1
|
Oh HJ, Nam BY, Wu M, Kim S, Park J, Kang S, Park JT, Yoo TH, Kang SW, Han SH. Klotho plays a protective role against glomerular hypertrophy in a cell cycle-dependent manner in diabetic nephropathy. Am J Physiol Renal Physiol 2018; 315:F791-F805. [PMID: 29638159 DOI: 10.1152/ajprenal.00462.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There are few studies on the effect of klotho on podocytes in diabetic nephropathy. Thus, we tested whether klotho exerts a protective effect against glomerular injury in diabetes. Mouse podocytes were cultured in media containing 5.6 or 30 mM glucose(HG) with or without 200 pM of recombinant klotho (rKL). Additionally, 32 mice were injected intraperitoneally with either diluent( n = 16, C) or with streptozotocin ( n = 16, DM). Control and diabetic mice underwent sham operation and unilateral nephrectomy, respectively. Eight mice from each control and DM group were treated daily with 10 μg·kg-1·day-1 of rKL, using an osmotic minipump. Klotho was expressed in podocytes, and its expression was dependent on peroxisome proliferator-activateed receptor-γ (PPARγ). HG treatment increased the expression of cell cycle-related and apoptotic markers, and these were significantly attenuated by rKL; rKL inhibited the extracellular signal-regulated protein kinase-1/2 and p38 signaling pathways in HG-induced podocyte injury. However, siRNA against klotho gene in HG-treated podocytes failed to aggravate cell cycle arrest and apoptosis. When HG-treated podocytes were incubated in the high-klotho-conditioned medium from tubular epithelial cells, cell injury was significantly attenuated. This effect was not observed when klotho was inhibited by siRNA. In vivo, the expressions of cell cycle-related and apoptotic markers were increased in diabetic mice compared with controls, which were significantly decreased by rKL. Glomerular hypertrophy (GH) and increased profibrotic markers were significantly alleviated after rKL administration. These results showed that klotho was expressed in glomerular podocytes that and its expression was regulated by PPARγ. Additionally, administration of rKL attenuated GH via a cell cycle-dependent mechanism and decreased apoptosis.
Collapse
Affiliation(s)
- Hyung Jung Oh
- Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
| | - Meiyan Wu
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
| | - Seonghun Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
| | - Sukyung Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
| | - Jung Tak Park
- Divison of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Divison of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea.,Divison of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Divison of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Mesenchymal Stem Cell-Based Therapies against Podocyte Damage in Diabetic Nephropathy. Tissue Eng Regen Med 2017; 14:201-210. [PMID: 30603477 DOI: 10.1007/s13770-017-0026-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023] Open
Abstract
Injury to podocytes is an early event in diabetic nephropathy leading to proteinuria with possible progression to end-stage renal failure. The podocytes are unique and highly specialized cells that cover the outer layer of kidney ultra-filtration barrier and play an important role in glomerular function. In the past few decades, adult stem cells, such as mesenchymal stem cells (MSCs) with a regenerative and differentiative capacity have been extensively used in cell-based therapies. In addition to their capability for regeneration and differentiation, MSCs contributes to their milieu by paracrine action of a series of growth factors via antiapoptotic, mitogenic and other cytokine actions that actively participate in treatment of podocyte damage through prevention of podocyte effacement, detachment and apoptosis. It is hoped that novel stem cell-based therapies will be developed in the future to prevent podocyte injury, thereby reducing the burden of kidney disease.
