficacy of PYC against DENV infection in type I interferon (IFN) receptor knockout mice (A129). As the propagation of DENV2 was the highest among the four serotypes, we used this serotype in our murine model experiments. We found that PYC significantly inhibited DENV2 replication in mice on day 4 without significantly decreasing body weight or survival ratio. We further examined the mechanism of action of PYC in DENV2 infection by characterizing the main PYC targets among the host (viral) factors and silencing them using siRNA. Silencing long noncoding-interferon-induced protein (lnc-IFI)-44, polycystic kidney disease 1-like 3 (Pkd1l3), and ubiquitin-specific peptidase 31 (Usp31) inhibited the replication of DENV2. Thus, the results of this study shed light on the inhibitory effects of PYC on DENV replication and its underlying mechanisms.
Collapse
Affiliation(s)
- Kazi Anowar Hossain
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rupaly Akhter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Md Haroon Or Rashid
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Lipi Akter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Masashi Utsunomiya
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Ma Q, Ruan H, Dai H, Yao WD. USP48/USP31 Is a Nuclear Deubiquitinase that Potently Regulates Synapse Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558317. [PMID: 37781625 PMCID: PMC10541093 DOI: 10.1101/2023.09.19.558317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Deubiquitinases present locally at synapses regulate synaptic development, function, and plasticity. It remains largely unknown, however, whether deubiquitinases localized outside of the synapse control synapse remodeling. Here we identify ubiquitin specific protease 48 (USP48; formerly USP31) as a nuclear deubiquitinase mediating robust synapse removal. USP48 is expressed primarily during the first postnatal week in the rodent brain and is virtually restricted to nuclei, mediated by a conserved, 13-amino acid nuclear localization signal. When exogenously expressed, USP48, in a deubiquitinase and nuclear localization-dependent manner, induces striking filopodia elaboration, marked spine loss, and significantly reduced synaptic protein clustering in vitro, and erases ~70% of functional synapses in vivo. USP48 interacts with the transcription factor NF-κB, deubiquitinates NF-κB subunit p65 and promotes its stability and activation, and up-regulates NF-κB target genes known to inhibit synaptogenesis. Depleting NF-κB prevents USP48-dependent spine pruning. These findings identify a novel nucleus-enriched deubiquitinase that plays critical roles in synapse remodeling.
Collapse
Affiliation(s)
- Qi Ma
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Hongyu Ruan
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Huihui Dai
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Wei-Dong Yao
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
3
|
Sánchez-Bellver L, Férriz-Gordillo A, Carrillo-Pz M, Rabanal L, Garcia-Gonzalo FR, Marfany G. The Deubiquitinating Enzyme USP48 Interacts with the Retinal Degeneration-Associated Proteins UNC119a and ARL3. Int J Mol Sci 2022; 23:ijms232012527. [PMID: 36293380 PMCID: PMC9603860 DOI: 10.3390/ijms232012527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Férriz-Gordillo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marc Carrillo-Pz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Laura Rabanal
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Francesc R. Garcia-Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
- DBGen Ocular Genomics, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
Kim B, Sasaki A, Murphy K, Matthews SG. DNA methylation signatures in human neonatal blood following maternal antenatal corticosteroid treatment. Transl Psychiatry 2022; 12:132. [PMID: 35354798 PMCID: PMC8967826 DOI: 10.1038/s41398-022-01902-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal corticosteroids (ACS) are used to treat women at risk of preterm birth to improve neonatal survival. Though affected children may be at long-term risk of neurobehavioural disorders, the driving mechanisms remain unknown. Animal studies have shown that ACS exposure can lead to overlapping changes in DNA methylation between the blood and the brain, identifying gene pathways for neurodevelopment, which highlights the potential to examine peripheral blood as a surrogate for inaccessible human brain tissue. We hypothesized that differential methylation will be identified in blood of term-born neonates following ACS. Mother-infant dyads that received ACS were retrospectively identified through the Ontario Birth Study at Sinai Health Complex and matched to untreated controls for maternal age, BMI, parity and foetal sex (n = 14/group). Genome-wide methylation differences were examined at single-nucleotide resolution in DNA extracted from dried bloodspot cards using reduced representative bisulfite sequencing approaches. 