1
|
Mamun M, Zheng YC, Wang N, Wang B, Zhang Y, Pang JR, Shen DD, Liu HM, Gao Y. Decoding CLU (Clusterin): Conquering cancer treatment resistance and immunological barriers. Int Immunopharmacol 2024; 137:112355. [PMID: 38851158 DOI: 10.1016/j.intimp.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Maa Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dan-Dan Shen
- Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Martín-García D, García-Aranda M, Redondo M. Therapeutic Potential of Clusterin Inhibition in Human Cancer. Cells 2024; 13:665. [PMID: 38667280 PMCID: PMC11049052 DOI: 10.3390/cells13080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
3
|
Shin YJ, Jo EH, Oh Y, Kim DS, Hyun S, Yu A, Hong HK, Cho YB. Improved Drug-Response Prediction Model of APC Mutant Colon Cancer Patient-Derived Organoids for Precision Medicine. Cancers (Basel) 2023; 15:5531. [PMID: 38067236 PMCID: PMC10705195 DOI: 10.3390/cancers15235531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer is the third most common cancer in the world, with an annual incidence of 2 million cases. The success of first-line chemotherapy plays a crucial role in determining the disease outcome. Therefore, there is an increasing demand for precision medicine to predict drug responses and optimize chemotherapy in order to increase patient survival and reduce the related side effects. Patient-derived organoids have become a popular in vitro screening model for drug-response prediction for precision medicine. However, there is no established correlation between oxaliplatin and drug-response prediction. Here, we suggest that organoid culture conditions can increase resistance to oxaliplatin during drug screening, and we developed a modified medium condition to address this issue. Notably, while previous studies have shown that survivin is a mechanism for drug resistance, our study observed consistent survivin expression irrespective of the culture conditions and oxaliplatin treatment. However, clusterin induced apoptosis inhibition and cell survival, demonstrating a significant correlation with drug resistance. This study's findings are expected to contribute to increasing the accuracy of drug-response prediction in patient-derived APC mutant colorectal cancer organoids, thereby providing reliable precision medicine and improving patient survival rates.
Collapse
Affiliation(s)
- Yong Jae Shin
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Eun Hae Jo
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Yunjeong Oh
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Da Som Kim
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Seungyoon Hyun
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea;
| | - Ahran Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Hye Kyung Hong
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
| | - Yong Beom Cho
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea; (Y.J.S.); (E.H.J.); (Y.O.); (D.S.K.); (H.K.H.)
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea;
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon-si 16419, Republic of Korea
| |
Collapse
|
4
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Demirdöğen BC, Demirkaya-Budak S. Influence of clusterin genetic variants on IOP elevation in pseudoexfoliation syndrome and pseudoexfoliative glaucoma in Turkish population. BMC Ophthalmol 2023; 23:117. [PMID: 36959561 PMCID: PMC10035213 DOI: 10.1186/s12886-023-02850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Pseudoexfoliation syndrome (PEX) is distinguished by the deposition of fibrillary material within the aqueous humor and, in most cases, causes pseudoexfoliative glaucoma (PEG). The pathophysiologies of PEX and PEG are not completely explained. Therefore, this study aimed to assess the potential relationship between single nucleotide polymorphisms (SNPs) in the 3' untranslated region or introns of the clusterin gene (CLU) and the susceptibility to developing PEG or PEX. METHODS Two hundred and forty patients with PEX, 239 patients with PEG, and 240 control subjects were included. Genotyping was carried out using real-time PCR (rs2279590 C/T and rs1532278 C/T) or PCR followed by restriction endonuclease digestion (rs11136000 C/T and rs3087554 T/C). RESULTS The minor alleles or genotypes of CLU SNPs were not significantly associated with PEX or PEG. IOP values of patients with PEX carrying the homozygote polymorphic TT genotype were significantly elevated compared with PEX cases with the CT or CC genotypes for rs2279590, rs11136000 and rs1532278 (P = .009, P = .007, P = .010, respectively). CONCLUSION We present the first evidence that three SNPs in CLU gene (rs2279590, rs11136000 and rs1532278) might induce a rise in IOP in patients with PEX, conferring susceptibility to develop PEG.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey.
| | - Sinem Demirkaya-Budak
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Söğütözü, 06560, Ankara, Turkey
| |
Collapse
|
6
|
Wilson MR, Satapathy S, Jeong S, Fini ME. Clusterin, other extracellular chaperones, and eye disease. Prog Retin Eye Res 2022; 89:101032. [PMID: 34896599 PMCID: PMC9184305 DOI: 10.1016/j.preteyeres.2021.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases" are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.
Collapse
Affiliation(s)
- Mark R Wilson
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Sandeep Satapathy
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1333 San Pablo Street., Los Angeles, CA, 90033, USA.
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine; Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Tan J, Guo W, Yang S, Han D, Li H. The multiple roles and therapeutic potential of clusterin in non-small-cell lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2683-2697. [PMID: 34295670 PMCID: PMC8264340 DOI: 10.21037/tlcr-20-1298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Worldwide, lung cancer is the most common form of cancer, with an estimated 2.09 million new cases and 1.76 million of death cause in 2018. It is categorized into two subtypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Although platinum-based chemotherapy or molecular targeted drugs is recommended for advanced stages of NSCLC patients, however, resistance to drug and chemotherapy are hindrances for patients to fully beneficial from these treatments. Clusterin (CLU), also known as apolipoprotein J, is a versatile chaperone molecule which produced by a wide array of tissues and found in most biologic fluids. There are studies reported high expression of CLU confers resistance to chemotherapy and radiotherapy in different lung cancer cell lines. By silencing CLU using Custirsen (OGX-011), a second-generation antisense oligonucleotide (ASO) that inhibits CLU production, not only could sensitized cells to chemo- and radiotherapy, also could decreased their metastatic potential. We will review here the extensive literature linking CLU to NSCLC, update the current state of research on CLU for better understanding of this unique protein and the development of more effective anti- CLU treatment.
Collapse
Affiliation(s)
- Juofang Tan
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingpei Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Yavrum F, Elgin U, Kocer ZA, Fidanci V, Sen E. Evaluation of aqueous humor and serum clusterin levels in patients with glaucoma. BMC Ophthalmol 2021; 21:25. [PMID: 33422048 PMCID: PMC7796574 DOI: 10.1186/s12886-020-01781-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 12/03/2022] Open
Abstract
Background To compare the aqueous humor (AH) and the serum clusterin levels of patients with pseudoexfoliation syndrome (PEX), pseudoexfoliation glaucoma (PEXG), and primary open-angle glaucoma (POAG) with each other and with an age- and sex-matched control group. Methods This prospective, cross-sectionalstudy evaluated 92 eyes from 92 adult cases of uncomplicated phacoemulsification and posterior chamber intraocular lens (IOL) implantation. The cases were divided into PEX, PEXG, POAG, and control groups. Serum samples were taken from the antecubital vein just before the surgery, and the AH samples were aspirated at the beginning of the surgery. Kruskal-Wallis H, One-way ANOVA, Mann-Whitney U with Bonferroni correction and Chi-Square tests were used for statistical analysis. Results The serum clusterin levels were the highest in the PEXG group, but no statistically significant differences were observed between the groups (p=0.633). The mean AH clusterin levels were 286.79±29.64 μg/mL in the PEXG group, 263.92±31.70 μg/mL in the PEX group, 272.59±49.71 μg/mL in the POAG group, and 193.50±62.38 μg/mL in the control group (p< 0.001). This came out to be 1.48 times increase for the PEXG group, 1.36 for the PEX group, and 1.41 for the POAG group when compared with the control subjects. Conclusions A higher level of clusterin in the anterior chamber was found to be associated with PEX and PEXG. In addition, a high level of anterior chamber clusterin in POAG, which is a new finding, showed that this molecule might be important not only in pseudoexfoliation, but also other types of glaucoma like POAG.