Collapse
|
3
|
Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, Felder RA, Mori H, Masaki T, Kobori H, Nishiyama A. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complications 2014; 28:604-11. [PMID: 24996978 PMCID: PMC4153757 DOI: 10.1016/j.jdiacomp.2014.05.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/18/2014] [Accepted: 05/25/2014] [Indexed: 02/07/2023]
Abstract
AIMS Kidney cells in patients with diabetic nephropathy are reported to be senescent. However, the mechanisms that regulate cellular senescence in the diabetic kidney are still unknown. In the present study, we evaluated the contribution of high glucose to renal cell senescence in streptozotocin (STZ)-induced diabetic mice. METHODS Non-diabetic and streptozotocin (STZ, 10mgkg(-1)day(-1) for 7days, i.p.)-induced type 1 diabetic C57BL/6J mice and cultured human proximal tubular cells were used in this study. RESULTS Hyperglycemia dramatically increased the renal expression of p21 but not other CDK inhibitors such as p16 and p27 at 4weeks after STZ injection. These changes were accompanied by an increase in senescence-associated β-galactosidase staining in tubular epithelial cells. Administration of insulin at doses that maintained normoglycemia or mild hypoglycemia suppressed the changes induced by STZ. Insulin did not affect the senescent markers in non-diabetic mice. Exposure of cultured human proximal tubular cells to 25mmol/L, but not 8mmol/L, glucose medium increased the expression of senescence markers, which was suppressed by knock-down of p21 or sodium glucose cotransporter (SGLT) 2. CONCLUSIONS These results suggest that hyperglycemia causes tubular senescence via a SGLT2- and p21-dependent pathway in the type 1 diabetic kidney.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cellular Senescence/genetics
- Cyclin-Dependent Kinase Inhibitor p21/physiology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/physiopathology
- Disease Progression
- Hyperglycemia/complications
- Hyperglycemia/genetics
- Hyperglycemia/physiopathology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Signal Transduction/physiology
- Sodium-Glucose Transporter 2/physiology
- Streptozocin
Collapse
Affiliation(s)
- Kento Kitada
- Department of Pharmacology, Kagawa University, Kagawa, Japan.
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Hiroyuki Ohsaki
- Faculty of Clinical Examination, Ehime Prefectural University Of Health Sciences, Ehime, Japan
| | - Hirofumi Hitomi
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junichi Yatabe
- Department of Pharmacology, Fukushima Medical University, Fukushima, Japan
| | - Robin A Felder
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Hirohito Mori
- Department of Gastroenterology, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology, Kagawa University, Kagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| |
Collapse
|
4
|
Woolston C, Martin S. Analysis of tumor and endothelial cell viability and survival using sulforhodamine B and clonogenic assays. Methods Mol Biol 2011; 740:45-56. [PMID: 21468967 DOI: 10.1007/978-1-61779-108-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A variety of assays, and rationales for their use, exist to monitor viability and/or survival following cellular exposure to insult. Two commonly used in vitro assays are the sulforhodamine B assay and the clonogenic survival assay which can be used to monitor the efficacy of anticancer agents, either via direct tumor cell cytotoxicity or antiangiogenic mechanisms. The techniques described are suitable for studying survival in a number of different cell types; however, this chapter describes how they may be used in the assessment of chemo-/radiosensitivity. The methods are uncomplicated and robust as long as attention is paid to key optimization steps. Except for a multiwell plate reader they do not require any specialized equipment other than that found in a typical tissue-culture laboratory.
Collapse
Affiliation(s)
- Caroline Woolston
- Translational Radiation Biology Research Group, Department of Clinical Oncology, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | |
Collapse
|
5
|
Sequencing, analysis, and annotation of expressed sequence tags for Camelus dromedarius. PLoS One 2010; 5:e10720. [PMID: 20502665 PMCID: PMC2873428 DOI: 10.1371/journal.pone.0010720] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 04/29/2010] [Indexed: 11/19/2022] Open
Abstract
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism.
Collapse
|
6
|
Nakayama T, Kosugi T, Gersch M, Connor T, Sanchez-Lozada LG, Lanaspa MA, Roncal C, Perez-Pozo SE, Johnson RJ, Nakagawa T. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am J Physiol Renal Physiol 2010; 298:F712-20. [PMID: 20071464 DOI: 10.1152/ajprenal.00433.2009] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest that the metabolic syndrome is associated with renal disease. We previously reported that a high-fructose diet, but not a high-glucose diet, can induce metabolic syndrome and accelerate chronic renal disease in rats. We now examined the effects of a high-fructose diet on normal rat kidneys. Three groups of Sprague-Dawley rats were pair fed a special diet containing 60% fructose, 60% glucose, or control standard rat chow for 6 wk, and then histological studies were performed. The effect of fructose to induce cell proliferation in cultured proximal tubular cells was also performed. Fructose diet, but not glucose diet, significantly increased kidney weight by 6 wk. The primary finding was tubular hyperplasia and proliferation involving all segments of the proximal tubules while glomerular changes were not observed. This is the same site where the fructose transporters (GLUT2 and -5) as well as the key enzyme in fructose metabolism (ketohexokinase) were expressed. Consistently, fructose also induced proliferation of rat proximal tubular cells in culture. In vivo, tubular proliferation was also associated with focal tubular injury, with type III collagen deposition in the interstitium, an increase in alpha-smooth muscle actin positive myofibroblasts, and an increase in macrophage infiltration. In conclusion, a high-fructose diet induces cell proliferation and hyperplasia in proximal tubules, perhaps via a direct metabolic effect. The effect is independent of total energy intake and is associated with focal tubulointerstitial injury. These studies may provide a mechanism by which metabolic syndrome causes renal disease.
