1
|
Agarbati A, Comitini F, Ciani M, Canonico L. Occurrence and Persistence of Saccharomyces cerevisiae Population in Spontaneous Fermentation and the Relation with "Winery Effect". Microorganisms 2024; 12:1494. [PMID: 39065262 PMCID: PMC11278986 DOI: 10.3390/microorganisms12071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas become of great interest for winemakers. Here, 206 pure cultures of S. cerevisiae were isolated from two wineries during a two-year sampling campaign and bio-typed through interdelta sequences analyses with the aim to evaluate the occurrence and persistence of the S. cerevisiae wild population linked to each winery. Both wineries belong to the same Verdicchio DOC wine area (Castelli di Jesi), and never used commercial yeasts during fermentation. Results showed 19 different biotypes with a specific population of S. cerevisiae in each winery, without cross-contamination with each other and with commercial starter strains. Moreover, inside each winery a persistence of some dominant biotypes was observed over time (three biotypes in winery 1; 95% of isolates in the two years and one biotype in winery 2; 20% of isolates in the two years), indicating a sort of "winery-effect". The evaluation of S. cerevisiae populations for the oenological characters by microfermentations showed a proper and well distinct aromatic imprinting on the resulted wines supporting the concept of "winery effect".
Collapse
Affiliation(s)
| | | | - Maurizio Ciani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (A.A.); (F.C.); (L.C.)
| | | |
Collapse
|
2
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
3
|
Ayoub MJ, Legras JL, Abi-Nakhoul P, Nguyen HV, Saliba R, Gaillardin C. Lebanon's Native Oenological Saccharomyces cerevisiae Flora: Assessment of Different Aspects of Genetic Diversity and Evaluation of Winemaking Potential. J Fungi (Basel) 2021; 7:jof7080678. [PMID: 34436217 PMCID: PMC8398109 DOI: 10.3390/jof7080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 296 isolates of Saccharomyces cerevisiae sampled from naturally fermenting grape musts from various locations in Lebanon were typed by interdelta fingerprinting. Of these, 88 isolates were compared with oenological strains originating from various countries, using microsatellite characterization at six polymorphic loci. These approaches evidenced a large diversity of the natural oenological Lebanese flora over the territory as well as in individual spontaneous fermentations. Several cases of dominance and perenniality of isolates were observed in the same wineries, where fermentations appeared to involve lineages of sibling isolates. Our work thus evidenced a “winery effect” on strains’ relatedness. Similarly, related or identical strains were also detected in vicinal wineries, suggesting strain circulation within small geographical areas and a further “vicinity effect”. Moreover, and despite its diversity, the Lebanese flora seemed interrelated, on the basis of microsatellite loci analysis, in comparison to worldwide communities. We finally tested the ability of 21 indigenous strains to act as potential starters for winemaking. Seven of them passed our pre-selection scheme and two of them at least may be good candidates for use provided pilot-scale assays confirm their suitability.
Collapse
Affiliation(s)
- Marie-José Ayoub
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
- Correspondence:
| | - Jean-Luc Legras
- SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Pierre Abi-Nakhoul
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Huu-Vang Nguyen
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Rachad Saliba
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Claude Gaillardin
- AgroParisTech, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France;
- INRA, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France
| |
Collapse
|
4
|
Al Daccache M, Koubaa M, Maroun RG, Salameh D, Louka N, Vorobiev E. Impact of the Physicochemical Composition and Microbial Diversity in Apple Juice Fermentation Process: A Review. Molecules 2020; 25:molecules25163698. [PMID: 32823772 PMCID: PMC7464816 DOI: 10.3390/molecules25163698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Fermented apple beverages are produced all over the world with diverse characteristics associated with each country. Despite the diversifications, cider producers are confronted with similar issues and risks. The nature of the raw material, also known as the fermentation medium, plays a key role in fermentation. A well-defined composition of apples is, therefore, required to produce cider with good quality. In addition, ferment and its metabolism are important factors in the fermentation process. The producers of cider and other alcoholic beverages are looking in general for novel yeast strains or for the use of native strains to produce "authentic" and diversified beverages that are distinct from each other, and that attract more and more consumers. Research articles on cider production are infrequent compared to wine production, especially on the impact of the chemical composition and microbial diversity of apples on fermentation. Even though the processing of fermented beverages is close in terms of microbial interactions and production, the study of the specific properties of apples and the production challenges of cider production is advantageous and meaningful for cider producers. This review summarizes the current knowledge on apple composition and the impact of the must composition on fermentation and yeast growth. In addition, the microbial diversity of cider, activities, and its influence on fermentation are reviewed.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France
- Correspondence: ; Tel.: +33-3442-38841
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Dominique Salameh
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
| |
Collapse
|
5
|
