1
|
The RIPK4-IRF6 signalling axis safeguards epidermal differentiation and barrier function. Nature 2019; 574:249-253. [PMID: 31578523 DOI: 10.1038/s41586-019-1615-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/29/2019] [Indexed: 01/30/2023]
Abstract
The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.
Collapse
|
2
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
3
|
Lin TK, Zhong L, Santiago JL. Association between Stress and the HPA Axis in the Atopic Dermatitis. Int J Mol Sci 2017; 18:ijms18102131. [PMID: 29023418 PMCID: PMC5666813 DOI: 10.3390/ijms18102131] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis is one of the body’s neuroendocrine networks that responds to psychological stress (PS). In the skin, there exists a peripheral HPA axis similar to the central axis. Glucocorticoids (GCs) are key effector molecules of the HPA axis and are essential for cutaneous homeostasis. Atopic dermatitis (AD) is a condition typically characterized by a chronic relapsing course that often results in PS. HPA dysfunction is present in AD patients by the decreased response of GCs elevation to stress as compared to those unaffected by AD. Nevertheless, in skin, acute PS activates several metabolic responses that are of immediate benefit to the host. During the acute phase of PS, increased endogenous GCs have been shown to provide benefit rather than by aggravating cutaneous inflammatory dermatoses. However, a chronic T helper cell type 2 (Th2) predominant cytokine profile acts as a negative feedback loop to blunt the HPA axis response in AD. In this article, we reviewed the role of CRF, pro-opiomelanocortin (POMC)-derived peptides, GCs of the HPA, and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in AD, with a discussion of the pathogenetic mechanisms of inflammation and skin barrier functions, including antimicrobial defense, and their association with PS.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- Citrus Valley Medical Center, West Covina, CA 91790, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain.
| |
Collapse
|
4
|
Cato L, Neeb A, Brown M, Cato ACB. Control of steroid receptor dynamics and function by genomic actions of the cochaperones p23 and Bag-1L. NUCLEAR RECEPTOR SIGNALING 2014; 12:e005. [PMID: 25422595 PMCID: PMC4242288 DOI: 10.1621/nrs.12005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/20/2014] [Indexed: 01/23/2023]
Abstract
Molecular chaperones encompass a group of unrelated proteins that facilitate the
correct assembly and disassembly of other macromolecular structures, which they
themselves do not remain a part of. They associate with a large and diverse set
of coregulators termed cochaperones that regulate their function and
specificity. Amongst others, chaperones and cochaperones regulate the activity
of several signaling molecules including steroid receptors, which upon ligand
binding interact with discrete nucleotide sequences within the nucleus to
control the expression of diverse physiological and developmental genes.
Molecular chaperones and cochaperones are typically known to provide the correct
conformation for ligand binding by the steroid receptors. While this
contribution is widely accepted, recent studies have reported that they further
modulate steroid receptor action outside ligand binding. They are thought to
contribute to receptor turnover, transport of the receptor to different
subcellular localizations, recycling of the receptor on chromatin and even
stabilization of the DNA-binding properties of the receptor. In addition to
these combined effects with molecular chaperones, cochaperones are reported to
have additional functions that are independent of molecular chaperones. Some of
these functions also impact on steroid receptor action. Two well-studied
examples are the cochaperones p23 and Bag-1L, which have been identified as
modulators of steroid receptor activity in nuclei. Understanding details of
their regulatory action will provide new therapeutic opportunities of
controlling steroid receptor action independent of the widespread effects of
molecular chaperones.
Collapse
Affiliation(s)
- Laura Cato
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| | - Antje Neeb
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| | - Myles Brown
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| | - Andrew C B Cato
- Division of Molecular and Cellular Oncology, Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA (LC, MB) and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (AN, ACBC)
| |
Collapse
|
5
|
Pérez P. Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. DERMATO-ENDOCRINOLOGY 2014. [DOI: 10.4161/derm.15332] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Hoath SB. Development of the stratum corneum. Br J Dermatol 2014; 171 Suppl 3:2-5. [PMID: 25234170 DOI: 10.1111/bjd.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2014] [Indexed: 11/30/2022]
Abstract
In 2015, Professor Ronald (Ronnie) Marks will celebrate his 80th birthday and the 35th year since assuming the Chair of Dermatology at the University of Wales College of Medicine in Cardiff, Wales. Ronnie's long and prolific career is well deserving of a celebratory Festschrift. Among his many accomplishments, Marks was an early champion of quantitative measurements and the application of bioengineering methods to clinical skin science, with particular focus on stratum corneum biology and the measurement of skin appearance. Appealing to Ronnie's wry sense of humour, I would characterize his career in the words of the native Welshman, Dylan Thomas, who published an unfinished novel in 1955 entitled Adventures in the Skin Trade. Ronnie Marks has been a quintessential and imaginative adventurer in the 'skin trade', and he continues to forge new trails for others to follow. The areas highlighted below are emblematic of Ronnie's varied research interests and his impact on stimulating experimental questions for me and future investigators of epidermal differentiation and stratum corneum development.