Collapse
Affiliation(s)
- Takahiro Nakayama
- Division of Nephrology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sinuani I, Weissgarten J, Beberashvili I, Rapoport MJ, Sandbank J, Feldman L, Albeck M, Averbukh Z, Sredni B. The cyclin kinase inhibitor p57kip2 regulates TGF-beta-induced compensatory tubular hypertrophy: effect of the immunomodulator AS101. Nephrol Dial Transplant 2009; 24:2328-38. [PMID: 19321762 DOI: 10.1093/ndt/gfn742] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Compensatory tubular cell hypertrophy following unilateral nephrectomy is a cell cycle-dependent process. Our previous study showed that treatment of unilaterally nephrectomized rats with the immunomodulator AS101 partially inhibits compensatory hypertrophy of the remaining kidneys through the inhibition of IL-10-induced TGF-beta secretion by mesangial cells. The present study is focused on understanding the intracellular mechanism(s) of this phenomenon. METHODS A total of 120 male Sprague-Dawley rats were unilaterally nephrectomized or sham-operated and treated with AS101 or PBS. Kidney weight and protein/DNA ratio were assessed for each experimental animal. The expression of TGF-beta, PCNA, CDK 2, pRb, ppRb, p21(Waf1), p27(kip1) and p57(kip2) proteins in renal tissues was determined by western blot analysis and immunohistochemistry, and the immunoprecipitation of cyclin E complexes was performed. RESULTS Compensatory renal growth is initiated by proliferation of resident renal cells that precedes hypertrophy. Changes in TGF-beta expression were positively correlated with the amounts of p57(kip2), but not with p21(Waf1) and p27(kip1) expression in the remaining kidneys. Moreover, there was a marked abundance of p57(kip2) but not p21(Waf1) and p27(kip1) binding to the cyclin E complex in PBS-treated unilaterally nephrectomized rats compared to sham-operated animals. Treatment of uninephrectomized rats with AS101 reduced kidney weight and protein/DNA ratio, inhibited TGF-beta and p57(kip2) expression in the remaining kidneys, and decreased the level of p57(kip2) binding to cyclin E complexes. CONCLUSION These results demonstrate that TGF-beta-induced compensatory tubular cell hypertrophy is regulated in vivo by p57(kip2) but not by the p21(Waf1) and p27(kip1) cyclin kinase inhibitor proteins.