Collapse
Affiliation(s)
| | - Ufuk Elgin
- University of Health Sciences, Ulucanlar Eye Research Hospital, Ankara, Turkey
| | - Zeynep Adiyaman Kocer
- University of Health Sciences, Ankara Research and Training Hospital, Ankara, Turkey
| | - Vildan Fidanci
- University of Health Sciences, Ankara Research and Training Hospital, Ankara, Turkey
| | - Emine Sen
- University of Health Sciences, Ulucanlar Eye Research Hospital, Ankara, Turkey
| |
Collapse
|
9
|
da Veiga GL, da Costa Aguiar Alves B, Perez MM, Raimundo JR, de Araújo Encinas JF, Murad N, Fonseca FLA. Kidney Diseases: The Age of Molecular Markers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:13-27. [PMID: 33959903 DOI: 10.1007/978-3-030-63908-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kidney diseases are conditions that increase the morbidity and mortality of those afflicted. Diagnosis of these conditions is based on parameters such as the glomerular filtration rate (GFR), measurement of serum and urinary creatinine levels and equations derived from these measurements (Wasung, Chawla, Madero. Clin Chim Acta 438:350-357, 2015). However, serum creatinine as a marker for measuring renal dysfunction has its limitations since it is altered in several other physiological situations, such as in patients with muscle loss, after intense physical exercise or in people on a high protein diet (Riley, Powers, Welch. Res Q Exerc Sport 52(3):339-347, 1981; Juraschek, Appel, Anderson, Miller. Am J Kidney Dis 61(4):547-554, 2013). Besides the fact that serum creatinine is a marker that indicates glomerular damage, it is necessary the discovery of new biomarkers that reflect not only glomerular damage but also tubular impairment. Recent advances in Molecular Biology have led to the generation or identification of new biomarkers for kidney diseases such as: Acute Kidney Failure (AKI), chronic kidney disease (CKD), nephritis or nephrotic syndrome. There are recent markers that have been used to aid in diagnosis and have been shown to be more sensitive and specific than classical markers, such as neutrophil gelatinase associated lipocalin (NGAL) or kidney injury molecule-1 (KIM-1) (Wasung, Chawla, Madero. Clin Chim Acta 438:350-357, 2015; George, Gounden. Adv Clin Chem 88:91-119, 2019; Han, Bailly, Abichandani, Thadhani, Bonventre. Kidney Int 62(1):237-244, 2002; Fontanilla, Han. Expert Opin Med Diagn 5(2):161-173, 2011). However, early diagnostic biomarkers are still necessary to assist the intervention and monitor of the progression of these conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Neif Murad
- Cardiology Department, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Fernando Luiz Affonso Fonseca
- Division of Clinical Analysis, Centro Universitário Saúde ABC, Santo André, Brazil.,Pharmaceutical Science Department, Universidade Federal de São Paulo/UNIFESP - Diadema, Butantã, São Paulo, Brazil
| |
Collapse
|
10
|
Praharaj PP, Patra S, Panigrahi DP, Patra SK, Bhutia SK. Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188500. [PMID: 33385484 DOI: 10.1016/j.bbcan.2020.188500] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
11
|
Geßner C, Stillger MN, Mölders N, Fabrizius A, Folkow LP, Burmester T. Cell Culture Experiments Reveal that High S100B and Clusterin Levels may Convey Hypoxia-tolerance to the Hooded Seal (Cystophora cristata) Brain. Neuroscience 2020; 451:226-239. [PMID: 33002555 DOI: 10.1016/j.neuroscience.2020.09.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
While the brain of most mammals suffers from irreversible damage after only short periods of low oxygen levels (hypoxia), marine mammals are excellent breath-hold divers that have adapted to hypoxia. In addition to physiological adaptations, such as large oxygen storing capacity and strict oxygen economy during diving, the neurons of the deep-diving hooded seal (Cystophora cristata) have an intrinsic tolerance to hypoxia. We aim to understand the molecular basis of this neuronal hypoxia tolerance. Previously, transcriptomics of the cortex of the hooded seal have revealed remarkably high expression levels of S100B and clusterin (apolipoprotein J) when compared to the ferret, a non-diving carnivore. Both genes have much-debated roles in hypoxia and oxidative stress. Here, we evaluated the effects of S100B and of two isoforms of clusterin (soluble and nucleus clusterin) on the survival, metabolic activity and the amount of reactive oxygen species (ROS) in HN33 neuronal mouse cells exposed to hypoxia and oxidative stress. S100B and soluble clusterin had neuroprotective effects, with reduced ROS-levels and retention of normoxic energy status of cells during both stress conditions. The protective effects of nucleus clusterin were restricted to hypoxia. S100B and clusterin showed purifying selection in marine and terrestrial mammals, indicating a functional conservation across species. Immunofluorescence revealed identical cellular distributions of S100B and clusterin in mice, ferrets and hooded seals, further supporting the functional conservation. Taken together, our data suggest that the neuroprotective effects of all three proteins are exclusively facilitated by their increased expression in the brain of the hooded seal.
Collapse
Affiliation(s)
- Cornelia Geßner
- Institute of Zoology, University of Hamburg, 20146 Hamburg, Germany.
| | | | - Naomi Mölders
- Institute of Zoology, University of Hamburg, 20146 Hamburg, Germany
| | - Andrej Fabrizius
- Institute of Zoology, University of Hamburg, 20146 Hamburg, Germany
| | - Lars P Folkow
- Department of Arctic and Marine Biology, University of Tromsø - the Arctic University of Norway, Breivika, NO-9037 Tromsø, Norway
| | | |
Collapse
|
12
|
Shakya M, Yildirim T, Lindberg I. Increased expression and retention of the secretory chaperone proSAAS following cell stress. Cell Stress Chaperones 2020; 25:929-941. [PMID: 32607937 PMCID: PMC7591655 DOI: 10.1007/s12192-020-01128-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The secretory pathway of neurons and endocrine cells contains a variety of mechanisms designed to combat cellular stress. These include not only the unfolded protein response pathways but also diverse chaperone proteins that collectively work to ensure proteostatic control of secreted and membrane-bound molecules. One of the least studied of these chaperones is the neural- and endocrine-specific molecule known as proSAAS. This small chaperone protein acts as a potent anti-aggregant both in vitro and in cellulo and also represents a cerebrospinal fluid biomarker in Alzheimer's disease. In the present study, we have examined the idea that proSAAS, like other secretory chaperones, might represent a stress-responsive protein. We find that exposure of neural and endocrine cells to the cell stressors tunicamycin and thapsigargin increases cellular proSAAS mRNA and protein in Neuro2A cells. Paradoxically, proSAAS secretion is inhibited by these same drugs. Exposure of Neuro2A cells to low concentrations of the hypoxic stress inducer cobalt chloride, or to sodium arsenite, an oxidative stressor, also increases cellular proSAAS content and reduces its secretion. We conclude that the cellular levels of the small secretory chaperone proSAAS are positively modulated by cell stress.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Taha Yildirim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
14
|
Early Elevation of Systemic Plasma Clusterin after Reperfused Acute Myocardial Infarction in a Preclinical Porcine Model of Ischemic Heart Disease. Int J Mol Sci 2020; 21:ijms21134591. [PMID: 32605184 PMCID: PMC7369988 DOI: 10.3390/ijms21134591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
Clusterin exerts anti-inflammatory, cytoprotective and anti-apoptotic effects. Both an increase and decrease of clusterin in acute myocardial infarction (AMI) has been reported. We aimed to clarify the role of clusterin as a systemic biomarker in AMI. AMI was induced by percutaneous left anterior artery (LAD) occlusion for 90 min followed by reperfusion in 24 pigs. Contrast ventriculography was performed after reperfusion to assess left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVEDV) and left ventricular end systolic volume (LVESV) and additional cMRI + late enhancement to measure infarct size and LV functions at day 3 and week 6 post-MI. Blood samples were collected at prespecified timepoints. Plasma clusterin and other biomarkers (cTnT, NT-proBNP, neprilysin, NGAL, ET-1, osteopontin, miR21, miR29) were measured by ELISA and qPCR. Gene expression profiles of infarcted and remote region 3 h (n = 5) and 3 days (n = 5) after AMI onset were analysed by RNA-sequencing. AMI led to an increase in LVEDV and LVESV during 6-week, with concomitant elevation of NT-proBNP 3-weeks after AMI. Plasma clusterin levels were increased immediately after AMI and returned to normal levels until 3-weeks. Plasma NGAL, ET-1 and miR29 was significantly elevated at 3 weeks follow-up, miR21 increased after reperfusion and at 3 weeks post-AMI, while circulating neprilysin levels did not change. Elevated plasma clusterin levels 120 min after AMI onset suggest that clusterin might be an additional early biomarker of myocardial ischemia.