Collapse
Affiliation(s)
- S B Hoath
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 45229, U.S.A
| |
Collapse
|
7
|
Park MH, Park JY, Lee HJ, Kim DH, Chung KW, Park D, Jeong HO, Kim HR, Park CH, Kim SR, Chun P, Byun Y, Moon HR, Chung HY. The novel PPAR α/γ dual agonist MHY 966 modulates UVB-induced skin inflammation by inhibiting NF-κB activity. PLoS One 2013; 8:e76820. [PMID: 24130794 PMCID: PMC3793945 DOI: 10.1371/journal.pone.0076820] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/29/2013] [Indexed: 01/23/2023] Open
Abstract
Ultraviolet B (UVB; 290~320nm) irradiation-induced lipid peroxidation induces inflammatory responses that lead to skin wrinkle formation and epidermal thickening. Peroxisome proliferator-activated receptor (PPAR) α/γ dual agonists have the potential to be used as anti-wrinkle agents because they inhibit inflammatory response and lipid peroxidation. In this study, we evaluated the function of 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl) phenol (MHY 966), a novel synthetic PPAR α/γ dual agonist, and investigated its anti-inflammatory and anti-lipid peroxidation effects. The action of MHY 966 as a PPAR α/γ dual agonist was also determined in vitro by reporter gene assay. Additionally, 8-week-old melanin-possessing hairless mice 2 (HRM2) were exposed to 150 mJ/cm2 UVB every other day for 17 days and MHY 966 was simultaneously pre-treated every day for 17 days to investigate the molecular mechanisms involved. MHY 966 was found to stimulate the transcriptional activities of both PPAR α and γ. In HRM2 mice, we found that the skins of mice exposed to UVB showed significantly increased pro-inflammatory mediator levels (NF-κB, iNOS, and COX-2) and increased lipid peroxidation, whereas MHY 966 co-treatment down-regulated these effects of UVB by activating PPAR α and γ. Thus, the present study shows that MHY 966 exhibits beneficial effects on inflammatory responses and lipid peroxidation by simultaneously activating PPAR α and γ. The major finding of this study is that MHY 966 demonstrates potential as an agent against wrinkle formation associated with chronic UVB exposure.
Collapse
Affiliation(s)
- Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Ji Young Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
| | - Hye Jin Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Daeui Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Hyoung Oh Jeong
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Hye Rim Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
| | - Chan Hum Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - So Ra Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gimhae, Gyeongnam, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Chungnam, Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Korea
- * E-mail: (HRM); (HYC)
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Korea
- Laboratory of Biochemistry, Pusan National University, Busan, Korea
- * E-mail: (HRM); (HYC)
| |
Collapse
|
8
|
Sevilla LM, Latorre V, Sanchis A, Pérez P. Epidermal inactivation of the glucocorticoid receptor triggers skin barrier defects and cutaneous inflammation. J Invest Dermatol 2012; 133:361-70. [PMID: 22951731 DOI: 10.1038/jid.2012.281] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The glucocorticoid (GC) receptor (GR) mediates the effects of physiological and pharmacological GC ligands and has a major role in cutaneous pathophysiology. To dissect the epithelial versus mesenchymal contribution of GR in developing and adult skin, we generated mice with keratinocyte-restricted GR inactivation (GR epidermal knockout or GR(EKO) mice). Developing and early postnatal GR(EKO) mice exhibited impaired epidermal barrier formation, abnormal keratinocyte differentiation, hyperproliferation, and stratum corneum (SC) fragility. At birth, GR(EKO) epidermis showed altered levels of epidermal differentiation complex genes, proteases and protease inhibitors which participate in SC maintenance, and innate immunity genes. Many upregulated genes, including S100a8/a9 and Tslp, also have increased expression in inflammatory skin diseases. Infiltration of macrophages and degranulating mast cells were observed in newborn GR(EKO) skin, hallmarks of atopic dermatitis. In addition to increased extracellular signal-regulated kinase activation, GR(EKO) newborn and adult epidermis had increased levels of phosphorylated signal transducer and activator of transcription 3, a feature of psoriasis. Although adult GR(EKO) epidermis had a mild phenotype of increased proliferation, perturbation of skin homeostasis with detergent or phorbol ester triggered an exaggerated proliferative and hyperkeratotic response relative to wild type. Together, our results show that epidermal loss of GR provokes skin barrier defects and cutaneous inflammation.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig, Valencia, Spain