Alexandre H. Wine Yeast Terroir: Separating the Wheat from the Chaff-for an Open Debate. Microorganisms 2020; 8:E787. [PMID: 32466171 PMCID: PMC7285325 DOI: 10.3390/microorganisms8050787] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023] Open
Abstract
Wine terroir is characterized by a specific taste and style influenced by the cultivar of the fermented grapes, geographical factors such as the vineyard, mesoclimate, topoclimate, and microclimate, soil geology and pedology, and the agronomic approach used. These characteristics together define the concept of "terroir". Thus, regional distinctive flavors in wine have been the subject of many studies aimed at better understanding the link between the wine and the vineyard. Indeed, the identification of key environmental elements involved in the regional variation of grape and wine quality characteristics is a critical feature for improving wine production in terms of consumer preference and economic appreciation. Many studies have demonstrated the role of abiotic factors in grape composition and consequently in wine style. Biotic factors are also involved such as grape microbial communities. However, the occurrence and effects of region-specific microbiota in defining wine characteristics are more controversial issues. Indeed, several studies using high throughput sequencing technologies have made it possible to describe microbial communities and revealed a link between grape must and soil microbial communities, and the geography of the territory. Based on these observations, the concept of "microbial terroir" emerged. However, this concept has been subject to contradictory studies. The aim of this opinion article is to take a step back and examine in perspective the concept of microbial terroir, by comparing numerous data from different studies and providing arguments in favor of or against this concept to stimulate discussion and point out that experimental research is still needed to study the contribution of this assembly of microorganisms to the final product and to support or refute the concept.
Collapse
Affiliation(s)
- Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21000 Dijon, France
| |
Collapse
|
6
|
Gil-Díaz M, Valero E, Cabellos JM, García M, Arroyo T. The impact of active dry yeasts in commercial wineries from the Denomination of Origen "Vinos de Madrid", Spain. 3 Biotech 2019; 9:382. [PMID: 31656720 DOI: 10.1007/s13205-019-1913-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/21/2019] [Indexed: 11/25/2022] Open
Abstract
This paper has studied the success of implantation for 16 commercial active dry yeasts (ADYs) during industrial fermentation (30) and the impact of these yeasts during spontaneous fermentations (19) in 10 wineries from the Denomination of Origin "Vinos de Madrid" over two consecutive years. Yeasts strains were identified by molecular techniques, pulsed field electrophoresis and microsatellite analysis. According to these techniques, all the ADYs were different with the exceptions of two strains, L2056 and Rh, which showed the same karyotype and loci size. The results showed that inoculating fermentations with ADYs did not ensure their dominance throughout the fermentation; the implantation level of ADYs was above 80% in only 9 of the 30 commercial fermentations studied; while in 16 fermentations, the dominance of the inoculated ADYs was below 50%. The type of vinification with the best implantation results overall were those associated with red wine fermentations. ADYs affected spontaneous fermentations, although their impact was observed to decrease in the second year of the study. Therefore, specific adaptation studies are necessary before using commercial yeasts during the fermentation process. At the same time, a study was carried out on the frequency of commercial strains in IMIDRA's yeast collection, made up of strains isolated from spontaneous fermentations of the different areas and cellars since the beginning of the Denomination of Origin "Vinos de Madrid" in 1990. Six different ADYs were found with a frequency of less than 5%.
Collapse
Affiliation(s)
- M Gil-Díaz
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| | - E Valero
- 2Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera Km 1, s/n, 41013 Sevilla, Spain
| | - J M Cabellos
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| | - M García
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| | - T Arroyo
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
7
|
The Biodiversity of Saccharomyces cerevisiae in Spontaneous Wine Fermentation: The Occurrence and Persistence of Winery-Strains. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Saccharomyces cerevisiae populations occurring in spontaneous wine fermentations display a high polymorphism, although few strains are generally able to dominate the fermentative process. Recent studies have suggested that these indigenous S. cerevisiae strains are representative of a specific oenological ecosystem, being associated to a given wine-producing area or a single winery. In contrast, according to other ecological studies, no correlation between genotypic and phenotypic groups of the native S. cerevisiae strains and their origin was found. In this work, several S. cerevisiae strains were isolated in consecutive years from spontaneous fermentations carried out in the same wineries located in different oenological areas in Tuscany, and their persistence was assessed by molecular methods. Some predominant S. cerevisiae strains persisted in different fermentations in the same winery from one year to another and they seemed to be representative of a single winery rather than of an oenological area. Therefore, data suggested the idea of the “winery effect” or a microbial terroir at a smaller scale. The use of these typical strains as starter yeasts could provide wines with the distinctive characteristics of a particular winery or sub-zone.