Collapse
Affiliation(s)
- Inna Sinuani
- Nephrology Division, Assaf Harofeh Medical Center, Zerifin, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wiggins KJ, Tiauw V, Zhang Y, Gilbert RE, Langham RG, Kelly DJ. Perindopril attenuates tubular hypoxia and inflammation in an experimental model of diabetic nephropathy in transgenic Ren-2 rats. Nephrology (Carlton) 2008; 13:721-9. [PMID: 18826488 DOI: 10.1111/j.1440-1797.2008.01008.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Renal hypoxia plays a role in the development of diabetic nephropathy, and may be mediated by overactivity of the renin-angiotensin-aldosterone system (RAAS). In this study the localization of cellular hypoxia in an experimental model of diabetic nephropathy was assessed, and the effect of the angiotensin-converting enzyme inhibitor perindopril on hypoxia evaluated. METHODS Female Sprague-Dawley rats heterozygous for the Ren-2 gene were randomized to three groups (n = 8 per group)--controls, diabetes or diabetes + perindopril. Diabetes was induced by injection of streptozotocin at 6 weeks of age. Perindopril was administered at a dose of 2 mg/kg daily from 6 weeks. Subjects were culled after 16 weeks. Areas of tissue hypoxia were localized using immunohistochemistry to detect pimonidazole uptake. RESULTS Diabetic rat kidneys were characterized by increases in tubulointerstitial collagen deposition compared with controls. Tubular hypoxia was significantly greater in diabetic rats, indicated by a 2.5-fold increase in the proportional area of pimonidazole immunostaining (P < 0.001). Immunohistochemical staining for pimonidazole co-localized with osteopontin, and was associated with higher numbers of ED-1-positive cells (macrophages) within the tubulointerstitium. Treatment with perindopril ameliorated structural changes of diabetic nephropathy and reduced the amount of pimonidazole and ED-1 immunostaining to levels similar to that of controls. CONCLUSION In diabetic Ren-2 rats the development of diabetic nephropathy was associated with tubular hypoxia. Co-localization of osteopontin with hypoxic cells suggests that tubular hypoxia may be involved in the pathogenesis of diabetic nephropathy. The degree of hypoxia and fibrosis was attenuated by treatment with perindopril.
Collapse
Affiliation(s)
- Kathryn J Wiggins
- Department of Medicine, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Masterson JC, O'Dea S. 5-Bromo-2-deoxyuridine activates DNA damage signalling responses and induces a senescence-like phenotype in p16-null lung cancer cells. Anticancer Drugs 2007; 18:1053-68. [PMID: 17704656 DOI: 10.1097/cad.0b013e32825209f6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
5-Bromo-2-deoxyuridine (BrdU) is a thymidine analogue that is incorporated into replicating DNA. Although originally designed as a chemotherapeutic agent, sublethal concentrations of BrdU have long been known to alter the growth and phenotype of a wide range of cell types. Mechanisms underlying these BrdU-mediated effects remain unknown, however. We have characterized the effects of BrdU on A549 lung cancer cells by examining DNA damage responses, cell cycle effects and phenotypic changes. A549 cells express wild-type p53, but are p16-null. Sublethal concentrations of BrdU evoke a DNA damage response in these cells that involves the activation of Chk1, Chk2 and p53. Increased numbers of enlarged nuclei and multinucleated cells are evident in the treated populations. Cell cycle inhibition occurs, resulting in reduced proliferation and accumulation of cells in the S, G2/M and G0 phases. BrdU induces an early inhibition of p21 expression that coincides with nuclear localization of proliferating cell nuclear antigen. Subsequently, p21 levels increase, whereas proliferating cell nuclear antigen levels decrease compared with control cells. Upregulation of p27 and p57 expression also occurs. By day 7 of exposure to BrdU, treated cells acquire a senescent-like phenotype with an increase in cell size, granularity and beta-galactosidase activity. We conclude that BrdU induces a DNA damage response in A549 cells, which results in reduced proliferation mitotic exit and phenotypic changes that resemble senescence.
Collapse
Affiliation(s)
- Joanne C Masterson
- Institute of Immunology, Biology Department, National University of Ireland Maynooth, Ireland
| | | |
Collapse
|
10
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 867] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
One complication of diabetes is a pronounced renal cellular hypertrophy, inevitably resulting in chronic fibrotic changes. Chuang and colleagues demonstrate that hypertrophy in vitro is dependent on an increased phosphoinositide 3-kinase (PI3K) activity and is correlated with increased levels of p21(WAF1/Cip1), a cell-cycle regulator that was previously associated with renal fibrosis and sclerosis from nondiabetic causes.