| | | | | | | |
Collapse
|
9
|
Pérez P. Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. DERMATO-ENDOCRINOLOGY 2011; 3:166-74. [PMID: 22110775 DOI: 10.4161/derm.3.3.15332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/08/2011] [Accepted: 02/28/2011] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GCs) exert their biological and therapeutical actions through the GC receptor (GR), a ligand-dependent transcription factor. Synthetic GC derivatives are widely prescribed for treating numerous cutaneous inflammatory and immune diseases due to their great efficacy. However, chronic treatment with GCs produces adverse side-effects including skin atrophy, delayed wound healing, and in certain cases, GC resistance. The mechanisms underlying the therapeutic actions of the GR in skin have been extensively studied; in contrast, the role of GR as a modulator of epidermal development and homeostasis has received less attention. The ubiquitous functional inactivation of GR results in defective epidermal formation although the underlying mechanisms have not been fully characterized. The use of transcriptomic approaches both in vitro and in vivo allowed the identification of genes that are regulated by GR in developing and adult skin. A main goal to understand the role of GR in skin biology is to identify primary transcriptional targets as well as the signaling pathways mediating GR action. Furthermore, it will be important to decipher the contribution of GR in the different cellular compartments of the skin, including keratinocytes of the interfollicular epidermis and hair follicles, and their respective stem cell progenitors. Additionally, recent findings indicating that the skin acts as a true peripheral endocrine organ implies greater complexity than originally thought. The local production of GCs and other steroid hormones should be considered as a modulator of skin function under homeostatic and diseased conditions. Finally, studying GR function in skin should take into account that the mineralocorticoid receptor may also mediate GC actions and/or regulate transcription either by itself or in combination with GR. Addressing these issues should help to elucidate the mechanisms by which Gr contributes to establishment of a competent epidermal barrier and may also have implications in the context of dermatological treatments based on GC-analogs.
Collapse
Affiliation(s)
- Paloma Pérez
- Instituto de Biomedicina de Valencia; Consejo Superior de Investigaciones Científicas (IBV-CSIC); Valencia, Spain
| |
Collapse
|
10
|
PPARδ activation promotes stratum corneum formation and epidermal permeability barrier development during late gestation. J Invest Dermatol 2009; 130:511-9. [PMID: 19675577 DOI: 10.1038/jid.2009.245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The goal of epidermal ontogenesis is to form a stratum corneum (SC), which is required for post-natal permeability barrier function. The regulation of epidermal ontogenesis is poorly understood, but nuclear hormone receptors have been shown to have an important function. As peroxisome proliferator-activated receptor-delta (PPARdelta) is very abundant in fetal epidermis and PPARdelta activation stimulates differentiation and permeability barrier formation in adults, we hypothesized that PPARdelta might regulate epidermal ontogenesis. Treatment of fetal rat explants with the PPARdelta ligand, GW 610742X, accelerates permeability barrier development, evidenced by a decrease in transepidermal water loss and an enhanced outside-in barrier function, attributable to the presence of more mature lamellar membranes in the SC and enhanced expression of loricrin and involucrin. Similarly, the intra-amniotic administration of GW 610742X also accelerates the formation of the SC and permeability barrier development. Finally, in PPARdelta-deficient mice the formation of the SC and the expression of differentiation-related proteins were delayed on days 16.5 and 17.5 of gestation. However, at later stages (day 18.5 and after birth), there were no differences between wild-type- and PPARdelta-deficient mice, indicating only a transient delay in epidermal ontogenesis. These studies show that PPARdelta has a role in SC formation and permeability barrier development.