505 differentially methylated CpG sites (DMCs) were identified, wherein 231 were hypermethylated and 274 were hypomethylated. These sites were annotated to 219 genes, of which USP48, SH3PXD2A, NTM, CAMK2N2, MAP6D1 were five of the top ten genes with known neurological function. Collectively, the set of hypermethylated genes were enriched for pathways of transcription regulation, while pathways of proteasome activity were enriched among the set of hypomethylated genes. This study is the first to identify DNA methylation changes in human neonatal blood following ACS. Understanding the epigenetic changes that occur in response to ACS will support future investigations to delineate the effects of prenatal glucocorticoid exposure on human development.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Aya Sasaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kellie Murphy
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Song F, Li JZ, Wu Y, Wu WY, Wang Y, Li G. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atherosclerosis by regulating macrophage polarization and lipid metabolism. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1303-1317. [PMID: 34853729 PMCID: PMC8609110 DOI: 10.1016/j.omtn.2021.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/22/2021] [Accepted: 10/28/2021] [Indexed: 11/04/2022]
Abstract
MiR-30a-5p plays an important role in various cardiovascular diseases, but its effect in atherosclerosis has not been reported. Apolipoprotein E-deficient (Apo E−/−) mice were used to investigate the role of miR-30a-5p in atherosclerosis, and the underlying mechanism was investigated in vivo and in vitro. The fluorescence in situ hybridization test revealed that miR-30a-5p was expressed in Apo E−/− mice lesions. Nevertheless, in RAW264.7 macrophages, the expression of miR-30a-5p was reduced by lipopolysaccharide (LPS) or oxidized low-density lipoprotein. MiR-30a-5p-ago-treated Apo E−/− mice significantly reduced lesion areas in the aorta and aortic root, reduced levels of lipoprotein and pro-inflammatory cytokines, and increased levels of anti-inflammatory cytokines. The ratio of M1/M2 macrophages was decreased in miR-30a-5p-ago-treated Apo E−/− mice and LPS-treated RAW264.7 macrophages by the regulation of Smad-1/2 phosphorylation. MiR-30a-5p reduced lipid uptake in oxidized low-density lipoprotein-treated macrophages by regulating the expression of PPAR-γ, ABCA1, ABCG1, LDLR, and PCSK9. Ubiquitinated ligase NEDD4L was identified as a target of miR-30a-5p. Interestingly, knockdown of NEDD4L decreased the M1/M2 ratio and oxidized low-density lipoprotein uptake in macrophages by inhibiting the ubiquitination of PPAR-γ and phosphorylation of Smad-1/2 and regulating ABCA1, ABCG1, LDLR, and PCSK9. We demonstrated a novel effect and mechanism of miR-30a-5p in atherosclerosis.
Collapse
|
6
|
Sbiera S, Perez-Rivas LG, Taranets L, Weigand I, Flitsch J, Graf E, Monoranu CM, Saeger W, Hagel C, Honegger J, Assie G, Hermus AR, Stalla GK, Herterich S, Ronchi CL, Deutschbein T, Reincke M, Strom TM, Popov N, Theodoropoulou M, Fassnacht M. Driver mutations in USP8 wild-type Cushing's disease. Neuro Oncol 2019; 21:1273-1283. [PMID: 31222332 PMCID: PMC6784271 DOI: 10.1093/neuonc/noz109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Medical treatment in Cushing's disease (CD) is limited due to poor understanding of its pathogenesis. Pathogenic variants of ubiquitin specific peptidase 8 (USP8) have been confirmed as causative in around half of corticotroph tumors. We aimed to further characterize the molecular landscape of those CD tumors lacking USP8 mutations in a large cohort of patients. METHODS Exome sequencing was performed on 18 paired tumor-blood samples with wild-type USP8 status. Candidate gene variants were screened by Sanger sequencing in 175 additional samples. The most frequent variant was characterized by further functional in vitro assays. RESULTS Recurrent somatic hotspot mutations in another deubiquitinase, USP48, were found in 10.3% of analyzed samples. Several possibly damaging variants were found in TP53 in 6 of 18 samples. USP48 variants were associated with smaller tumors and trended toward higher frequency in female patients. They also changed the structural conformation of USP48 and increased its catalytic activity toward its physiological substrates histone 2A and zinc finger protein Gli1, as well as enhanced the stimulatory effect of corticotropin releasing hormone (CRH) on pro-opiomelanocortin production and adrenocorticotropic hormone secretion. CONCLUSIONS USP48 pathogenic variants are relatively frequent in USP8 wild-type tumors and enhance CRH-induced hormone production in a manner coherent with sonic hedgehog activation. In addition, TP53 pathogenic variants may be more frequent in larger CD tumors than previously reported.