Collapse
|
8
|
Effect of Sequential Inoculation with Non-Saccharomyces and Saccharomyces Yeasts on Riesling Wine Chemical Composition. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030079] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, studies have reported the positive influence of non-Saccharomyces yeast on wine quality. Many grape varieties under mixed or sequential inoculation show an overall positive effect on aroma enhancement. A potential impact by non-Saccharomyces yeast on volatile and non-volatile compounds should benefit the flavor of Riesling wines. Following this trend, four separate sequential fermentations (using the non-Saccharomyces yeasts Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, and Lachancea thermotolerans with Saccharomyces cerevisiae) were carried out on Riesling must and compared to a pure culture of S. cerevisiae. Sequential fermentations influenced the final wine aroma. Significant differences were found in esters, acetates, higher alcohols, fatty acids, and low volatile sulfur compounds between the different trials. Other parameters, including the production of non-volatile compounds, showed significant differences. This fermentation process not only allows the modulation of wine aroma but also chemical parameters such as glycerol, ethanol, alcohol, acidity, or fermentation by-products. These potential benefits of wine diversity should be beneficial to the wine industry.
Collapse
|
9
|
Dynamics of Saccharomyces cerevisiae Strains Isolated from Vine Bark in Vineyard: Influence of Plant Age and Strain Presence during Grape must Spontaneous Fermentations. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, two vineyards of different age were chosen. During three years, a sampling campaign was performed for isolating vineyard-associated Saccharomyces cerevisiae (S. cerevisiae) strains. Bark portions and, when present, grape bunches were regularly collected from the same vine plants during the overall sampling period. Each bark portion was added to a synthetic must, while each grape bunch was manually crushed, and fermentations were run to isolate S. cerevisiae strains. All collected yeasts were identified at different species and strain levels to evaluate the genetic variability of S. cerevisiae strains in the two vineyards and strains dynamics. Moreover, bark-associated strains were compared with those isolated from spontaneous fermentations of grapes collected during the two harvests. Regarding the youngest vineyard, no S. cerevisiae was identified on bark and grape surface, highlighting the importance of vine age on yeast colonization. Results reported the isolation of S. cerevisiae from vine bark of the old vineyard at all sampling times, regardless of the presence of the grape bunch. Therefore, this environment can be considered an alternative ecological niche that permanently hosts S. cerevisiae. Bark-associated strains were not found on grape bunches and during pilot-scale vinifications, indicating no significative strain transfer from vine bark to the grape must. Commercial starters were identified as well both in vineyards and during vinifications.
Collapse
|
10
|
Ganucci D, Guerrini S, Mangani S, Vincenzini M, Granchi L. Quantifying the Effects of Ethanol and Temperature on the Fitness Advantage of Predominant Saccharomyces cerevisiae Strains Occurring in Spontaneous Wine Fermentations. Front Microbiol 2018; 9:1563. [PMID: 30057578 PMCID: PMC6053494 DOI: 10.3389/fmicb.2018.01563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Different Saccharomyces cerevisiae strains are simultaneously or in succession involved in spontaneous wine fermentations. In general, few strains occur at percentages higher than 50% of the total yeast isolates (predominant strains), while a variable number of other strains are present at percentages much lower (secondary strains). Since S. cerevisiae strains participating in alcoholic fermentations may differently affect the chemical and sensory qualities of resulting wines, it is of great importance to assess whether the predominant strains possess a "dominant character." Therefore, the aim of this study was to investigate whether the predominance of some S. cerevisiae strains results from a better adaptation capability (fitness advantage) to the main stress factors of oenological interest: ethanol and temperature. Predominant and secondary S. cerevisiae strains from different wineries were used to evaluate the individual effect of increasing ethanol concentrations (0-3-5 and 7% v/v) as well as the combined effects of different ethanol concentrations (0-3-5 and 7% v/v) at different temperature (25-30 and 35°C) on yeast growth. For all the assays, the lag phase period, the maximum specific growth rate (μmax) and the maximum cell densities were estimated. In addition, the fitness advantage between the predominant and secondary strains was calculated. The findings pointed out that all the predominant strains showed significantly higher μmax and/or lower lag phase values at all tested conditions. Hence, S. cerevisiae strains that occur at higher percentages in spontaneous alcoholic fermentations are more competitive, possibly because of their higher capability to fit the progressively changing environmental conditions in terms of ethanol concentrations and temperature.