Collapse
Affiliation(s)
- P M Price
- University of Arkansas for Medical Sciences, Department of Internal Medicine, Division of Nephrology, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
12
|
Chuang TD, Guh JY, Chiou SJ, Chen HC, Huang JS, Yang YL, Chuang LY. Phosphoinositide 3-kinase is required for high glucose-induced hypertrophy and p21WAF1 expression in LLC-PK1 cells. Kidney Int 2007; 71:867-74. [PMID: 17332736 DOI: 10.1038/sj.ki.5002155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta (TGF-beta), Smads, and the cyclin-dependent kinase (cdk) inhibitor p21(WAF1) are important in the pathogenesis of diabetic tubular hypertrophy. Phosphoinositide 3 kinase (PI3K)/Akt kinase activity is increased in diabetic glomerular hypertrophy. Thus, we studied the role of PI3K in high glucose (30 mM)-induced p21(WAF1), Smad2/3, and cell cycle-dependent hypertrophy in LLC-PK1 cells. We found that high glucose time-dependently (1-48 h) increased PI3K/Akt kinase activity. LY294002 (a PI3K inhibitor) attenuated high glucose-induced cell cycle-dependent (G(0)/G(1) phase) hypertrophy at 72 h while attenuating high glucose-induced p21(WAF1) gene transcription and protein expression at 36-48 h. LY294002 also attenuated high glucose-induced binding of p21(WAF1) to the cyclin E/cdk2 complex, whereas attenuating high glucose-induced TGF-beta bioactivity, Smad2/3 phosphorylation, and Smad2/3 DNA-binding activity at 36-48 h. We concluded that PI3K is required for high glucose-induced cell cycle-dependent hypertrophy, p21(WAF1) transcription and expression, p21(WAF1) binding to the cyclin E/cdk2 complex, TGF-beta bioactivity, and Smad2/3 activity in LLC-PK1 cells.
Collapse
Affiliation(s)
- T-D Chuang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Chuang TD, Guh JY, Chiou SJ, Chen HC, Hung WC, Chuang LY. Sp1 and Smad3 are required for high glucose-induced p21WAF1 gene transcription in LLC-PK1 cells. J Cell Biochem 2007; 102:1190-201. [PMID: 17516505 DOI: 10.1002/jcb.21346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cyclin-dependent kinase inhibitor p21(WAF1) is required for diabetic glomerular hypertrophy. High glucose-induced hypertrophy in proximal tubule cells is dependent on transforming growth factor-beta (TGF-beta). Many of the TGF-beta-induced effects are dependent on Smad2/3. Thus, the molecular mechanisms of high glucose-induced p21(WAF1) and hypertrophy were studied in high glucose-cultured proximal tubule-like LLC-PK(1) cells. We found that high glucose (30 mM) induced hypertrophy at 72 h. High glucose also increased the expression of p21(WAF1) protein and p21(WAF1) mRNA transcription and abundance at 48 h. The DNA element in the 5' regulatory region of p21(WAF1) gene essential for high glucose-induced p21(WAF1) gene transcription was identified as Sp1 by a series of the 5' regulatory region of p21(WAF1) gene deletion mutants. Moreover, high glucose activated Smad2/3 while increasing the Sp1 DNA-binding activity. High glucose also increased the Sp1-dependent transcriptional activity of p21(WAF1) gene. High glucose-induced hypertrophy was attenuated by p21(WAF1) short interfering RNA and Smad3 dominant-negative plasmid transfection. We concluded that high glucose induced hypertrophy via Sp1-Smad2/3-dependent activation of p21(WAF1) gene transcription in LLC-PK(1) cells.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Chen J, Chen JK, Neilson EG, Harris RC. Role of EGF Receptor Activation in Angiotensin II–Induced Renal Epithelial Cell Hypertrophy. J Am Soc Nephrol 2006; 17:1615-23. [PMID: 16641152 DOI: 10.1681/asn.2005111163] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
For determination of the molecular mechanisms underlying the induction of epithelial cell hypertrophy by angiotensin II (Ang II), a well-characterized porcine renal proximal tubular cell line LLCPKcl4, which does not express endogenous Ang II receptor subtypes, was transfected with cDNA encoding Ang II subtype 1 receptor (AT1R/Cl4). Ang II transactivated the EGF receptor (EGFR) in these AT1R/Cl4 cells, which was blocked by the selective AT1R antagonist losartan but not by the selective AT2R antagonist PD123319. Ang II did not transactivate EGFR in empty vector-transfected LLCPKcl4 cells (Vector/Cl4). Ang II elicited release of soluble heparin-binding EGF-like growth factor (HB-EGF) from AT1R/Cl4 cells, and Ang II-induced EGFR activation was