Collapse
Affiliation(s)
- Silviu Sbiera
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg (UKW), Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Luis Gustavo Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Lyudmyla Taranets
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Isabel Weigand
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg (UKW), Würzburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Wolfgang Saeger
- Institute for Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute for Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Honegger
- Department of Neurosurgery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Guillaume Assie
- Inserm Unit 1016, National Center for Scientific Research Joint Research Unit, Cochin Institute, Paris Descartes University, Paris, France
| | - Ad R Hermus
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Günter K Stalla
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| | - Sabine Herterich
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Cristina L Ronchi
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg (UKW), Würzburg, Germany
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Timo Deutschbein
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg (UKW), Würzburg, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Nikita Popov
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Martin Fassnacht
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg (UKW), Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
938RHRK941 is responsible for Ubiquitin specific protease 48 nuclear translocation which can stabilize NF-κB (p65) in the nucleus. Gene 2018; 669:77-81. [DOI: 10.1016/j.gene.2018.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/05/2018] [Accepted: 05/13/2018] [Indexed: 01/01/2023]
|
8
|
Liu YL, Zheng J, Mi YJ, Zhao J, Tian QB. The impacts of nineteen mutations on the enzymatic activity of USP26. Gene 2017; 641:292-296. [PMID: 29111204 DOI: 10.1016/j.gene.2017.10.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/11/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The association between mutations in the USP26 gene and male infertility has been studied intensively. However, the biological function of the mutant proteins remains to be elucidated. To confirm the effects of the reported mutations, we analyse the enzyme activity of USP26 between the wild-type and the variants from a molecular perspective. METHODS Using pGEX-USP26 as a template, site-directed mutagenesis was conducted to generate nineteen USP26 mutant plasmids. Using Ub-Met-β-gal and GST-Ub52 as model substrates, a USP cleavage assay was conducted to assess the enzymatic activities of the mutants. RESULTS The enzyme activity of the Q156H mutant disappeared, but the other 18 mutants had the same activity as the wild type. E174# and E189# were terminal mutants, but they still had the same activity as the wild type. When we constructed the transcription terminal mutants E174#(1-522 bp), E174#(523-2742 bp), E189#(1-567 bp) and E189#(568-2742 bp) artificially, the enzyme activity of these four mutants disappeared. CONCLUSIONS We have successfully constructed nineteen mutants of USP26. The enzyme activity of the Q156H mutant disappeared, but the enzyme activities of the other 18 mutants were the same as that of the wild type.
Collapse
Affiliation(s)
- Ying-Li Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jie Zheng
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, China
| | - Ying-Jun Mi
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jing Zhao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Qing-Bao Tian
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
Wang J, Liu Y, Tang L, Qi S, Mi Y, Liu D, Tian Q. Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE. Int J Mol Med 2017; 40:47-56. [PMID: 28498477 PMCID: PMC5466393 DOI: 10.3892/ijmm.2017.2984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to identify candidate substrates of ubiquitin-specific protease (USP)13 using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). USP13 is a well-characterized member of the USP family, which regulates diverse cellular functions by cleaving ubiquitin from ubiquitinated protein substrates. However, existing studies indicate that USP13 has no detectable hydrolytic activity in vitro. This finding implies that USP13 likely has different substrate specificity. In this study, a USP cleavage assay was performed using two different types of model substrates (glutathione S-transferase-Ub52 and ubiquitin-β-galactosidase) to detect the deubiquitinating enzyme (DUB) activity of USP13. In addition, a proteomic approach was taken by using 2D-DIGE to detect cellular proteins whose expressoin is significantly altered in 293T cell lines following the overexpression of USP13 or its C345S mutant (the catalytically inactive form). The data indicated that USP13 still has no detectable DUB activity in vitro nor does C345S. The results of 2D-DIGE demonstrated that the expression of several proteins increased or decreased significantly in 293T cells following the overexpression of USP13. Mass spec troscopy analysis of gel spots identified 7 proteins, including 4 proteins with an increased expression, namely vinculin, thimet oligopeptidase, cleavage and polyadenylation specific factor 3, and methylosome protein 50, and 3 proteins with a decreased expression, namely adenylosuccinate synthetase, annexin and phosphoglycerate mutase. In addition, in the samples of 293T cell lines after the overexpression of USP13 and USP13 C345S, vinculin exhibited an increased expression, suggesting that it may be a candidate substrate of USP13. However, sufficient follow-up validation studies are required in order to determine whether vinculin protein directly interacts with USP13.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yingli Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lijuan Tang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Sufen Qi