Collapse
Affiliation(s)
- Donatella Ganucci
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Simona Guerrini
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Silvia Mangani
- FoodMicroTeam, Academic Spin-Off of the University of Florence, Florence, Italy
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), University of Florence, Florence, Italy
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), University of Florence, Florence, Italy
| |
Collapse
|
11
|
SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns. Sci Rep 2017; 7:15343. [PMID: 29127392 PMCID: PMC5681646 DOI: 10.1038/s41598-017-15729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae is a common yeast with several applications, among which the most ancient is winemaking. Because individuals belonging to this species show a wide genetic and phenotypic variability, the possibility to identify the strains driving fermentation is pivotal when aiming at stable and palatable products. Metagenomic sequencing is increasingly used to decipher the fungal populations present in complex samples such as musts. However, it does not provide information at the strain level. Microsatellites are commonly used to describe the genotype of single strains. Here we developed a population-level microsatellite profiling approach, SID (Saccharomyces cerevisiae IDentifier), to identify the strains present in complex environmental samples. We optimized and assessed the performances of the analytical procedure on patterns generated in silico by computationally pooling Saccharomyces cerevisiae microsatellite profiles, and on samples obtained by pooling DNA of different strains, proving its ability to characterize real samples of grape wine fermentations. SID showed clear differences among S. cerevisiae populations in grape fermentation samples, identifying strains that are likely composing the populations and highlighting the impact of the inoculation of selected exogenous strains on natural strains. This tool can be successfully exploited to identify S. cerevisiae strains in any kind of complex samples.
Collapse
|
12
|
Capece A, Granchi L, Guerrini S, Mangani S, Romaniello R, Vincenzini M, Romano P. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Front Microbiol 2016; 7:1018. [PMID: 27446054 PMCID: PMC4928102 DOI: 10.3389/fmicb.2016.01018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Numerous studies, based on different molecular techniques analyzing DNA polymorphism, have provided evidence that indigenous Saccharomyces cerevisiae populations display biogeographic patterns. Since the differentiated populations of S. cerevisiae seem to be responsible for the regional identity of wine, the aim of this work was to assess a possible relationship between the diversity and the geographical origin of indigenous S. cerevisiae isolates from two different Italian wine-producing regions (Tuscany and Basilicata). For this purpose, sixty-three isolates from Aglianico del Vulture grape must (main cultivar in the Basilicata region) and from Sangiovese grape must (main cultivar in the Tuscany region) were characterized genotypically, by mitochondrial DNA restriction analysis and MSP-PCR by using (GTG)5 primers, and phenotypically, by determining technological properties and metabolic compounds of oenological interest after alcoholic fermentation. All the S. cerevisiae isolates from each region were inoculated both in must obtained from Aglianico grape and in must obtained from Sangiovese grape to carry out fermentations at laboratory-scale. Numerical analysis of DNA patterns resulting from both molecular methods and principal component analysis of phenotypic data demonstrated a high diversity among the S. cerevisiae strains. Moreover, a correlation between genotypic and phenotypic groups and geographical origin of the strains was found, supporting the concept that there can be a microbial aspect to terroir. Therefore, exploring the diversity of indigenous S. cerevisiae strains can allow developing tailored strategies to select wine yeast strains better adapted to each viticultural area.
Collapse
Affiliation(s)
- Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Lisa Granchi
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Simona Guerrini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Silvia Mangani
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Rossana Romaniello
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| | - Massimo Vincenzini
- Department of Management of Agricultural, Food and Forestry Systems, University of Florence, FlorenceItaly
| | - Patrizia Romano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, PotenzaItaly
| |
Collapse
|
13
|
Sipiczki M. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines. Front Microbiol 2016; 7:212. [PMID: 26973603 PMCID: PMC4770031 DOI: 10.3389/fmicb.2016.00212] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/09/2016] [Indexed: 11/13/2022] Open
Abstract
The conversion of grape must into wine involves the development and succession of yeast populations differing in species composition. The initial population is formed by vineyard strains which are washed into the must from the crushed grapes and then completed with yeasts coming from the cellar environment. As the origin and natural habitat of the vineyard yeasts are not fully understood, this study addresses the possibility, that grape yeasts can be preserved in berries left behind on vines at harvest until the spring of the next year. These berries become mummified during the winter on the vines. To investigate whether yeasts can survive in these overwintering grapes, mummified berries were collected in 16 localities in the Tokaj wine region (Hungary-Slovakia) in early March. The collected berries were rehydrated to recover viable yeasts by plating samples onto agar plates. For the detection of minority species which would not be detected by direct plating, an enrichment step repressing the propagation of alcohol-sensitive yeasts was also included in the process. The morphological, physiological, and molecular analysis identified 