Collapse
|
15
|
Methazolamide in high-altitude illnesses. Eur J Pharm Sci 2020; 148:105326. [PMID: 32251722 DOI: 10.1016/j.ejps.2020.105326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022]
Abstract
As a carbonic anhydrase inhibitor and a methylated lipophilic analogue of acetazolamide, Methazolamide has higher lipid solubility, less plasma protein binding and renal excretion, and fewer side effects, compared to acetazolamide. Methazolamide can increase systemic metabolic acidosis and sequentially improve ventilation and oxygenation level. The increased oxygenation level leads to reduced reactive oxygen species (ROS) production, relived cerebral edema, mitigated hypoxic pulmonary vasoconstriction, abrogated hypoxic fatigue, and decreased excessive erythrocytosis. In addition to the effect as a carbonic anhydrase inhibitor, methazolamide directly activates the transcription factor anti-oxidative nuclear factor-related factor 2 (Nrf2) and inhibits interleukin-1β (IL-1β) release. These pharmacological functions of methazolamide are beneficial for the prevention and treatment of high-altitude illnesses. Besides, methazolamide causes less fatigue side effects than acetazolamide does. It is also worth noting that several studies suggested that a lower dose of methazolamide has similar prophylaxis and treatment efficacy in acute mountain sickness (AMS) to a higher dose of acetazolamide. Given methazolamide's advantages over acetazolamide, methazolamide may thus represent an alternative for acetazolamide when taken for high-altitude illnesses prophylaxis and treatment. However, more in-depth clinical trials are needed to fully evaluate this efficacy of methazolamide.
Collapse
|
16
|
Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants (Basel) 2020; 9:antiox9050448. [PMID: 32455998 PMCID: PMC7278813 DOI: 10.3390/antiox9050448] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet radiation is one of the most pervasive environmental interactions with humans. Chronic ultraviolet irradiation increases the danger of skin carcinogenesis. Probably, oxidative stress is the most important mechanism by which ultraviolet radiation implements its damaging effects on normal cells. However, notwithstanding the data referring to the negative effects exerted by light radiation and oxidative stress on carcinogenesis, both factors are used in the treatment of skin cancer. Photodynamic therapy (PDT) consists of the administration of a photosensitiser, which undergoes excitation after suitable irradiation emitted from a light source and generates reactive oxygen species. Oxidative stress causes a condition in which cellular components, including DNA, proteins, and lipids, are oxidised and injured. Antitumor effects result from the combination of direct tumour cell photodamage, the destruction of tumour vasculature and the activation of an immune response. In this review, we report the data present in literature dealing with the main signalling molecular pathways modified by oxidative stress after photodynamic therapy to target skin cancer cells. Moreover, we describe the progress made in the design of anti-skin cancer photosensitisers, and the new possibilities of increasing the efficacy of PDT via the use of molecules capable of developing a synergistic antineoplastic action.
Collapse
|
17
|
Wei ZD, Sun YZ, Tu CX, Qi RQ, Huo W, Chen HD, Gao XH. DNAJA4 deficiency augments hyperthermia-induced Clusterin and ERK activation: two critical protective factors of human keratinocytes from hyperthermia-induced injury. J Eur Acad Dermatol Venereol 2020; 34:2308-2317. [PMID: 32277496 DOI: 10.1111/jdv.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hyperthermia upregulates DNAJA4, a member of heat shock proteins (HSPs) 40 family, in human keratinocytes and HPV-infected tissue. DNAJA4 deficiency enhances growth arrest induced by hyperthermia. Clusterin (CLU) and phosphorylated ERK (p-ERK) play a role in regulating cell proliferation and apoptosis, under environmental stress. OBJECTIVES To examine the downstream molecules and signalling pathways of DNAJA4 and assess their roles in cell cycle and apoptosis of keratinocytes in response to hyperthermia. METHODS Wild-type and DNAJA4-knockout (KO) HaCaT cells were exposed to either 44 °C (hyperthermia) or 37 °C (control) for 30 min. The expression levels of CLU and p-ERK were determined by RT-PCR and Western blotting. RNAi and PD98059 were used to inhibit the expression of CLU and p-ERK, respectively. Cell viability, cell cycle and apoptosis were analysed by MTS assay and flow cytometry. Fresh biopsy samples of human normal foreskin or condyloma acuminatum (CA) were utilized to examine the expression of CLU and p-ERK after ex vivo culture at 44 °C. RESULTS The expression of CLU and p-ERK was significantly increased by hyperthermia treatment at 44 °C in HaCaT cells, foreskin and HPV-infected tissues. In HaCaT cells subjected to hyperthermia, DNAJA4 deficiency further augmented the expression of CLU and p-ERK. CLU deficiency enhanced the p-ERK expression. Hyperthermia-induced CLU and p-ERK exerted protective roles mainly through inhibiting apoptosis and maintaining cell cycle, respectively. CONCLUSIONS In keratinocytes, CLU and p-ERK are induced by hyperthermia, an effect which can be further enhanced by DNAJA4 deficiency. CLU deficiency also increases p-ERK expression. Both CLU and p-ERK are critical protective factors of human keratinocytes from hyperthermia-induced injury.
Collapse
Affiliation(s)
- Z-D Wei
- China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China.,Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Y-Z Sun
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - C-X Tu
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - R-Q Qi
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - W Huo
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - H-D Chen
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - X-H Gao
- China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| |
Collapse
|
18
|
Wang X, Yu Y, Zang L, Zhang P, Ma J, Chen D. Targeting Clusterin Induces Apoptosis, Reduces Growth Ability and Invasion and Mediates Sensitivity to Chemotherapy in Human Osteosarcoma Cells. Curr Pharm Biotechnol 2020; 21:131-139. [PMID: 31433751 DOI: 10.2174/1389201020666190821151120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/07/2019] [Accepted: 08/02/2019] [Indexed: 12/23/2022]
Abstract
Objective:
The aim of the study was to investigate the expression of sCLU in relation to the
clinicopathological features and prognosis of patients with untreated High-Grade Osteosarcoma
(HGOS) and to evaluate sCLU as a target for osteosarcoma (OS) therapies.
Methods:
The expression of sCLU in 98 patients of HGOS enrolled from April 2005 to March 2015 at
the affiliated hospital of Qingdao University was evaluated by immunohistochemistry. The sCLU expression,
clinical data and survival were compared. siRNA-mediated sCLU gene silencing on cell apoptosis,
viability, invasion and chemosensitivity to doxorubicin in U2OS cells in vitro was evaluated.
Results:
sCLU expression was found in 59 (60%) of the 98 patients. A positive correlation was observed
between sCLU expression and metastatic disease (P = 0.036) and a negative correlation between
sCLU expression and response to chemotherapy (P = 0.002). Targeting sCLU expression in
U2OS cells induced significant reduction in cellular growth and higher rates of spontaneous endogenous
apoptosis. In addition, targeting sCLU expression inhibited the invasion of U2OS cells. Furthermore,
targeting sCLU expression significantly sensitized to chemotherapeutic drug, doxorubicin.