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yingjun Mi
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Dianwu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Qingbao Tian
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
10
|
Zhang W, Liu T, Mi YJ, Yue LD, Wang JM, Liu DW, Yan J, Tian QB. Evidence from enzymatic and meta-analyses does not support a direct association between USP26 gene variants and male infertility. Andrology 2015; 3:271-9. [PMID: 25755145 DOI: 10.1111/andr.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/22/2023]
Abstract
Do men who carry mutations in USP26 have an increased risk of infertility? The association between mutations in USP26 gene and male infertility has been studied intensively. However, the results from different groups are controversial. In particular, biological function of the mutant proteins remains to be elucidated. In this study, we conducted a USP cleavage assay and a meta-analysis of the published literature (up to 31 May 2013) to evaluate the impact of five frequent mutations (NM_031907.1: c.363_364insACA, c.494T>C, c.1423C>T, c.1090C>T, c.1737G>A) on enzymatic activity of the USP26 and to assess the strength of the association between those mutations and male infertility. The USP cleavage assay showed that those mutations do not affect USP26 enzymatic activity. Moreover, the results of meta-analysis of ten case-control studies (in total 1716 patients and 2597 controls) revealed no significant association (P > 0.05) between USP26 mutations and male infertility. The pooled ORs were 1.58 (95% CI: 0.81, 3.10) for cluster mutations (c.363_364insACA, c.494T>C, c.1423C>T), 1.60 (95% CI: 0.93, 2.74) for c.1090 C>T and 2.64 (95% CI: 0.97, 7.20) for c.1737 G>A. Evidence from both enzymatic and meta-analyses does not support a direct association between USP26 variants and male infertility. Further research is necessary to study the biological function of USP26, which may provide clues as to the regulation of androgen receptor signalling.
Collapse
Affiliation(s)
- W Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Paiardi C, Pasini ME, Amadeo A, Gioria M, Berruti G. The ESCRT-deubiquitinating enzyme USP8 in the cervical spinal cord of wild-type and Vps54-recessive (wobbler) mutant mice. Histochem Cell Biol 2013; 141:57-73. [PMID: 23615794 DOI: 10.1007/s00418-013-1096-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 11/30/2022]
Abstract
Usp8 is a deubiquitinating enzyme that works as regulator of endosomal trafficking and is involved in cell proliferation. "In vivo" USP8 is predominantly expressed in the central nervous system and testis, two organs with highly polarized cells. Considering that neuronal cell functionality is strictly dependent on vesicular traffic and ubiquitin-mediated sorting of the endocytosed cargo, it could be of relevance to investigate about USP8 in neuronal cells, in particular motor neurons. In this study, we found that USP8 is expressed in the gray and white matter of the spinal cord, labeling neuronal cell bodies, axonal microtubules and synaptic terminals. The glia component is essentially USP8-immunonegative. The partial colocalization of USP8 with EEA1 in motor neurons indicates that USP8 is involved in early endosomal trafficking while that with Vps54 suggests an involvement in the retrograde traffic. The variant Vps54(L967Q) is responsible for the wobbler phenotype, a disorder characterized by motor neuron degeneration. We searched for USP8/Vps54 in wobbler spinal cord. The most worth-mention result was that wobbler oligodendrocytes, in contrast to the wild-type, are heavily USP8-immunoreactive; no significant modification was appreciated about the cellular expression of mutated Vps54. On the other hand, as to the neuronal intracellular localization, both USP8 and Vps54(L967Q) did not show the typical spot-like distribution, but seemed to accumulate in proteinaceous aggregates. Collectively, our study suggests that in neuronal cells USP8 could be involved in endosomal trafficking, retrograde transport and synaptic plasticity. In disorders leading to neurodegeneration USP8 is upregulated and could influence the neuron-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Chiara Paiardi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy,
| | | | | | | | | |
Collapse
|
12
|
The role of deubiquitinating enzymes in synaptic function and nervous system diseases. Neural Plast 2012; 2012:892749. [PMID: 23316392 PMCID: PMC3536295 DOI: 10.1155/2012/892749] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/25/2012] [Indexed: 12/04/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.