13 basidiomycetous and 23 ascomycetous species including fermentative yeasts of wine-making relevance among the 3879 isolates. The presence of viable strains of these species demonstrates that the grapes mummified on the vine can serve as a safe reservoir of yeasts, and may contribute to the maintenance of grape-colonizing yeast populations in the vineyard over years, parallel with other vectors and habitats. All basidiomycetous species were known phylloplane yeasts. Three Hanseniaspora species and pigmented Metschnikowia strains were the most frequent ascomycetes. Other fermentative yeasts of wine-making relevance were detected only in the enrichment cultures. Saccharomyces (S. paradoxus, S. cerevisiae, and S. uvarum) were recovered from 13% of the samples. No Candida zemplinina was found. The isolates with Aureobasidium morphology turned out to belong to Aureobasidium subglaciale, Kabatiella microsticta, or Columnosphaeria fagi. The ascomyceteous isolates grew at high concentrations of sugars with Wickerhamomyces anomalus being the most tolerant species. Complex interactions including antagonism (growth inhibition, contact inhibition, competition for nutrients) and synergism (crossfeeding) among the isolates and with Botrytis cinerea shape the composition of the overwintering communities.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen Debrecen, Hungary
| |
Collapse
|
14
|
Wine. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Páez-Lerma JB, Arias-García A, Rutiaga-Quiñones OM, Barrio E, Soto-Cruz NO. Yeasts Isolated from the Alcoholic Fermentation ofAgave duranguensisDuring Mezcal Production. FOOD BIOTECHNOL 2013. [DOI: 10.1080/08905436.2013.840788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
González-Arenzana L, Santamaría P, López R, López-Alfaro I. Indigenous lactic acid bacteria communities in alcoholic and malolactic fermentations of Tempranillo wines elaborated in ten wineries of La Rioja (Spain). Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Vilanova M, Zamuz S, Silva AF, Masa A, Sieiro C. Intraspecific Diversity of Yeast Associated to Vitis vinifera Albariño Must from Different Vineyard Ecosystems. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00465.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Suzzi G, Arfelli G, Schirone M, Corsetti A, Perpetuini G, Tofalo R. Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d'Abruzzo red wine quality. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.10.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Schuller D, Cardoso F, Sousa S, Gomes P, Gomes AC, Santos MAS, Casal M. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS One 2012; 7:e32507. [PMID: 22393409 PMCID: PMC3290581 DOI: 10.1371/journal.pone.0032507] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/30/2012] [Indexed: 11/18/2022] Open
Abstract
We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8-43 strains per fermentation) was associated with high percentage (60-100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0-40%) corresponded to a rather low strain diversity (1-10 strains per fermentation).For the majority of the populations, observed heterozygosity (Ho) was about two to five times lower than the expected heterozygosity (He). The inferred ancestry showed a very high degree of admixture and divergence was observed between both grape variety and geographical region. Analysis of molecular variance showed that 81-93% of the total genetic variation existed within populations, while significant differentiation within the groups could be detected. Results from AMOVA analysis and clustering of allelic frequencies agree in the distinction of genetically more dispersed populations from the larger wine region compared to the less extended region. Our data show that grape variety is a driver of populational structures, because vineyards with distinct varieties harbor genetically more differentiated S. cerevisiae populations. Conversely, S. cerevisiae strains from vineyards in close proximity (5-10 km) that contain the same grape variety tend to be less divergent. Populational similarities did not correlate with the distance between vineyards of the two wine regions. Globally, our results show that populations of S. cerevisiae in vineyards may occur locally due to multi-factorial influences, one of them being the grape variety.
Collapse
Affiliation(s)
- Dorit Schuller
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.
| | | | | | | | | | | | | |
Collapse
|
20
|
González-Arenzana L, López R, Santamaría P, Tenorio C, López-Alfaro I. Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. MICROBIAL ECOLOGY 2012; 63:12-19. [PMID: 21779812 DOI: 10.1007/s00248-011-9911-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
Diversity of lactic acid bacteria (LAB) species has been analyzed for three consecutive years (2006, 2007, and 2008) during alcoholic and malolactic fermentations of Tempranillo wine in a winery at La Rioja. The results showed differences in malolactic fermentation duration, and in both diversity of LAB species and diversity of Oenococcus oeni genotypes. O. oeni was shown to be the predominant species (73% of total isolates). Monitoring the different strains of O. oeni using pulsed-field gel electrophoresis of chromosomal DNA digested with SfiI and ApaI allowed detection of a total of 37 distinct genotypes, most of them comprised at least two isolates. Six appeared in more than one vintage, one of them being present in the three studied years. Moreover, four genotypes were indistinct of the strains isolated from the air of this same winery in 2007 vintage. The frequency of participation of each genotype varied from year to year, thus dominant genotypes at one year were minority or not present at another year. This suggests that distinct indigenous O. oeni strains are better adapted to the different winery conditions every year. Predominant genotypes that appeared in more than one vintage and lead to quality wines with low histamine contents could be considered as interesting for selecting of new malolactic starter cultures.