Conclusions:
The overexpression of sCLU was significantly correlated with metastasis and chemosensitivity
in patients with HGOS. sCLU may be a promising therapeutic or chemopreventive target for
human OS treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276000, China
| | - Ying Yu
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Lingna Zang
- Department of PET-CT, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Peng Zhang
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276000, China
| | - Jinfeng Ma
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276000, China
| | - Dong Chen
- Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| |
Collapse
|
19
|
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. Secretory apolipoprotein J/clusterin (sCLU) is overexpressed in many cancers; however, its role in OS has not been previously investigated. The objectives of this study were to address this question and also to assess the clinical value of sCLU as a prognostic biomarker and therapeutic target by comparing sCLU expression in human OS (n = 106), normal bone (n = 16), fibrous dysplasia (n = 9), and ossifying myositis (n = 11) tissues and by evaluating the effect of sCLU silencing on OS growth, invasion, and chemosensitivity in vitro and in vivo. We found that sCLU was highly expressed in OS tissue specimens, which was positively correlated with metastatic disease and negatively correlated with response to chemotherapy. sCLU knockdown in KHOS cells inhibited proliferation and invasion and increased apoptosis as well as sensitivity to the chemotherapy drug gemcitabine (Gem). In a mouse xenograft model, sCLU depletion suppressed lung metastasis and enhanced the effects of Gem, thereby slowing KHOS tumor growth. These results indicate that sCLU overexpression is a biomarker for malignant transformation of OS and that therapeutic strategies targeting sCLU may be an effective treatment for OS. Highlights ● Secretory apolipoprotein J/clusterin (sCLU) is overexpressed in osteosarcoma (OS). ● sCLU overexpression is associated with metastasis and chemoresistance. ● Silencing sCLU inhibits metastasis and enhances chemosensitivity in OS cells. sCLU is a biomarker for metastatic OS and a potential therapeutic target.
Collapse
Affiliation(s)
- Jinfeng Ma
- a Department of Spine Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Weiliang Gao
- b Department of Spine Surgery , The 107 Hospital of the People's Liberation Army , Yantai , Shandong , China
| | - Jisheng Gao
- b Department of Spine Surgery , The 107 Hospital of the People's Liberation Army , Yantai , Shandong , China
| |
Collapse
|
20
|
Can Demirdöğen B, Demirkaya-Budak S, Özge G, Mumcuoğlu T. Evaluation of Tear Fluid and Aqueous Humor Concentration of Clusterin as Biomarkers for Early Diagnosis of Pseudoexfoliation Syndrome and Pseudoexfoliative Glaucoma. Curr Eye Res 2019; 45:805-813. [PMID: 31765245 DOI: 10.1080/02713683.2019.1698055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Pseudoexfoliation syndrome (PEX) is an age-related disorder of the extracellular matrix characterized by the accumulation of fibrillary deposits in the anterior chamber of the eye, which leads to the development of pseudoexfoliative glaucoma (PEG). Early identification of subjects with higher susceptibility to PEX and PEG development is very important so that these conditions are managed at earlier stages, which requires that an objective biomarker is defined. Therefore, in the present study, we aimed to determine if aqueous humor and tear fluid concentrations of clusterin, an extracellular chaperone, are objective biomarkers for PEX and PEG risk. METHODS Tear fluid was obtained from 80 patients with PEG, 80 patients with PEX, and 80 controls, using Schirmer strips. Aqueous humor was also collected during cataract surgery from 12 patients with PEG, 17 patients with PEX, and 22 controls, who also gave tear samples. Clusterin concentration was determined by ELISA. RESULTS Clusterin concentration in aqueous humor was significantly higher in patients with PEG than in PEX cases (P = .002) and controls (P = .004). Receiver operating characteristics analysis revealed that this parameter is a robust classifier to distinguish PEG and PEX cases. Tear fluid clusterin concentrations did not differ significantly between groups. Aqueous humor and tear fluid levels of clusterin were not significantly correlated. CONCLUSIONS In conclusion, tear fluid clusterin level in patients with PEG and PEX was determined for the first time, which showed no difference between study groups. Aqueous humor clusterin level was markedly higher in patients with PEG.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology , Ankara, Turkey
| | - Sinem Demirkaya-Budak
- Department of Biomedical Engineering, TOBB University of Economics and Technology , Ankara, Turkey
| | - Gökhan Özge
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences , Ankara, Turkey
| | - Tarkan Mumcuoğlu
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences , Ankara, Turkey
| |
Collapse
|
21
|
Bertacchini J, Mediani L, Beretti F, Guida M, Ghalali A, Brugnoli F, Bertagnolo V, Petricoin E, Poti F, Arioli J, Anselmi L, Bari A, McCubrey J, Martelli AM, Cocco L, Capitani S, Marmiroli S. Clusterin enhances AKT2-mediated motility of normal and cancer prostate cells through a PTEN and PHLPP1 circuit. J Cell Physiol 2019; 234:11188-11199. [PMID: 30565691 DOI: 10.1002/jcp.27768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/30/2018] [Indexed: 07/23/2024]
Abstract
Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3'-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Beretti
- Department of Medicine, Surgery, Dentistry, and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Guida
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Aram Ghalali
- Institute of Environment Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Brugnoli
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Emanuel Petricoin
- Center for Applied Proteomics & Molecular Medicine, GMU, Fairfax, Virginia
| | - Francesco Poti
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Jessica Arioli
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Bari
- Department of Diagnostic, Clinical Medicine and Public Health, Program of Innovative Therapy in Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Alberto M Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Ma Y, Gong Z, Nan K, Qi S, Chen Y, Ding C, Wang D, Ru L. Apolipoprotein-J blocks increased cell injury elicited by ox-LDL via inhibiting ROS-CaMKII pathway. Lipids Health Dis 2019; 18:117. [PMID: 31113434 PMCID: PMC6530009 DOI: 10.1186/s12944-019-1066-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidized low-density lipoprotein (ox-LDL) is crucial in cardiac injury. Apolipoprotein-J (ApoJ) contributes to antiapoptotic effects in the heart. We aimed to evaluate the protective effects of ApoJ against ox-LDL cytotoxicity in Neonatal rat ventricular cells (NRVCs). Methods and results NRVCs were damaged by exposure to ox-LDL, as shown by increased caspase-3/7 activity, enhanced caspase-3 expression, and decreased cell viability. ApoJ overexpression, using an adenovirus vector, significantly reduced ox-LDL-induced cell injury. ApoJ also prevented ox-LDL from augmenting reactive oxygen species (ROS) production, as demonstrated by elevated Nox2/gp91phox and P47 expression. Furthermore, ApoJ overexpression reduced CaMKIIδ expression elicited by ox-LDL in cultured NRVCs. Upregulating CaMKIIδ activity, mediated by ox-LDL, was significantly inhibited by ApoJ overexpression. A CaMKIIδ inhibitor, KN93, prevented ApoJ’s protective effect against ox-LDL cytotoxicity. A ROS scavenger, Mn (III)meso-tetrakis (4-benzoic acid) porphyrin (Mn (III)TBAP), also attenuated CaMKIIδ’s increased expression and activity, induced by ox-LDL, and showed similar results to ApoJ by attenuating ox-LDL-induced cell damage, as ApoJ did. Conclusions ApoJ confers cytoprotection to NRVCs against ox-LDL cytotoxicity through the ROS-CaMKII pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Zhi Gong
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Yu Chen
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China.
| |
Collapse
|
23
|
Dhiman K, Blennow K, Zetterberg H, Martins RN, Gupta VB. Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer's disease pathogenesis. Cell Mol Life Sci 2019; 76:1833-1863. [PMID: 30770953 PMCID: PMC11105672 DOI: 10.1007/s00018-019-03040-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early. Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clinical trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amyloidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding the contribution of these markers in different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Kunal Dhiman
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
- KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Veer Bala Gupta
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, Australia.