Collapse
|
11
|
IL-1α accelerates stratum corneum formation and improves permeability barrier homeostasis during murine fetal development. J Dermatol Sci 2009; 54:88-98. [DOI: 10.1016/j.jdermsci.2009.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/05/2009] [Accepted: 01/08/2009] [Indexed: 11/18/2022]
|
12
|
Bayo P, Sanchis A, Bravo A, Cascallana JL, Buder K, Tuckermann J, Schütz G, Pérez P. Glucocorticoid receptor is required for skin barrier competence. Endocrinology 2008; 149:1377-88. [PMID: 18039792 DOI: 10.1210/en.2007-0814] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate the contribution of the glucocorticoid receptor (GR) in skin development and the mechanisms underlying this function, we have analyzed two mouse models in which GR has been functionally inactivated: the knockout GR(-/-) mice and the dimerization mutant GR(dim/dim) that mediates defective DNA binding-dependent transcription. Because GR null mice die perinatally, we evaluated skin architecture of late embryos by histological, immunohistochemical, and electron microscopy studies. Loss of function of GR resulted in incomplete epidermal stratification with dramatically abnormal differentiation of GR(-/-), but not GR(+/-) embryos, as demonstrated by the lack of loricrin, filaggrin, and involucrin markers. Skin sections of GR(-/-) embryos revealed edematous basal and lower spinous cells, and electron micrographs showed increased intercellular spaces between keratinocytes and reduced number of desmosomes. The absent terminal differentiation in GR(-/-) embryos correlated with an impaired activation of caspase-14, which is required for the processing of profilaggrin into filaggrin at late embryo stages. Accordingly, the skin barrier competence was severely compromised in GR(-/-) embryos. Cultured mouse primary keratinocytes from GR(-/-) mice formed colonies with cells of heterogeneous size and morphology that showed increased growth and apoptosis, indicating that GR regulates these processes in a cell-autonomous manner. The activity of ERK1/2 was constitutively augmented in GR(-/-) skin and mouse primary keratinocytes relative to wild type, which suggests that GR modulates skin homeostasis, at least partially, by antagonizing ERK function. Moreover, the epidermis of GR(+/dim) and GR(dim/dim) embryos appeared normal, thus suggesting that DNA-binding-independent actions of GR are sufficient to mediate epidermal and hair follicle development during embryogenesis.
Collapse
Affiliation(s)
- Pilar Bayo
- Centro de Investigación Príncipe Felipe, Valencia, Avenida Autopista del Saler 16, Camino de las Moreras, E-46013 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Donet E, Bayo P, Calvo E, Labrie F, Pérez P. Identification of novel glucocorticoid receptor-regulated genes involved in epidermal homeostasis and hair follicle differentiation. J Steroid Biochem Mol Biol 2008; 108:8-16. [PMID: 17935973 DOI: 10.1016/j.jsbmb.2007.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 05/04/2007] [Indexed: 12/24/2022]
Abstract
Despite that glucocorticoids (GCs), acting through the glucocorticoid receptor (GR) exert a pivotal role in skin physiopathology, specific genes regulated by GR in this tissue are largely unknown. We have used a transgenic mouse model overexpressing GR in epidermal basal cells and outer root sheath (ORS) of the hair follicle (HF) under the control of the keratin 5 regulatory sequences (K5-GR mice) to identify GR-regulated genes in mouse skin. We analyzed the transcriptomic profile of adult K5-GR skin as compared to non-transgenic adult mice by using oligonucleotide microarrays and identified 173 genes differentially regulated by GR in this tissue. Our data were further validated by semiquantitative RT-PCR and quantitative real-time PCR. We have identified a large subset of hair keratin intermediate filament (krt) and hair keratin-associated protein (krtap) genes, as well as several hox genes as GC-regulated. Since dysregulation of krt, krtaps and hox genes can cause hair disorders, as it occurs in adult K5-GR mice, our findings strongly suggest a role of GR in HF morphogenesis through the coordinated regulation of these hair-specific genes. In addition, we found that GR repressed several genes related to cell growth, such as the immediate early genes fosb and c-fos, according to the antiproliferative role described for this hormone receptor. By using cultured keratinocytes treated with GR-agonists and -antagonists, we demonstrated that down-regulation of fosb is mediated by GR. Identification of novel GR-regulated genes will help us to better understand the role of GCs as physiological modulators and pharmacological agents.