Collapse
|
13
|
Zhang W, Tian QB, Li QK, Wang JM, Wang CN, Liu T, Liu DW, Wang MW. Lysine 92 amino acid residue of USP46, a gene associated with 'behavioral despair' in mice, influences the deubiquitinating enzyme activity. PLoS One 2011; 6:e26297. [PMID: 22043315 PMCID: PMC3197135 DOI: 10.1371/journal.pone.0026297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate diverse cellular functions by their activity of cleaving ubiquitin from specific protein substrates. Ubiquitin-Specific Protease 46 (USP46) has recently been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with a lysine codon (Lys 92) deletion in USP46 exhibited loss of ‘behavioral despair’ under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. However, whether this deletion affects enzyme activity is unknown. Here we show that USP46 has deubiquitinating enzyme activity detected by USP cleavage assay using GST-Ub52 as a model substrate. Interestingly, compared to wild type, the Lys 92 deletion mutant resulted in a decreased deubiquitinating enzyme activity of 27.04%. We also determined the relative expression levels of Usp46 in rat tissues using real-time RT-PCR. Usp46 mRNA was expressed in various tissues examined including brain, with the highest expression in spleen. In addition, like rat USP46, both human and mouse USP46 are active toward to the model substrate, indicating the USP cleavage assay is a simple method for testing the deubiquitinating enzyme activity of USP46. These results suggest that the Lys 92 deletion of USP46 could influence enzyme activity and thereby provide a molecular clue how the enzyme regulating the pathogenesis of mental illnesses.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qing-Bao Tian
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| | - Qing-Kai Li
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Jian-Min Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chao-Nan Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Tian Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Dian-Wu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ming-Wei Wang
- The First Hospital of Hebei Medical University, Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
14
|
Hinman JD, Chen CD, Oh SY, Hollander W, Abraham CR. Age-dependent accumulation of ubiquitinated 2′,3′-cyclic nucleotide 3′-phosphodiesterase in myelin lipid rafts. Glia 2008; 56:118-33. [DOI: 10.1002/glia.20595] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Bruzzone F, Vallarino M, Berruti G, Angelini C. Expression of the deubiquitinating enzyme mUBPy in the mouse brain. Brain Res 2007; 1195:56-66. [PMID: 18206859 DOI: 10.1016/j.brainres.2007.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/29/2007] [Accepted: 12/01/2007] [Indexed: 11/17/2022]
Abstract
Mouse UBPy (mUBPy) is an ubiquitin-specific protease which belongs to a family of deubiquitinating enzymes (DUBs) implicated in several cellular processes related to both cell growth and differentiation. Previously, Northern blot analysis revealed an important expression of mUBPy in the testis and brain. However, a more comprehensive map of mUBPy localization in the central nervous system (CNS) is still lacking. In this study, we mapped the distribution of mUBPy in the mouse brain using nonradioactive in situ hybridization and immunohistochemical techniques. In general, transcript and protein showed a similar and widespread distribution. In particular, mUBPy was strongly expressed in the hippocampal formation, septal region, ventral pallidum, preoptic nucleus, periventricular nucleus of hypothalamus, compact part of the substantia nigra, ventral tegmental area, cochlear nucleus and granular cell layer of cerebellum. A moderate expression of mUBPy was found in the amygdaloid complex, supraoptic nucleus, arcuate and ventromedial nuclei of hypothalamus, lateral hypothalamic area and lateral and reticular part of the substantia nigra. Double labelling with the mUBPy antiserum and antisera against specific cell markers showed that the enzyme is generally expressed in neurons and, in specific regions, also in oligodendrocytes. Moreover, by using antisera to TH and mUBPy we found that mUBPy is localized in dopaminergic neurons. The different distribution of mUBPy in the distinct regions of the brain suggests that it could be related to different deubiquitinating processes; in particular, in the areas where it is expressed at high levels, mUBPy could exert a specialized function through its interaction with specific protein substrates.