- School of Medicine, Deakin University, Geelong, 3220, VIC, Australia.
| |
Collapse
|
24
|
Yebra-Pimentel ES, Gebert M, Jansen HJ, Jong-Raadsen SA, Dirks RPH. Deep transcriptome analysis of the heat shock response in an Atlantic sturgeon (Acipenser oxyrinchus) cell line. FISH & SHELLFISH IMMUNOLOGY 2019; 88:508-517. [PMID: 30862517 DOI: 10.1016/j.fsi.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Despite efforts to restore Atlantic sturgeon in European rivers, aquaculture techniques result in animals with high post-release mortality due to, among other reasons, their low tolerance to increasing water temperature. Marker genes to monitor heat stress are needed in order to identify heat-resistant fish. Therefore, an Atlantic sturgeon cell line was exposed to different heat shock protocols (30 °C and 35 °C) and differences in gene expression were investigated. In total 3020 contigs (∼1.5%) were differentially expressed. As the core of the upregulated contigs corresponded to heat shock proteins (HSP), the heat shock factor (HSF) and the HSP gene families were annotated in Atlantic sturgeon and mapped via Illumina RNA sequencing to identify heat-inducible family members. Up to 6 hsf and 76 hsp genes were identified in the Atlantic sturgeon transcriptome resources, 16 of which were significantly responsive to the applied heat shock. The previously studied hspa1 (hsp70) gene was only significantly upregulated at the highest heat shock (35 °C), while a set of 5 genes (hspc1, hsph3a, hspb1b, hspb11a, and hspb11b) was upregulated at all conditions. Although the hspc1 (hsp90a) gene was previously used as heat shock-marker in sturgeons, we found that hspb11a is the most heat-inducible gene, with up to 3296-fold higher expression in the treated cells, constituting the candidate gene markers for in vivo trials.
Collapse
Affiliation(s)
- Elena Santidrián Yebra-Pimentel
- ZF-screens B.V., 2333CH, Leiden, the Netherlands; Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, 0454, Oslo, Norway.
| | - Marina Gebert
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, 23562, Lübeck, Germany
| | | | | | | |
Collapse
|
25
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179:51-59. [PMID: 30659860 DOI: 10.1016/j.mad.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the most effective intervention to improve health span and extend lifespan in preclinical models. This anti-aging effect of CR is related to attenuation of oxidative damage in various tissues, with divergent results in the brain. We addressed how brain oxidoreductive balance would be modulated in male Sprague-Dawley (SD) rats submitted to a 40% CR from 8 to 19 months of age, by reference to ad libitum-fed (AL) rats at 2 and 19 months of age. Four brain structures were compared: hippocampus, striatum, parietal cortex, cerebellum. Our CR diet elicits significant prevention of oxidative damages with the upregulation of antioxidant defenses (levels of glutathione [GSH], mRNAs of clusterin and of three key antioxidant enzymes) as compared to age-matched AL controls, in a strikingly region-specific pattern. CR also prevented a drastic rise of the glial fibrillary acidic protein in the hippocampus of old AL rats. Besides, the CR effects at age 19 months mainly consist in improving endogenous defenses before the onset of age-related redox alterations. These effects are more prominent in the hippocampus.
Collapse
Affiliation(s)
- Emmanuel Moyse
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Physiology of Reproduction and Behaviour Unit (PRC), University of Tours, INRA Centre of Tours, F-37380, Nouzilly, France
| | - Madeleine Arsenault
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Guylaine Ferland
- Institut de cardiologie de Montréal Research Center, Montreal, QC, H4J 1C5, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H1T 1C8, Canada
| | - Charles Ramassamy
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada; Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, G1V 4L3, Canada.
| |
Collapse
|
27
|
Abstract
Exfoliation syndrome (XFS) produces deleterious ocular aging and has protean systemic manifestations. Local ocular production of TGFβ1 is of central importance in XFS. TGFβ1 appears to induce the expression of LOXL1 and the production of other extracellular matrix components which are known to be present in exfoliation material. Furthermore, results from several studies find that the aqueous humor of exfoliation glaucoma patients exhibits a decreased antioxidant defense and increased oxidative stress systems. Finally, studies show that the levels of interleukin-6 and interleukin-8 in the aqueous humor of XFS patients were 3-fold higher than in controls. Overall TGFβ1, as well as a prooxidative and proinflammatory environment seems to play an important role in XFS.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
28
|
Wiggs JL, Kang JH, Fan B, Levkovitch-Verbin H, Pasquale LR. A Role for Clusterin in Exfoliation Syndrome and Exfoliation Glaucoma? J Glaucoma 2018; 27 Suppl 1:S61-S66. [PMID: 29965900 PMCID: PMC8035929 DOI: 10.1097/ijg.0000000000000916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multifunctional protein clusterin (CLU) is a secreted glycoprotein ubiquitously expressed throughout the body, including in the eye. Its primary function is to act as an extracellular molecular chaperone, preventing the precipitation and aggregation of misfolded extracellular proteins. Clusterin is commonly identified at fluid-tissue interfaces, and has been identified in most body fluids. It is a component of exfoliation material, and CLU mRNA is reduced in eyes with exfoliation syndrome compared with controls. SNPs located in the CLU genomic region have been associated with Alzheimer disease (AD) at the genome-wide level and several CLU SNPs located in an apparent regulatory region have been nominally associated with XFS/XFG in Caucasians with European ancestry and in south Indians. Interestingly, clusterin associates with altered elastic fibers in human photoaged skin and prevents UV-induced elastin aggregation in vitro. In light of the known geographic risk factors for XFS/XFG, which could include UV light, investigations of CLU-geographic interactions could be of interest. Future studies investigating rare CLU variation and other complex interactions including gene-gene interactions in XFS/XFG cases and controls may also be fruitful. Although CLU has been considered as a therapeutic target in AD, cancer and dry eye, a role for clusterin in XFS/XFG needs to be better defined before therapeutic approaches involving CLU can be entertained.
Collapse
Affiliation(s)
- Janey L. Wiggs
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jae Hee Kang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - BaoJian Fan
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Hani Levkovitch-Verbin
- Goldschleger Eye Institute, Tel Hashomer, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Louis R. Pasquale
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Choi JH, Jeong E, Youn BS, Kim MS. Distinct Ultradian Rhythms in Plasma Clusterin Concentrations in Lean and Obese Korean Subjects. Endocrinol Metab (Seoul) 2018; 33:245-251. [PMID: 29766682 PMCID: PMC6021305 DOI: 10.3803/enm.2018.33.2.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Blood levels of many hormones show rhythmic fluctuations with variable duration of cycles. Clusterin/apolipoprotein J is a glycoprotein which is highly expressed in the plasma and has modulatory roles in immune and inflammatory reactions, neurobiology, lipid metabolism, and leptin signaling. In this study, we examined the diurnal fluctuations of plasma clusterin concentrations in lean and obese young men. METHODS For the study, 14 subjects (five lean and five obese men; two lean and two obese women) were admitted to the research ward and blood samples were drawn every 30 minutes during light-on period (6:00 AM to 10:00 PM) and every hour during light-off period. RESULTS Notably, plasma clusterin concentrations displayed a unique ultradian rhythm with five cycles a day in both men and women. During the light-on period, circulating clusterin levels showed fluctuating curves with 4 hours regular intervals with sharp peaks and troughs. In contrast, single oscillation curve during light-off exhibited a smoothened/lower peak and longer (8-hour) duration. In obese men, these cycles were phase-advanced by approximately 1 hour, and had reduced amplitude of fluctuating curves and blunted diurnal pattern. Cyclic fluctuations of plasma clusterin were preserved under fasting and unexpected meal condition, suggesting that rhythmic oscillations in plasma clusterin levels are not generated by meal-related cues. CONCLUSION These findings firstly demonstrate a novel pattern of plasma clusterin fluctuations with extremely regular cycles.