Collapse
Affiliation(s)
- Eva Donet
- Centro de Investigación Príncipe Felipe CIPF, Avenida Autopista del Saler 16, Camino de las Moreras, Valencia, Spain
| | | | | | | | | |
Collapse
|
14
|
Lovgren AK, Kovarova M, Koller BH. cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Mol Cell Biol 2007; 27:4416-30. [PMID: 17438133 PMCID: PMC1900037 DOI: 10.1128/mcb.02314-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/10/2007] [Accepted: 03/24/2007] [Indexed: 11/20/2022] Open
Abstract
A number of studies have identified cytosolic prostaglandin E(2) synthase (cPGES)/p23 as a cytoplasmic protein capable of metabolism of prostaglandin E(2) (PGE(2)) from the cyclooxygenase metabolite prostaglandin endoperoxide (PGH(2)). However, this protein has also been implicated in a number of other pathways, including stabilization of the glucocorticoid receptor (GR) complex. To define the importance of the functions assigned to this protein, mice lacking detectible cPGES/p23 expression were generated. cPGES/p23(-/-) pups die during the perinatal period and display retarded lung development reminiscent of the phenotype of GR-deficient neonates. Furthermore, GR-sensitive gluconeogenic enzymes are not induced in the prenatal period. However, unlike GR-deficient embryos, cPGES/p23(-/-) embryos are small and a proliferation defect is observed in cPGES/p23(-/-) fibroblasts. Analysis of arachidonic acid metabolites in embryonic tissues and primary fibroblasts failed to support a function for this protein in PGE(2) biosynthesis. Thus, while the growth retardation of the cPGES/p23(-/-) pups and decreased proliferation of primary fibroblasts identify functions for this protein in addition to GR stabilization, it is unlikely that these functions include metabolism of PGH(2) to PGE(2).
Collapse
Affiliation(s)
- Alysia Kern Lovgren
- University of North Carolina, Department of Genetics, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
15
|
Patel S, Xi ZF, Seo EY, McGaughey D, Segre JA. Klf4 and corticosteroids activate an overlapping set of transcriptional targets to accelerate in utero epidermal barrier acquisition. Proc Natl Acad Sci U S A 2006; 103:18668-73. [PMID: 17130451 PMCID: PMC1693720 DOI: 10.1073/pnas.0608658103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Premature infants are at an increased risk for infections and dehydration because of incomplete development of the epidermis, which attains its essential function as a barrier only during the last stages of in utero development. When a premature birth is anticipated, antenatal corticosteroids are administered to accelerate lung epithelium differentiation. One pleiotropic, but beneficial, effect of antenatal corticosteroids is acceleration of skin barrier establishment by an unknown mechanism. In mice, the transcription factor Klf4 is both necessary and sufficient, within a developmental field of competence, to establish this skin barrier, as demonstrated by targeted ablation and transgenic expression of Klf4, respectively. Here, we report that Klf4 and corticosteroid treatment coordinately accelerate barrier acquisition in vivo. Transcriptional profiling reveals that the genes regulated by corticosteroids and Klf4 during the critical window of epidermal development significantly overlap. KLF4 activates the proximal promoters of a significant subset of these genes. Dissecting the intersection of the genetic and pharmacological pathways, regulated by KLF4 and corticosteroids, respectively, leads to a mechanistic understanding of the normal process of epidermal development in utero.
Collapse
Affiliation(s)
- Satyakam Patel
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
| | - Zong Fang Xi
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
| | - Eun Young Seo
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
| | - David McGaughey
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
| | - Julia A. Segre
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Mikaelian I, Hovick M, Silva KA, Burzenski LM, Shultz LD, Ackert-Bicknell CL, Cox GA, Sundberg JP. Expression of terminal differentiation proteins defines stages of mouse mammary gland development. Vet Pathol 2006; 43:36-49. [PMID: 16407485 DOI: 10.1354/vp.43-1-36] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunohistochemical analysis using paraffin-embedded specimens is the method of choice to evaluate protein expression at a cellular level while preserving tissue architecture in normal and neoplastic tissues. Current knowledge of the expression of terminal differentiation markers in the mouse mammary gland relies on the evaluation of frozen tissues by use of immunofluorescence. We assessed changes in patterns of expression of terminal differentiation markers throughout the development of the mouse mammary gland in paraffin-embedded tissues. The expression of alpha-smooth muscle actin (SMA) and keratins (K) 5, 8/18, and 14 was influenced by the development stage of the mammary gland. Expression of K5 and SMA was restricted to basal cells. Keratin 14 was consistently expressed by mammary basal cells, and was detected in scattered luminal cells from 13.5 days after conception through puberty. Labeling for K8/18 of luminal cells was heterogeneous at all times. Heterogeneous expression patterns in luminal cells suggest this layer has cells with a variety of biological functions. The absence of K6 expression at any stage of the development of the mammary gland was confirmed by use of reverse transcriptase-polymerase chain reaction analysis, which indicates that this intermediate filament is not a marker of the mammary gland stem cell. Finally, consistent with results of earlier studies, keratins 1, 10, 13, and 15, and filaggrin, involucrin, and loricrin were not detected at any stage of mammary gland development.