Collapse
Affiliation(s)
- Lucía González-Arenzana
- Servicio de Investigación y Desarrollo Tecnológico Agroalimentario del Gobierno de La Rioja, Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja), Universidad de La Rioja and CSIC, Ctra. de Mendavia-Logroño (NA 134, km. 88), 26071, Logroño, La Rioja, Spain
| | | | | | | | | |
Collapse
|
21
|
Viana F, Belloch C, Vallés S, Manzanares P. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol 2011; 151:235-40. [PMID: 21962939 DOI: 10.1016/j.ijfoodmicro.2011.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/05/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022]
Abstract
The effect of simultaneous or sequential inoculation of Hanseniaspora vineae CECT 1471 and Saccharomyces cerevisiae T73 in non-sterile must on 2-phenylethyl acetate production has been examined. In both treatments tested, no significant differences in Saccharomyces yeast growth were found, whereas non-Saccharomyces yeast growth was significantly different during all days of fermentation. Independently of the type of inoculation, S. cerevisiae was the predominant species from day 3 till the end of the fermentation. The dynamics of indigenous and inoculated yeast populations showed H. vineae to be the predominant non-Saccharomyces species at the beginning of fermentation in sequentially inoculated wines, whereas the simultaneous inoculation of S. cerevisiae did not permit any non-Saccharomyces species to become predominant. Differences found in non-Saccharomyces yeast growth in both fermentations influenced the analytical profiles of final wines and specifically 2-phenylethyl acetate concentration which was two-fold increased in sequentially inoculated wines in comparison to those co-inoculated. In conclusion we have shown that H. vineae inoculated as part of a sequential mixed starter is able to compete with native yeasts present in non-sterile must and modify the wine aroma profile.
Collapse
Affiliation(s)
- Fernando Viana
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-IATA, Consejo Superior de Investigaciones Científicas-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
22
|
Chovanová K, Kraková L, Ženišová K, Turcovská V, Brežná B, Kuchta T, Pangallo D. Selection and identification of autochthonous yeasts in Slovakian wine samples using a rapid and reliable three-step approach. Lett Appl Microbiol 2011; 53:231-7. [DOI: 10.1111/j.1472-765x.2011.03097.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0086-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
24
|
Control of inoculated fermentations in wine cellars by mitochondrial DNA analysis of starter yeast. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0087-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
25
|
Analysis of lactic acid bacteria populations during spontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutive vintages. Food Control 2010. [DOI: 10.1016/j.foodcont.2009.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Pando Bedriñana R, Querol Simón A, Suárez Valles B. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias. Food Microbiol 2009; 27:503-8. [PMID: 20417399 DOI: 10.1016/j.fm.2009.11.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 11/11/2009] [Accepted: 11/27/2009] [Indexed: 11/25/2022]
Abstract
This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts.
Collapse
Affiliation(s)
- R Pando Bedriñana
- Area de Tecnología de los Alimentos, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain.
| | | | | |
Collapse
|
27
|
Identification of yeast population dynamics of spontaneous fermentation in Beijing wine region, China. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Abstract
International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.
Collapse
Affiliation(s)
- Graham H Fleet
- Food Science, School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Suárez Valles B, Pando Bedriñana R, Lastra Queipo A, Mangas Alonso JJ. Screening of cider yeasts for sparkling cider production (Champenoise method). Food Microbiol 2008; 25:690-7. [DOI: 10.1016/j.fm.2008.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 03/12/2008] [Indexed: 11/30/2022]
|
30
|
Suárez Valles B, Pando Bedriñana R, González García A, Querol Simón A. A molecular genetic study of natural strains of Saccharomyces isolated from Asturian cider fermentations. J Appl Microbiol 2008; 103:778-86. [PMID: 17897179 DOI: 10.1111/j.1365-2672.2007.03314.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To analyse the genetic diversity and the dynamics of Saccharomyces strains in spontaneous fermentation in ciders. The effect of the cellar, harvest and cider-making technology were evaluated. METHODS AND RESULTS The ecology of spontaneous cider fermentations in the same cellar (Asturias) was studied for two consecutive harvests (2000 and 2001) by using mtDNA restriction analysis. Our results showed that there was a succession of genetically different strains of Saccharomyces during cider production. In general, strains of Saccharomyces bayanus species predominated at the early fermentation steps (begining and/or tumultuous fermentations), while Saccharomyces cerevisiae yeasts were the most abundant at the end of the fermentation. Five S. bayanus strains (patterns III, VII, VIII, XV and XVII) were present at significant frequencies in all the experimental tanks during the two consecutive years. The results of the cluster analysis (unweighted pair group method using average linkage) showed higher similarities for the patterns III, XV, VII and VIII. Therefore, these strains should be considered associated with the microbiota of this cellar. CONCLUSIONS A high polymorphism within populations of Saccharomyces was found throughout the different stages of Asturian production of cider. In all the cider fermentations, a variable number of S. bayanus and S. cerevisiae strains was always present. Our results indicate, over the period of time studied, the existence of the natural microbiota in the cellar. SIGNIFICANCE AND IMPACT OF THE STUDY This study has allowed us to gain a better understanding of the role of wild Saccharomyces yeast in Asturian cider fermentations.