Collapse
Affiliation(s)
- Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunheui Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | | | - Min Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Role of clusterin/progranulin in toluene diisocyanate-induced occupational asthma. Exp Mol Med 2018; 50:1-10. [PMID: 29717106 PMCID: PMC5938014 DOI: 10.1038/s12276-018-0085-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022] Open
Abstract
Toluene diisocyanate (TDI) exposure induces oxidative stress and epithelial cell-derived inflammation, which affect the pathogenesis of TDI-induced occupational asthma (TDI-OA). Recent studies suggested a role for clusterin (CLU) and progranulin (PGRN) in oxidative stress-mediated airway inflammation. To evaluate CLU and PGRN involvement in airway inflammation in TDI-OA, we measured their serum levels in patients with TDI-OA, asymptomatic exposed controls (AECs), and unexposed healthy normal controls (NCs). Serum CLU and PGRN levels were significantly lower in the TDI-OA group than in the AEC and NC groups (P < 0.05). The sensitivity and specificity for predicting the TDI-OA phenotype were 72.4% and 53.4% when either CLU or PGRN levels were below the cutoff values (≤125 μg/mL and ≤68.4 ng/mL, respectively). If both parameters were below the cutoff levels, the sensitivity and specificity were 58.6% and 89.8%, respectively. To investigate CLU and PGRN function, we evaluated their production by human airway epithelial cells (HAECs) in response to TDI exposure and co-culturing with neutrophils. TDI-human serum albumin stimulation induced significant CLU/PGRN release from HAECs in a dose-dependent manner, which positively correlated with IL-8 and folliculin levels. Co-culturing with neutrophils significantly decreased CLU/PGRN production by HAECs. Intracellular ROS production in epithelial cells co-cultured with neutrophils tended to increase initially, but the ROS production decreased gradually at a higher ratio of neutrophils. Our results suggest that CLU and PGRN may be involved in TDI-OA pathogenesis by protecting against TDI-induced oxidative stress-mediated inflammation. The combined CLU/PGRN serum level may be used as a potential serological marker for identifying patients with TDI-OA among TDI-exposed workers.
Collapse
|
31
|
Rohne P, Wolf S, Dörr C, Ringen J, Holtz A, Gollan R, Renner B, Prochnow H, Baiersdörfer M, Koch-Brandt C. Exposure of vital cells to necrotic cell lysates induce the IRE1α branch of the unfolded protein response and cell proliferation. Cell Stress Chaperones 2018; 23:77-88. [PMID: 28687980 PMCID: PMC5741583 DOI: 10.1007/s12192-017-0825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022] Open
Abstract
Necrosis is a form of cell death that is detrimental to the affected tissue because the cell ruptures and releases its content (reactive oxygen species among others) into the extracellular space. Clusterin (CLU), a cytoprotective extracellular chaperone has been shown to be upregulated in the face of necrosis. We here show that in addition to CLU upregulation, necrotic cell lysates induce JNK/SAPK signaling, the IRE1α branch of the unfolded protein response (UPR), the MAPK/ERK1/2, and the mTOR signaling pathways and results in an enhanced proliferation of the vital surrounding cells. We name this novel response mechanism: Necrosis-induced Proliferation (NiP).
Collapse
Affiliation(s)
- Philipp Rohne
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Steven Wolf
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
- Department of Pathology, The University of Chicago, Chicago, IL USA
| | - Carolin Dörr
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Julia Ringen
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Andrew Holtz
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - René Gollan
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benjamin Renner
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Hans Prochnow
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Markus Baiersdörfer
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Claudia Koch-Brandt
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| |
Collapse
|
32
|
Clusterin inhibition mediates sensitivity to chemotherapy and radiotherapy in human cancer. Anticancer Drugs 2017; 28:702-716. [PMID: 28471806 DOI: 10.1097/cad.0000000000000507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its discovery in 1983, the protein clusterin (CLU) has been isolated from almost all human tissues and fluids and linked to the development of different physiopathological processes, including carcinogenesis and tumor progression. During the last few years, several studies have shown the cytoprotective role of secretory CLU in tumor cells, inhibiting their apoptosis and enhancing their resistance to conventional treatments including hormone depletion, chemotherapy, and radiotherapy. In an effort to determine the therapeutic potential that the inhibition of this protein could have on the development of new strategies for cancer treatment, numerous studies have been carried out in this field, with results, in most cases, satisfactory but sometimes contradictory. In this document, we summarize for the first time the current knowledge of the effects that CLU inhibition has on sensitizing tumor cells to conventional cancer treatments and discuss its importance in the development of new strategies against cancer.
Collapse
|
33
|
Fibroblast-Derived Clusterin Negatively Regulates Pigmentation. J Invest Dermatol 2017; 137:1812-1815. [DOI: 10.1016/j.jid.2017.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 11/17/2022]
|
34
|
Altered levels of blood proteins in Alzheimer's disease longitudinal study: Results from Australian Imaging Biomarkers Lifestyle Study of Ageing cohort. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 8:60-72. [PMID: 28508031 PMCID: PMC5423327 DOI: 10.1016/j.dadm.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A blood-based biomarker panel to identify individuals with preclinical Alzheimer's disease (AD) would be an inexpensive and accessible first step for routine testing. METHODS We analyzed 14 biomarkers that have previously been linked to AD in the Australian Imaging Biomarkers lifestyle longitudinal study of aging cohort. RESULTS Levels of apolipoprotein J (apoJ) were higher in AD individuals compared with healthy controls at baseline and 18 months (P = .0003) and chemokine-309 (I-309) were increased in AD patients compared to mild cognitive impaired individuals over 36 months (P = .0008). DISCUSSION These data suggest that apoJ may have potential in the context of use (COU) of AD diagnostics, I-309 may be specifically useful in the COU of identifying individuals at greatest risk for progressing toward AD. This work takes an initial step toward identifying blood biomarkers with potential use in the diagnosis and prognosis of AD and should be validated across other prospective cohorts.
Collapse
|
35
|
Yerramilli M, Farace G, Quinn J, Yerramilli M. Kidney Disease and the Nexus of Chronic Kidney Disease and Acute Kidney Injury: The Role of Novel Biomarkers as Early and Accurate Diagnostics. Vet Clin North Am Small Anim Pract 2016; 46:961-93. [PMID: 27485279 DOI: 10.1016/j.cvsm.2016.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are interconnected and the presence of one is a risk for the other. CKD is an important predictor of AKI after exposure to nephrotoxic drugs or major surgery, whereas persistent or repetitive injury could result in the progression of CKD. This brings new perspectives to the diagnosis and monitoring of kidney diseases highlighting the need for a panel of kidney-specific biomarkers that reflect functional as well as structural damage and recovery, predict potential risk and provide prognosis. This article discusses the kidney-specific biomarkers, symmetric dimethylarginine (SDMA), clusterin, cystatin B, and inosine.
Collapse
Affiliation(s)
- Murthy Yerramilli
- IDEXX Laboratories, Research & Development, 1-IDEXX Drive, Westbrook, ME 04092, USA.
| | - Giosi Farace
- IDEXX Laboratories, Research & Development, 1-IDEXX Drive, Westbrook, ME 04092, USA
| | - John Quinn
- IDEXX Laboratories, Research & Development, 1-IDEXX Drive, Westbrook, ME 04092, USA
| | - Maha Yerramilli
- IDEXX Laboratories, Research & Development, 1-IDEXX Drive, Westbrook, ME 04092, USA
| |
Collapse
|
36
|
Yunoki T, Tabuchi Y, Hayashi A, Kondo T. Network analysis of genes involved in the enhancement of hyperthermia sensitivity by the knockdown of BAG3 in human oral squamous cell carcinoma cells. Int J Mol Med 2016; 38:236-42. [PMID: 27245201 DOI: 10.3892/ijmm.2016.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.
Collapse
Affiliation(s)
- Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
37
|
Fini ME, Bauskar A, Jeong S, Wilson MR. Clusterin in the eye: An old dog with new tricks at the ocular surface. Exp Eye Res 2016; 147:57-71. [PMID: 27131907 DOI: 10.1016/j.exer.2016.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
Abstract
The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease.