Collapse
Affiliation(s)
- I Mikaelian
- Igor Mikaelian, Box #98, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Grad I, McKee TA, Ludwig SM, Hoyle GW, Ruiz P, Wurst W, Floss T, Miller CA, Picard D. The Hsp90 cochaperone p23 is essential for perinatal survival. Mol Cell Biol 2006; 26:8976-83. [PMID: 17000766 PMCID: PMC1636834 DOI: 10.1128/mcb.00734-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functions of molecular chaperones have been extensively investigated biochemically in vitro and genetically in bacteria and yeast. We have embarked on a functional genomic analysis of the Hsp90 chaperone machine in the mouse by disrupting the p23 gene using a gene trap approach. p23 is an Hsp90 cochaperone that is thought to stabilize Hsp90-substrate complexes and, independently, to act as the cytosolic prostaglandin E2 synthase. Gene deletions in budding and fission yeasts and knock-down experiments with the worm have not revealed any clear in vivo requirements for p23. We find that p23 is not essential for overall prenatal development and morphogenesis of the mouse, which parallels the observation that it is dispensable for proliferation in yeast. In contrast, p23 is absolutely necessary for perinatal survival. Apart from an incompletely formed skin barrier, the lungs of p23 null embryos display underdeveloped airspaces and substantially reduced expression of surfactant genes. Correlating with the known function of glucocorticoids in promoting lung maturation and the role of p23 in the assembly of a hormone-responsive glucocorticoid receptor-Hsp90 complex, p23 null fibroblast cells have a defective glucocorticoid response. Thus, p23 contributes a nonredundant, temporally restricted, and tissue-specific function during mouse development.
Collapse
Affiliation(s)
- Iwona Grad
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Skin is at the interface between the complex physiology of the body and the external, often hostile, environment, and the semipermeable epidermal barrier prevents both the escape of moisture and the entry of infectious or toxic substances. Newborns with rare congenital barrier defects underscore the skin's essential role in a terrestrial environment and demonstrate the compensatory responses evoked ex utero to reestablish a barrier. Common inflammatory skin disorders such as atopic dermatitis and psoriasis exhibit decreased barrier function, and recent studies suggest that the complex response of epidermal cells to barrier disruption may aggravate, maintain, or even initiate such conditions. Either aiding barrier reestablishment or dampening the epidermal stress response may improve the treatment of these disorders. This Review discusses the molecular regulation of the epidermal barrier as well as causes and potential treatments for defects of barrier formation and proposes that medical management of barrier disruption may positively affect the course of common skin disorders.
Collapse
Affiliation(s)
- Julia A Segre
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4442, USA.
| |
Collapse
|
19
|
Abstract
Most epidermal functions can be considered as protective, or more specifically, as defensive in nature. Yet, the term "barrier function" is often used synonymously with only one such defensive function, though arguably its most important, i.e., permeability barrier homeostasis. Regardless of their relative importance, these protective cutaneous functions largely reside in the stratum corneum (SC). In this review, I first explore the ways in which the multiple defensive functions of the SC are linked and interrelated, either by their shared localization or by common biochemical processes; how they are co-regulated in response to specific stressors; and how alterations in one defensive function impact other protective functions. Then, the structural and biochemical basis for these defensive functions is reviewed, including metabolic responses and signaling mechanisms of barrier homeostasis. Finally, the clinical consequences and therapeutic implications of this integrated perspective are provided.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA.
| |
Collapse
|
20
|
Abstract
Recent experiments reveal the role of transcription factors in integrating upstream signals to execute specification and differentiation of epidermal cells. Based on the skin phenotype observed with misregulation of transcription factors such as p63, c-Myc, RelA, pRb, Klf4 and others, their function in controlling proliferation and differentiation is dissected. Understanding the pathways regulated by these factors and their coordinate interactions remains a challenge for the future.