Collapse
Affiliation(s)
- Federica Bruzzone
- Department of Biology, University of Genova, V.le Benedetto XV, 5 16132 Genova, Italy
| | | | | | | |
Collapse
|
16
|
Suzuki T, Tian QB, Kuromitsu J, Kawai T, Endo S. Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neurosci Res 2006; 57:61-85. [PMID: 17049655 DOI: 10.1016/j.neures.2006.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
We previously reported the partial identification by random sequencing of mRNA species that are associated with the postsynaptic density (PSD) fraction prepared from the rat forebrain [Tian et al., 1999. Mol. Brain Res. 72, 147-157]. We report here further characterization by gene chip analysis of the PSD fraction-associated mRNAs, which were prepared in the presence of RNase inhibitor. We found that mRNAs encoding various postsynaptic proteins, such as channels, receptors for neurotransmitters and neuromodulators, proteins involved in signaling, scaffold and adaptor proteins and cytoskeletal proteins, were highly concentrated in the PSD fraction, whereas those encoding housekeeping proteins, such as enzymes in the glycolytic pathway, were not. We extracted approximately 1900 mRNA species that were highly concentrated in the PSD fraction. mRNAs related to certain neuronal diseases were also enriched in the PSD fraction. We also constructed a cDNA library using the PSD fraction-associated mRNAs as templates, and identified 1152 randomly selected clones by sequencing. Our data suggested that the PSD fraction-associated mRNAs are a very useful resource, in which a number of as yet uncharacterized mRNAs are concentrated. Identification and functional characterization of them are essential for complete understanding of synaptic function.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|
17
|
Tian QB, Suzuki T, Yamauchi T, Sakagami H, Yoshimura Y, Miyazawa S, Nakayama K, Saitoh F, Zhang JP, Lu Y, Kondo H, Endo S. Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II. Eur J Neurosci 2006; 23:2864-76. [PMID: 16819975 DOI: 10.1111/j.1460-9568.2006.04846.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We cloned here a full-length cDNA of Dem26[Tian et al. (1999)Mol. Brain Res., 72, 147-157], a member of the low-density lipoprotein (LDL) receptor gene family from the rat brain. We originally named the corresponding protein synaptic LDL receptor-related protein (synLRP) [Tian et al. (2002) Soc. Neurosci. Abstr., 28, 405] and have renamed it LRP4 to accord it systematic nomenclature (GenBank(TM) accession no. AB073317). LRP4 protein interacted with postsynaptic scaffold proteins such as postsynaptic density (PSD)-95 via its C-terminal tail sequence, and associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor subunit. The mRNA of LRP4 was localized to dendrites, as well as somas, of neuronal cells, and the full-length protein of 250 kDa was highly concentrated in the brain and localized to various subcellular compartments in the brain, including synaptic fractions. Immunocytochemical study using cultured cortical neurons suggested surface localization in the neuronal cells both in somas and dendrites. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylated the C-terminal cytoplasmic region of LRP4 at Ser1887 and Ser1900, and the phosphorylation at the latter site suppressed the interaction of the protein with PSD-95 and synapse-associated protein 97 (SAP97). These findings suggest a postsynaptic role for LRP4, a putative endocytic multiligand receptor, and a mechanism in which CaMKII regulates PDZ-dependent protein-protein interactions and receptor dynamics.
Collapse
Affiliation(s)
- Qing-Bao Tian
- Department of Neuroplasticity, Institute on Ageing and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tzimas C, Michailidou G, Arsenakis M, Kieff E, Mosialos G, Hatzivassiliou EG. Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-κB. Cell Signal 2006; 18:83-92. [PMID: 16214042 DOI: 10.1016/j.cellsig.2005.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
TRAF2 mediates activation of the transcription factors NF-kappaB and AP1 by TNF. A yeast two-hybrid screen of a human cDNA library identified a ubiquitin specific protease homologue (USP31) as a TRAF2-interacting protein. Two cDNAs encoding for USP31 were identified. One cDNA encodes a 1035-amino acid long isoform of USP31 (USP31, long isoform) and the other a 485-amino acid long isoform of USP31 (USP31S1, short isoform). USP31 and USP31S1 share a common amino terminal region with homology to the catalytic region of known deubiquitinating enzymes. Enzymatic assays demonstrated that USP31 but not USP31S1 possess deubiquitinating activity. Furthermore, it was shown that USP31 has a higher activity towards lysine-63-linked as compared to lysine-48-linked polyubiquitin chains. Overexpression of USP31 in HEK 293T cells inhibited TNFalpha, CD40, LMP1, TRAF2, TRAF6 and IKKbeta-mediated NF-kappaB activation, but did not inhibit Smad-mediated transcription activation. In addition, both USP31 isoforms interact with p65/RelA. Our data support a role for USP31 in the regulation of NF-kappaB activation by members of the TNF receptor superfamily.