Collapse
Affiliation(s)
- B Suárez Valles
- Area de Tecnología de los Alimentos, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
31
|
Legras JL, Merdinoglu D, Cornuet JM, Karst F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 2008; 16:2091-102. [PMID: 17498234 DOI: 10.1111/j.1365-294x.2007.03266.x] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.
Collapse
Affiliation(s)
- Jean-Luc Legras
- INRA/ULP, UMR Santé de la Vigne et Qualité du Vin, 28 rue de Herrlisheim, BP 20507, 68021 Colmar Cedex, France.
| | | | | | | |
Collapse
|
32
|
A survey ofSaccharomyces populations associated with wine fermentations from the Apulia region (South Italy). ANN MICROBIOL 2007. [DOI: 10.1007/bf03175353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Le Jeune C, Erny C, Demuyter C, Lollier M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol 2006; 23:709-16. [PMID: 16943073 DOI: 10.1016/j.fm.2006.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/21/2006] [Accepted: 02/13/2006] [Indexed: 11/17/2022]
Abstract
To determine the grape or winery origin of the Saccharomyces cerevisiae involved in spontaneous fermentation, musts were collected at different stages of wine-making process and fermented. First, grapes were collected in two different vineyards and crushed at the laboratory. Second, musts were collected after crushing and clarification in the cellar. Third, musts collected in the cellar were sterilized and inoculated with tartar deposit collected in the vats. The fourth fermentation was in the cellar. For the two vineyards, two hundred of S. cerevisiae clones were isolated for each of the four fermentations, driving to a library of 1600 clones. All the library was analysed by inter-delta PCR with a basic set of primers and about 20% of the library was further analysed by inter-delta PCR with an improved set of primers. Six, and more than 30 different PCR patterns were obtained from basic- and improved-PCR analysis, respectively. The amounts of each family were analysed at the different stages of wine making. Our study demonstrates that the two vineyards present different S. cerevisiae populations. Moreover the S. cerevisiae strains involved in spontaneous fermentation in the cellar originate partly from the vineyard and partly from the winery, in amounts varying with the must.
Collapse
Affiliation(s)
- Christine Le Jeune
- Laboratoire Vigne Biotechnologie et Environnement de l'Université de Haute-Alsace, Colmar, France.
| | | | | | | |
Collapse
|
34
|
Sturm J, Grossmann M, Schnell S. Influence of grape treatment on the wine yeast populations isolated from spontaneous fermentations. J Appl Microbiol 2006; 101:1241-8. [PMID: 17105554 DOI: 10.1111/j.1365-2672.2006.03034.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To study the influence of different methods of grape treatment in wineries on the diversity of the yeast species in spontaneous fermentations. METHODS AND RESULTS Grapes were crushed and pressed in three different ways followed by spontaneous fermentation. The same grape material picked and crushed aseptically directly in the vineyard served as control. Yeasts isolated at different stages of the fermentation were characterized by 5.8S-ITS-RFLP. Yeasts of the Saccharomyces sensu stricto complex were additionally analysed by microsatellite polymerase chain reaction fingerprinting. The diversity of yeast species isolated from winery fermentations was much greater than from the vineyard fermentation in respect to yeasts of the genus Saccharomyces as well as non-Saccharomyces. CONCLUSIONS Oenonogical methods alter significantly the yeast diversity in spontaneous fermentations of grape juice. SIGNIFICANCE AND IMPACT OF THE STUDY Managing spontaneous fermentations successfully depends not only on choosing the suitable grapes but also on the crushing and pressing techniques leading to different yeast populations.