Collapse
Affiliation(s)
- Xing Dai
- Department of Biological Chemistry, 234D Med Sci I, University of California, Irvine, California 92697-1700, USA
| | - Julia A Segre
- National Human Genome Research Institute, NIH, 49 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Abstract
To survive the transition from an aqueous in utero to a terrestrial ex utero environment, mice and humans must construct an epidermal permeability barrier in utero. Terminally differentiated epidermal cells, lipids and tight junctions are all essential to achieve this barrier. Recent analyses of mouse mutants with defects in structural components of the terminally differentiated epidermal cell, catalyzing enzymes, lipid processing, transcriptional regulators and the intercellular junctions have highlighted their essential function in establishing the epidermal permeability barrier. Particularly interesting examples include modulation of the expression of transglutaminase 1 enzyme, the transcription factor Klf4 and the claudin tight junction proteins. However, careful analysis of the various mutant phenotypes during embryonic development, as neonates and either as adults or transplanted skin, has revealed much more about the redundancy and compensatory mechanisms of the system. Molecular analysis of the various mouse mutants has demonstrated common pathways to compensate for loss of the epidermal barrier.
Collapse
Affiliation(s)
- Julie Segre
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Building 49, Room 4A26, MSC 4442, Bethesda, MD 20892-4442, USA.
| |
Collapse
|
22
|
Schmuth M, Schoonjans K, Yu QC, Fluhr JW, Crumrine D, Hachem JP, Lau P, Auwerx J, Elias PM, Feingold KR. Role of peroxisome proliferator-activated receptor alpha in epidermal development in utero. J Invest Dermatol 2002; 119:1298-303. [PMID: 12485431 DOI: 10.1046/j.1523-1747.2002.19605.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protective function of the skin is mediated by the stratum corneum, the outermost layer of the skin, which is the end-product of epidermal differentiation. Previously, we showed that fetal rat skin explants complete the late-stage milestones of epidermal development when grown in a serum- and growth-factor-free medium, suggesting that endogenous metabolites could regulate the late program that leads to barrier formation. Because a variety of endogenous free fatty acids are known activators, peroxisome proliferator-activated receptor alpha (PPAR-alpha) is a potential candidate for this key regulatory role. Indeed, whereas PPAR-alpha expression is first noted at gestational day 13.5 and peaks between days 14.5 and 15.5, fatty acid synthesis is very active in fetal rodent epidermis peaking at gestational day 17. Furthermore, we have reported that both epidermal differentiation and stratum corneum formation in utero are stimulated by pharmacologic activation of PPAR-alpha. This study was designed to test whether PPAR-alpha plays a physiologic role in epidermal differentiation and stratum corneum formation in utero. In PPAR-alpha-/- mice we observed delayed stratum corneum formation between day 18.5 of gestation and birth. Concurrently, there was diminished beta-glucocerebrosidase activity at the stratum granulosum-stratum corneum junction and a modest decrease in both involucrin and loricrin protein expression, markers of keratinocyte differentiation. Both the number of stratum corneum cell layers was reduced and the processing of the lamellar bilayers was delayed in animals lacking PPAR-alpha, indicating a transient functional defect. In contrast, the lamellar body secretory system as well as rates of epidermal proliferation and cell death appeared normal in PPAR-alpha-/- mice. These results indicate that PPAR-alpha plays a physiologic role during fetal stratum corneum development. The transient and incomplete nature of the developmental delay, however, is consistent with regulation of the late stages of epidermal development by multiple factors.