Collapse
Affiliation(s)
- M Elizabeth Fini
- USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522 Australia.
| |
Collapse
|
38
|
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common corneal dystrophy and frequently results in vision loss. Hallmarks of the disease include loss of corneal endothelial cells and formation of excrescences of Descemet's membrane. Later stages involve all layers of the cornea. Impairment of endothelial barrier and pump function and cell death from oxidative and unfolded protein stress contribute to disease progression. The genetic basis of FECD includes numerous genes and chromosomal loci, although alterations in the transcription factor 4 gene are associated with the majority of cases. Definitive treatment of FECD is corneal transplantation. In this paper, we highlight advances that have been made in understanding FECD's clinical features, pathophysiology, and genetics. We also discuss recent advances in endothelial keratoplasty and potential future treatments.
Collapse
Affiliation(s)
- Gustavo Vedana
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
39
|
Hong GH, Kwon HS, Moon KA, Park SY, Park S, Lee KY, Ha EH, Kim TB, Moon HB, Lee HK, Cho YS. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment. THE JOURNAL OF IMMUNOLOGY 2016; 196:2021-30. [PMID: 26826245 DOI: 10.4049/jimmunol.1500747] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 01/03/2016] [Indexed: 12/17/2022]
Abstract
Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Asan Institute for Life Science, Seoul 05505, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; and
| | - Keun-Ai Moon
- Asan Institute for Life Science, Seoul 05505, Korea
| | - So Young Park
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; and
| | - Sunjoo Park
- Asan Institute for Life Science, Seoul 05505, Korea
| | | | - Eun Hee Ha
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Asan Institute for Life Science, Seoul 05505, Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; and
| | - Hee-Bom Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; and
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; and
| |
Collapse
|
40
|
Ma Y, Kong L, Nan K, Qi S, Ru L, Ding C, Wang D. Apolipoprotein-J prevents angiotensin II-induced apoptosis in neonatal rat ventricular cells. Lipids Health Dis 2015; 14:114. [PMID: 26391229 PMCID: PMC4578334 DOI: 10.1186/s12944-015-0118-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background Up-regulation of angiotensin II (AngII) occurs in cardiac diseases, such as congestive heart failure, cardiac hypertrophy, myocardial ischemia and atrial fibrillation, which represent major health problems. Evidence from in vivo studies suggests that the level of Apolipoprotein-J (ApoJ) is also elevated but plays a protective role in cardiovascular disease. This study aimed to evaluate the protective effects of ApoJ against cytotoxicity of AngII in neonatal rat ventricular cells (NRVCs). Methods and results In culture, NRVCs were damaged by exposure to AngII, and ApoJ overexpression using an adenovirus vector significantly reduced the AngII-induced cell injury. ApoJ also prevented AngII from augmenting Nox2/gp91phox expression. The reactive oxygen species (ROS) scavenger, Mn(III)TBAP, showed similar results of attenuating AngII-induced cell damage. Furthermore, ApoJ overexpression increased phosphorylation of Akt, and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 diminished the antioxidant effects of ApoJ, and prevented the protective effect of ApoJ against the cytotoxicity of AngII. Moreover, upregulation of nuclear factor κB (NF-κB) p65 expression and phosphorylation of p38 mitogen-activated protein kinase (MAPK) mediated by AngII in cultured NRVCs were significantly inhibited by overexpression of ApoJ. The p38 MAPK inhibitor SB203580 and the NF-κB inhibitor PDTC protected NRVCs from injury caused by AngII. Conclusions ApoJ serves as a cytoprotective protein in NRVCs against cytotoxicity of AngII through the PI3K-Akt-ROS and MAPK/ NF-κB pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Lingfeng Kong
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China.
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
41
|
Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats. Mech Ageing Dev 2015; 149:19-30. [DOI: 10.1016/j.mad.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/21/2015] [Accepted: 04/22/2015] [Indexed: 11/23/2022]
|
42
|
Wang P, Zhao L, Hou H, Zhang H, Huang Y, Wang Y, Li H, Gao F, Yan S, Li L. Epigenetic Changes are Associated with Programmed Cell Death Induced by Heat Stress in Seedling Leaves of Zea mays. PLANT & CELL PHYSIOLOGY 2015; 56:965-76. [PMID: 25670712 DOI: 10.1093/pcp/pcv023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 05/21/2023]
Abstract
Histone modification plays a crucial role in regulation of chromatin architecture and function, responding to adverse external stimuli. However, little is known about a possible relationship between epigenetic modification and programmed cell death (PCD) in response to environmental stress. Here, we found that heat stress induced PCD in maize seedling leaves which was characterized by chromatin DNA laddering and DNA strand breaks detected by a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) test. The activities of the reactive oxygen species (ROS)-related enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were progressively increased over time in the heat-treated seedlings. However, the concentration of H2O2 remained at relatively lower levels, while the concentration of superoxide anion ([Formula: see text]) was increased, accompanied by the occurrence of higher ion leakage rates after heat treatment. The total acetylation levels of histones H3K9, H4K5 and H3 were significantly increased, whereas the di-methylation level of histone H3K4 was unchanged and the di-methylation level of histone H3K9 was decreased in the seedling leaves exposed to heat stress compared with the control seedlings, accompanied by increased nucleolus size indicative of chromatin decondensation. Furthermore, treatment of seedlings with trichostatin A (TSA), which always results in genomic histone hyperacetylation, caused an increase in the [Formula: see text] level within the cells. The results suggested that heat stress persistently induced [Formula: see text], leading to PCD in association with histone modification changes in the maize leaves.
Collapse
MESH Headings
- Acetylation/drug effects
- Apoptosis/drug effects
- Apoptosis/genetics
- Blotting, Western
- Chromatin/metabolism
- DNA Damage
- Epigenesis, Genetic/drug effects
- Exons/genetics
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Heat-Shock Response/genetics
- Histones/metabolism
- Hydroxamic Acids/pharmacology
- In Situ Nick-End Labeling
- Ions
- Methylation/drug effects
- Models, Biological
- Plant Leaves/cytology
- Plant Leaves/drug effects
- Plant Leaves/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Seedlings/cytology
- Seedlings/drug effects
- Seedlings/genetics
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Zea mays/drug effects
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/physiology
Collapse
Affiliation(s)
- Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yapei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shihan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
43
|
Ebokaiwe AP, D'Cruz SC, Jubendradass R, Amala Rani JS, Mathur PP, Farombi EO. Nigerian bonny-light crude oil induces alteration in testicular stress response proteins and caspase-3 dependent apoptosis in albino wistar rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:242-252. [PMID: 24106129 DOI: 10.1002/tox.21902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
In the past few decades, there has been much concern about the adverse health effects of environmental contaminants in general and Crude Oil in particular around the Niger Delta region of Nigeria where all the crude Oil exploration is taking place. Studies have shown the repro-toxic effects of Bonny-light crude oil (BLCO). However, the insight into the mechanisms of gonadal toxicity induced by BLCO is not well known. In this study, we sought to elucidate the mechanism(s) underpinning the gonadal effects within hours of exposure to BLCO. Experimental rats were divided into five groups of four each. Animals were orally administered with a single dose of BLCO (800 mg/kg body weight) and killed at 0, 6, 12, 24, and 72 h post-treatment. The levels and time-course of induction of stress response proteins and apoptosis-related proteins like cytochorome C, caspase 3 and procaspase 9, Fas-FasL, NF-kB and TNF-α were determined to assess sequential induction of apoptosis in the rat testis. DNA damage was assessed by TUNEL assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptotis- related proteins as early as 6 h following exposure. Time-dependent elevations in the levels of the proteins were observed. The DNA damage was measured and showed time-dependent increase in the TUNEL positive cells of testicular cells. The study demonstrates induction of testicular apoptosis in adult rats following exposure to a single dose of BLCO.