Collapse
Affiliation(s)
- Christos Tzimas
- Department of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Wang X, Tian QB, Okano A, Sakagami H, Moon IS, Kondo H, Endo S, Suzuki T. BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca/calmodulin-dependent protein kinase II. J Neurochem 2005; 92:647-59. [PMID: 15659234 DOI: 10.1111/j.1471-4159.2004.02902.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We cloned a rat BAALC 1-6-8 isoform cDNA (GenBank Accession No. AB073318) that encoded a 22-kDa protein, and identified endogenous BAALC 1-6-8 protein in the brain. The gene was expressed widely in the frontal part of the brain, and the protein was localized to the synaptic sites and was increased in parallel with synaptogenesis. The protein interacted with the alpha, but not beta, subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIalpha). The interaction occurred between the N-terminal 35-amino-acid region of BAALC 1-6-8 protein and the C-terminal end of the regulatory domain of CaMKIIalpha, which contains alpha isoform-specific sequence. Thus, the interaction may be CaMKIIalpha-specific. We also found that BAALC 1-6-8 protein, as well as CaMKIIalpha, was localized to lipid rafts and that both myristoylation and palmitoylation of BAALC 1-6-8 N-terminal portion were required for targeting of the protein into lipid rafts. These findings suggest that BAALC 1-6-8 protein play a synaptic role at the postsynaptic lipid raft possibly through interaction with CaMKIIalpha.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Suzuki T, Li W, Zhang JP, Tian QB, Sakagami H, Usuda N, Usada N, Kondo H, Fujii T, Endo S. A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur J Neurosci 2005; 21:339-50. [PMID: 15673434 DOI: 10.1111/j.1460-9568.2005.03856.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We cloned from the rat brain a novel gene, tanc (GenBank Accession No. AB098072), which encoded a protein containing three tetratricopeptide repeats (TPRs), ten ankyrin repeats and a coiled-coil region, and is possibly a rat homolog of Drosophila rolling pebbles (rols). The tanc gene was expressed widely in the adult rat brain. Subcellular distribution, immunohistochemical study of the brain and immunocytochemical studies of cultured neuronal cells indicated the postsynaptic localization of TANC protein of 200 kDa. Pull-down experiments showed that TANC protein bound PSD-95, SAP97, and Homer via its C-terminal PDZ-binding motif, -ESNV, and fodrin via both its ankyrin repeats and the TPRs together with the coiled-coil domain. TANC also bound the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. An immunoprecipitation study showed TANC association with various postsynaptic proteins, including guanylate kinase-associated protein (GKAP), alpha-internexin, and N-methyl-D-aspartate (NMDA)-type glutamate receptor 2B and AMPA-type glutamate receptor (GluR1) subunits. These results suggest that TANC protein may work as a postsynaptic scaffold component by forming a multiprotein complex with various postsynaptic density proteins.