Collapse
Affiliation(s)
- J Sturm
- Institut für Angewandte Mikrobiologie, Justus-Liebig Universität Giessen, Giessen, Germany
| | | | | |
Collapse
|
35
|
López R, Epifanio S, Garijo P, Santamaría P, Gutiérrez AR. Effect of the addition of inert cellulose substrates to grape must on Saccharomyces cerevisiae diversity and the evolution of alcoholic fermentation. Lett Appl Microbiol 2006; 42:465-70. [PMID: 16620204 DOI: 10.1111/j.1472-765x.2006.01877.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To study the addition of cellulose-based adjuvant as a resource to offset the negative effects produced by grape juice clarification during alcoholic fermentations. METHODS AND RESULTS The effect of the addition of two kinds of inert cellulose substrates in white wine vinification was investigated in two different musts. In one of these musts, stuck fermentations were detected. One of the types of cellulose examined had a fining effect, which caused a decrease in the number of viable yeasts in the medium and altered the distribution and frequency of the clones, which performed the fermentation. The other cellulose substrate made the medium cloudier but did not alter the distribution of yeasts in comparison with the control. CONCLUSIONS The behaviour of the inert cellulose substrates on vinification depends on its physical characteristics and its capacity for making the must cloudy. SIGNIFICANCE AND IMPACT OF THE STUDY The addition of inert cellulose substrates in white wine vinification improves the fermentation process and the quality of wines obtained. This effect is more noticeable in difficult fermentations. One variety of cellulose showed an inhibitory effect on Torulaspora delbrueckii yeasts.
Collapse
Affiliation(s)
- R López
- Centro de Investigación y Desarrollo Agrario de La Rioja, España, Spain
| | | | | | | | | |
Collapse
|
36
|
Schuller D, Alves H, Dequin S, Casal M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol Ecol 2005; 51:167-77. [PMID: 16329865 DOI: 10.1016/j.femsec.2004.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/06/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022] Open
Abstract
One thousand six hundred and twenty yeast isolates were obtained from 54 spontaneous fermentations performed from grapes collected in 18 sampling sites of three vineyards (Vinho Verde Wine Region in northwest Portugal) during the 2001-2003 harvest seasons. All isolates were analyzed by mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) and a pattern profile was verified for each isolate, resulting in a total of 297 different profiles, that all belonged to the species Saccharomyces cerevisiae. The strains corresponding to seventeen profiles showed a wider temporal and geographical distribution, being characterized by a generalized pattern of sporadic presence, absence and reappearance. One strain (ACP10) showed a more regional distribution with a perennial behavior. In different fermentations ACP10 was either dominant or not, showing that the final outcome of fermentation was dependent on the specific composition of the yeast community in the must. Few of the grape samples collected before harvest initiated a spontaneous fermentation, compared to the samples collected after harvest, in a time frame of about 2 weeks. The associated strains were also much more diversified: 267 patterns among 1260 isolates compared to 30 patterns among 360 isolates in the post- and pre-harvest samples, respectively. Fermenting yeast populations have never been characterized before in this region and the present work reports the presence of commercial yeast strains used by the wineries. The present study aims at the development of strategies for the preservation of biodiversity and genetic resources as a basis for further strain development.
Collapse
Affiliation(s)
- Dorit Schuller
- Departamento de Biologia, Centro de Biologia, Universidade do Minho, Braga, Portugal
| | | | | | | |
Collapse
|
37
|
Pina C, Santos C, Couto JA, Hogg T. Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiol 2004. [DOI: 10.1016/j.fm.2003.10.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Martínez C, Gac S, Lavín A, Ganga M. Genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. J Appl Microbiol 2004; 96:1161-8. [PMID: 15078534 DOI: 10.1111/j.1365-2672.2004.02255.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The wide use of yeast inoculum for wine fermentations permit the spreading of commercial Saccharomyces strains in wine areas all over the world. To study the impact of this practice on the autochthonous yeast populations it is necessary to have tools that permit the evaluation of the geographical origin of native isolates and differentiate them from commercial strains. METHODS AND RESULTS Electrophoretic karyotyping and mitochondrial DNA restriction analysis were used to characterize the genome of native S. cerevisiae isolates associated to wine from three countries in South America. Both methods revealed differences in the genomic structure between these populations, in addition to differences between sub-populations collected in wine-producing areas in Chile. CONCLUSIONS Our data support that molecular polymorphism analysis may be useful to evaluate the geographical origin of native isolates of yeast strains for industrial use. Furthermore, these findings are in agreement with the idea of a clonal mode of reproduction of wine yeasts in natural environments. SIGNIFICANCE AND IMPACT OF THE STUDY This study permits the characterization of native yeast isolates in relation to their geographical origin. This procedure could be used as a tool for evaluating if a native isolate derives from the region were it was collected or if it is a strain derived from a commercial strain by microevolution.
Collapse
Affiliation(s)
- C Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile, Chile.
| | | | | | | |
Collapse
|
39
|
Granchi L, Ganucci D, Viti C, Giovannetti L, Vincenzini M. Saccharomyces cerevisiae biodiversity in spontaneous commercial fermentations of grape musts with 'adequate' and 'inadequate' assimilable-nitrogen content. Lett Appl Microbiol 2003; 36:54-8. [PMID: 12485343 DOI: 10.1046/j.1472-765x.2003.01263.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.
Collapse
Affiliation(s)
- L Granchi
- Dipartimento di Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy.
| | | | | | | | | |
Collapse
|