Collapse
Affiliation(s)
- Matthias Schmuth
- Departments of Medicine Dermatology, University of California San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Presland RB, Tomic-Canic M, Lewis SP, Dale BA. Regulation of human profilaggrin promoter activity in cultured epithelial cells by retinoic acid and glucocorticoids. J Dermatol Sci 2001; 27:192-205. [PMID: 11641059 DOI: 10.1016/s0923-1811(01)00136-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vitamin A and other retinoids profoundly inhibit both morphological and biochemical aspects of epidermal differentiation in vitro. Profilaggrin, like most other markers of keratinocyte differentiation, is negatively regulated by retinoic acid in vitro, both at the level of mRNA synthesis and by inhibiting the activity of endoproteases that convert profilaggrin to filaggrin. Profilaggrin is an abundant component of keratohyalin granules and forms the precursor of filaggrin, the keratin associated protein of the stratum corneum. In this report, we identify a region of the human profilaggrin promoter that is involved in the transcriptional regulation of expression by retinoic acid (RA). A series of promoter deletions linked to the chloramphenicol acetyl transferase (CAT) reporter gene were prepared and analyzed by transfection into Hela cells and keratinocytes. We also cotransfected vectors expressing retinoic acid receptor and cultured the transfected cells in the presence and absence of ligand. The region responsive to retinoic acid was localized to a 53 bp sequence between -1109 and -1056 (relative to the mRNA start site at +1) that contains a cluster of five retinoic acid response elements with variable spacing and orientation. In vitro gel shift analysis demonstrated that nuclear retinoid receptors do not bind directly to the identified sequence, suggesting that the mode of regulation by RA may be indirect or that binding requires another cofactor in addition to retinoid receptors. Whereas in keratin genes retinoic acid and glucocorticoid responsive sequences frequently coincide, the glucocorticoid response element in the profilaggrin promoter was located downstream of the RARE cluster between -965 and -951. These studies demonstrate that RA and glucocorticoids regulate profilaggrin expression at least in part by transcriptional mechanisms, via a region of the promoter that contains both retinoid and glucocorticoid responsive elements.
Collapse
Affiliation(s)
- R B Presland
- Department of Oral Biology, University of Washington, Box 357132, Seattle, WA 98195-7132, USA.
| | | | | | | |
Collapse
|
24
|
Hanley K, Kömüves LG, Bass NM, He SS, Jiang Y, Crumrine D, Appel R, Friedman M, Bettencourt J, Min K, Elias PM, Williams ML, Feingold KR. Fetal epidermal differentiation and barrier development In vivo is accelerated by nuclear hormone receptor activators. J Invest Dermatol 1999; 113:788-95. [PMID: 10571735 DOI: 10.1046/j.1523-1747.1999.00743.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nuclear receptors which interact with the retinoid X receptor are involved in the regulation of epidermal differentiation and development. We have recently shown that activators of the peroxisome proliferator-activated receptor and of the farnesoid X-activated receptor accelerate epidermal barrier maturation in fetal rat skin in vitro. In this study we asked whether cutaneous development in utero was affected by peroxisome proliferator-activated receptor or farnesoid X-activated receptor activators, or by an activator of another retinoid X receptor partner, liver X receptor. Activators of the peroxisome proliferator-activated receptor (clofibrate or linoleic acid), farnesoid X-activated receptor (farnesol or juvenile hormone III), or liver X receptor (22R-hydroxycholesterol), were injected into the amniotic fluid of fetal rats on gestational day 17. Fetal epidermal barrier function and morphology was assessed on day 19. Whereas vehicle-treated fetal rats displayed no measurable barrier (transepidermal water loss > 10 mg per cm2 per h), a measurable barrier was induced by the intra-amniotic administration of all activators tested (transepidermal water loss range 4.0-8.5 mg per cm2 per h). By light microscopy, control pups lacked a well-defined stratum corneum, whereas a distinct stratum corneum and a thickened stratum granulosum were present in treated pups. By electron microscopy, the extracellular spaces of the stratum corneum in control pups revealed a paucity of mature lamellar unit structures, whereas these structures filled the stratum corneum interstices in treated pups. Additionally, protein and mRNA levels of loricrin and filaggrin, two structural proteins of stratum corneum, were increased in treated epidermis, as were the activities of two lipid catabolic enzymes critical to stratum corneum function, beta-glucocerebrosidase and steroid sulfatase. Finally, peroxisome proliferator-activated receptor-alpha and -delta and liver X receptor-alpha and -beta mRNAs were detected in fetal epidermis by reverse transcriptase-polymerase chain reaction and northern analyses. The presence of these receptors and the ability of their activators to stimulate epidermal barrier and stratum corneum development suggest a physiologic role for peroxisome proliferator-activated receptor and liver X receptor and their endogenous ligands in the regulation of cutaneous development.
Collapse
Affiliation(s)
- K Hanley
- Department of Dermatology, University of California, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|