Collapse
MESH Headings
- Age Factors
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Ankyrin Repeat/genetics
- Blotting, Northern
- Blotting, Western/methods
- Brain/cytology
- Brain/metabolism
- Cells, Cultured
- Cloning, Molecular/methods
- Crotalid Venoms/genetics
- Crotalid Venoms/metabolism
- Disks Large Homolog 4 Protein
- Drosophila
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Gene Expression Regulation/physiology
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Situ Hybridization/methods
- Intracellular Signaling Peptides and Proteins
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Protein Binding/physiology
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- Rats
- Receptors, AMPA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Ageing and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jing-Ping Z, Tian QB, Sakagami H, Kondo H, Endo S, Suzuki T. p55 protein is a member of PSD scaffold proteins in the rat brain and interacts with various PSD proteins. ACTA ACUST UNITED AC 2005; 135:204-16. [PMID: 15857683 DOI: 10.1016/j.molbrainres.2004.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 12/12/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
p55 is a membrane-associated guanylate kinase (MAGuK) family member that consists of a single PDZ followed by SH3, HOOK and guanylate kinase (GuK or GK) domains. We investigated rat p55 (r-p55) in the brain. r-p55 mRNA was expressed widely in various tissues and in various regions of the brain. r-p55 protein was also expressed widely in various rat tissues, including brain and erythrocytes. The protein was enriched in the synaptic plasma membrane and postsynaptic density (PSD) fractions of the forebrain. An immunocytochemical study using cultured cortical neurons suggested postsynaptic localization of r-p55 protein. Pull-down assay showed that r-p55 protein interacted with r-p55 itself and various PSD proteins, such as PSD-95, SAP97, GKAP, CASK, GRIP, neuroligin, cadherin, tubulin, actin, alpha-internexin, neurofilament-L and Ca(2+)/calmodulin-dependent protein kinase II, through its PDZ, SH3, HOOK or GK domains. The interaction with PSD-95 was found to occur between the PDZ domains of PSD-95 and the HOOK and GK domains of r-p55 protein. These findings, together with the presence of r-p55 puncta in a period of early synaptogenesis, suggest that r-p55 protein functions as one of postsynaptic scaffold component in an early stage of synaptogenesis in the brain. r-p55 protein may form a basic structure, which interlinks diverse functional molecules of the PSD necessary for postsynaptic signaling and synaptic adhesion.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Antibody Specificity
- Blotting, Northern
- Blotting, Western/methods
- Brain/cytology
- Brain/embryology
- Brain/metabolism
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- Cloning, Molecular/methods
- DNA, Complementary/metabolism
- Disks Large Homolog 4 Protein
- Electrophoretic Mobility Shift Assay/methods
- Embryo, Mammalian
- Fluorescent Antibody Technique/methods
- Gene Expression Regulation, Developmental/physiology
- Guanylate Kinases
- Immunoprecipitation/methods
- In Situ Hybridization/methods
- Intracellular Signaling Peptides and Proteins
- Male
- Membrane Proteins
- Multiprotein Complexes/metabolism
- Nerve Tissue Proteins/classification
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Protein Structure, Tertiary/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction
- Subcellular Fractions/metabolism
- Synaptophysin/metabolism
- Time Factors
Collapse
Affiliation(s)
- Zhang Jing-Ping
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H, Suzuki T. NIDD, a Novel DHHC-containing Protein, Targets Neuronal Nitric-oxide Synthase (nNOS) to the Synaptic Membrane through a PDZ-dependent Interaction and Regulates nNOS Activity. J Biol Chem 2004; 279:29461-8. [PMID: 15105416 DOI: 10.1074/jbc.m401471200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeting of neuronal nitric-oxide synthase (nNOS) to appropriate sites in a cell is mediated by interactions with its PDZ domain and plays an important role in specifying the sites of reaction of nitric oxide (NO) in the central nervous system. Here we report the identification and characterization of a novel nNOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) (GenBank accession number AB098078), which increases nNOS enzyme activity by targeting the nNOS to the synaptic plasma membrane in a PDZ domain-dependent manner. The deduced NIDD protein consisted of 392 amino acid residues and possessed five transmembrane segments, a zinc finger DHHC domain, and a PDZ-binding motif (-EDIV) at its C-terminal tail. In vitro pull-down assays suggested that the C-terminal tail region of NIDD specifically interacted with the PDZ domain of nNOS. The PDZ dependence was confirmed by an experiment using a deletion mutant, and the interaction was further confirmed by co-sedimentation assays using COS-7 cells transfected with NIDD and nNOS. Both NIDD and nNOS were enriched in synaptosome and synaptic plasma membrane fractions and were present in the lipid raft and postsynaptic density fractions in the rat brain. Co-localization of these proteins was also observed by double staining of the proteins in cultured cortical neurons. Thus, NIDD and nNOS were co-localized in the brain, although the colocalizing regions were restricted, as indicated by the distribution of their mRNA expression. Most important, co-transfection of NIDD and nNOS increased NO-producing nNOS activity. These results suggested that NIDD plays an important role in the regulation of the NO signaling pathway at postsynaptic sites through targeting of nNOS to the postsynaptic membrane.
Collapse
Affiliation(s)
- Fuminori Saitoh
- Department of Neuroplasticity Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|