Collapse
Affiliation(s)
- Azubuike P Ebokaiwe
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | |
Collapse
|
44
|
Mukherjee S, Jagadeeshaprasad MG, Banerjee T, Ghosh SK, Biswas M, Dutta S, Kulkarni MJ, Pattari S, Bandyopadhyay A. Proteomic analysis of human plasma in chronic rheumatic mitral stenosis reveals proteins involved in the complement and coagulation cascade. Clin Proteomics 2014; 11:35. [PMID: 25379033 PMCID: PMC4193131 DOI: 10.1186/1559-0275-11-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rheumatic fever in childhood is the most common cause of Mitral Stenosis in developing countries. The disease is characterized by damaged and deformed mitral valves predisposing them to scarring and narrowing (stenosis) that results in left atrial hypertrophy followed by heart failure. Presently, echocardiography is the main imaging technique used to diagnose Mitral Stenosis. Despite the high prevalence and increased morbidity, no biochemical indicators are available for prediction, diagnosis and management of the disease. Adopting a proteomic approach to study Rheumatic Mitral Stenosis may therefore throw some light in this direction. In our study, we undertook plasma proteomics of human subjects suffering from Rheumatic Mitral Stenosis (n = 6) and Control subjects (n = 6). Six plasma samples, three each from the control and patient groups were pooled and subjected to low abundance protein enrichment. Pooled plasma samples (crude and equalized) were then subjected to in-solution trypsin digestion separately. Digests were analyzed using nano LC-MS(E). Data was acquired with the Protein Lynx Global Server v2.5.2 software and searches made against reviewed Homo sapiens database (UniProtKB) for protein identification. Label-free protein quantification was performed in crude plasma only. RESULTS A total of 130 proteins spanning 9-192 kDa were identified. Of these 83 proteins were common to both groups and 34 were differentially regulated. Functional annotation of overlapping and differential proteins revealed that more than 50% proteins are involved in inflammation and immune response. This was corroborated by findings from pathway analysis and histopathological studies on excised tissue sections of stenotic mitral valves. Verification of selected protein candidates by immunotechniques in crude plasma corroborated our findings from label-free protein quantification. CONCLUSIONS We propose that this protein profile of blood plasma, or any of the individual proteins, could serve as a focal point for future mechanistic studies on Mitral Stenosis. In addition, some of the proteins associated with this disorder may be candidate biomarkers for disease diagnosis and prognosis. Our findings might help to enrich existing knowledge on the molecular mechanisms involved in Mitral Stenosis and improve the current diagnostic tools in the long run.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- />Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032 India
| | | | - Tanima Banerjee
- />Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Sudip K Ghosh
- />General Medicine Department, Medical College, Kolkata, India
| | - Monodeep Biswas
- />Department of Cardiology, Geisinger Community Medical Center & Wright Center for graduate medical education, Scranton, PA 18510 USA
| | - Santanu Dutta
- />Department of Cardio-thoracic and Vascular Surgery, Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata, 700020 India
| | - Mahesh J Kulkarni
- />Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Sanjib Pattari
- />Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, 700099 India
| | - Arun Bandyopadhyay
- />Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
45
|
Kwon MJ, Ju TJ, Heo JY, Kim YW, Kim JY, Won KC, Kim JR, Bae YK, Park IS, Min BH, Lee IK, Park SY. Deficiency of clusterin exacerbates high-fat diet-induced insulin resistance in male mice. Endocrinology 2014; 155:2089-101. [PMID: 24684302 DOI: 10.1210/en.2013-1870] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study examined the role of clusterin in insulin resistance in high fat-fed wild-type and clusterin knockout (KO) mice. The plasma levels of glucose and C-peptide and islet size were increased in clusterin KO mice after an 8-week high-fat diet. In an ip glucose tolerance test, the area under the curve for glucose was not different, whereas the area under the curve for insulin was higher in clusterin KO mice. In a hyperinsulinemic-euglycemic clamp, the clamp insulin levels were higher in clusterin KO mice after the high-fat diet. After adjusting for the clamp insulin levels, the glucose infusion rate, suppression of hepatic glucose production, and glucose uptake were lower in clusterin KO mice in the high fat-fed group. The plasma levels of clusterin and clusterin mRNA levels in the skeletal muscle and liver were increased by the high-fat diet. The mRNA levels of the antioxidant enzymes were lower, and the mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1 and cytokines and protein carbonylation were higher in the skeletal muscle and liver in clusterin KO mice after the high-fat diet. Palmitate-induced gene expressions of NOX1 and cytokines were higher in the primary cultured hepatocytes of clusterin KO mice compared with the wild-type mice. Clusterin inhibited the gene expression and reactive oxygen species generation by palmitate in the hepatocytes and C2C12. AKT phosphorylation by insulin was reduced in the hepatocytes of clusterin KO mice. These results suggest that clusterin plays a protective role against high-fat diet-induced insulin resistance through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Min Jung Kwon
- Departments of Physiology (M.J.K., T.-j.J., J.-Y.H., Y.-W.K., J.-Y.K., S.-Y.P.), Internal Medicine (K.-C.W.), Biochemistry and Molecular Biology (J.-R.K.), and Pathology (Y.K.B.) and Aging-Associated Vascular Disease Research Center (T.-j.J., J.-Y.H., J.-R.K., S.-Y.P.), College of Medicine, Yeungnam University, Daegu 705-703, South Korea; Department of Anatomy (I.-S.P.), College of Medicine, Inha University, Incheon 400-712, South Korea; Department of Pharmacology (B.-H.M.), College of Medicine, Korea University, Seoul 136-705, South Korea; and Department of Internal Medicine (I.-K.L.), School of Medicine, Kyungpook National University, Daegu 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Clusterin is a heterodimeric disulfide-linked glycoprotein (449 amino acids) isolated in the rat prostate after castration. It is widely distributed in different tissues and highly conserved in species. There are two isoforms (1 and 2) with antagonistic actions regarding apoptosis. Clusterin is implicated in a number of biological processes, including lipid transport, membrane recycling, cell adhesion, programmed cell death, and complement cascade, representing a truly multifunctional protein. Isoform 2 is overexpressed under cellular stress conditions and protects cells from apoptosis by impeding Bax actions on the mitochondrial membrane and exerts other protumor activities, like phosphatidylinositol 3-kinase/protein kinase B pathway activation, modulation of extracellular signal-regulated kinase 1/2 signaling and matrix metallopeptidase-9 expression, increased angiogenesis, modulation of the nuclear factor kappa B pathway, among others. Its overexpression should be considered as a nonspecific cellular response to a wide variety of tissue insults like cytotoxic chemotherapy, radiation, excess of free oxygen radicals, androgen or estrogen deprivation, etc. A review of the recent literature strongly suggests potential roles for custirsen in particular, and proapoptosis treatments in general, as novel modalities in cancer management. Inhibition of clusterin is known to increase the cytotoxic effects of chemotherapeutic agents, and custirsen, a second-generation antisense oligonucleotide that blocks clusterin, is being tested in a Phase III clinical trial after successful results were achieved in Phase II studies. A major issue in cancer evolution that remains unanswered is whether clusterin represents a driving force of tumorigenesis or a late phenomenon after chemotherapy. This review presents preclinical data that encourages trials in various types of cancer other than advanced castration-resistance prostate cancer and discusses briefly the appropriate timing for clusterin inhibition in the clinical context.
Collapse
Affiliation(s)
- Tomas Koltai
- Gerencia de Efectores Sanitarios Propios, Instituto Nacional de la Seguridad Social para Jubilados y Pensionados, Buenos Aires, República Argentina
| |
Collapse
|
47
|
Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations. Toxicol Appl Pharmacol 2013; 272:888-94. [DOI: 10.1016/j.taap.2013.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
|
48
|
Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway. PLoS One 2013; 8:e75303. [PMID: 24073260 PMCID: PMC3779157 DOI: 10.1371/journal.pone.0075303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
Abstract
Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU), which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s) of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.
Collapse
|
49
|
Tobisawa SI, Honma M, Ishida-Yamamoto A, Saijo Y, Iizuka H. Prognostic factors in 105 Japanese cases of mycosis fungoides and Sézary syndrome: Clusterin expression as a novel prognostic factor. J Dermatol Sci 2013; 71:160-6. [DOI: 10.1016/j.jdermsci.2013.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 01/27/2023]
|
50
|
Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation. J Proteomics 2013; 82:64-80. [DOI: 10.1016/j.jprot.2013.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 01/23/2023]
|