prevented by pretreatment with the specific HB-EGF inhibitor CRM197 or the metalloproteinase inhibitors batimastat or phenanthroline, none of which had any effect on EGFR activation by exogenously administered EGF. Ang II stimulated protein synthesis and cell hypertrophy in AT1R/Cl4 cells without increasing cell number, and signaling studies revealed that Ang II stimulated phosphorylation of the 40S ribosomal protein S6 and the eukaryotic translation initiation factor 4E-binding protein 1, the two downstream target proteins of the mammalian target of rapamycin, which is a central regulator of protein synthesis and cell size. Ang II-induced mammalian target of rapamycin activation, [3H]leucine incorporation, and cellular hypertrophy were inhibited by pretreatment with either batimastat or CRM197 or by pretreatment with rapamycin or the EGFR tyrosine kinase inhibitor AG1478. Ang II also stimulated Smad 2/3 phosphorylation, which was blocked by a selective TGF-beta receptor I kinase inhibitor but not by CRM197. With blockade of TGF-beta receptor, Ang II-mediated hypertrophy was converted into cell proliferation, which was blocked by CRM197. In summary, this is the first demonstration that HB-EGF shedding-dependent EGFR transactivation, along with activation of TGF-beta signaling pathways, mediates Ang II-induced renal tubular epithelial cell hypertrophy.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Medicine, Vanderbilt University School of Medicine, and Department of Veterans Affairs, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
15
|
Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 2005; 340:296-301. [PMID: 16364254 DOI: 10.1016/j.bbrc.2005.12.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 12/03/2005] [Indexed: 01/11/2023]
Abstract
Early diabetic nephropathy is characterized by renal hypertrophy that is mainly due to proximal tubular hypertrophy. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase, and its signaling has been reported to regulate protein synthesis and cellular growth, specifically, hypertrophy. Therefore, we examined the effect of mTOR signaling on diabetic renal hypertrophy by using the specific inhibitor for mTOR, rapamycin. Ten days after streptozotocin-induced diabetes, mice showed kidney hypertrophy with increases in the phosphorylation of p70S6kinase and the expression of cyclin kinase inhibitors, p21(Cip1) and p27(Kip1), in the kidneys. The intraperitoneal injection of rapamycin (2 mg/kg/day) markedly attenuated the enhanced phosphorylation of p70S6kinase, the increment of cyclin-dependent kinase inhibitors, and renal enlargement without any changes of clinical parameters, including blood glucose, blood pressure, and food intake. Overexpression of a constitutive active form of p70S6kinase resulted in increased cell size of cultured mouse proximal tubule cells; thus, activation of p70S6kinase causes hypertrophy of proximal tubular cells. Our findings suggest that activation of mTOR signaling causes renal hypertrophy at the early stage of diabetes.
Collapse
Affiliation(s)
- Masayoshi Sakaguchi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Petermann AT, Pippin J, Durvasula R, Pichler R, Hiromura K, Monkawa T, Couser WG, Shankland SJ. Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int 2005; 67:157-66. [PMID: 15610239 DOI: 10.1111/j.1523-1755.2005.00066.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Increased intraglomerular pressure is a final pathway toward glomerulosclerosis in systemic hypertension, diabetes, and focal segmental glomerulosclerosis (FSGS). Increased intraglomerular pressure causes stress-tension, or stretch, on resident glomerular cells. However, the effects of stretch on podocyte growth, and the mechanisms that underlie this, have not been elucidated. METHODS To test the hypothesis that stretch alters podocyte growth, cultured mouse podocytes were exposed to cyclic mechanical stretch created by vacuum; control cells were grown under similar conditions, but not exposed to stretch. Proliferation (cell cycle phases) and hypertrophy (forward light scatter) were measured in stretched and control podocytes by flow cytometry. The role of the cyclin-dependent kinase (CDK) inhibitors, p21 and p27, was examined by stretching podocytes isolated from p21 and p27 knockout (-/-) mice, and the role of specific signaling pathways was assessed by Western blot analysis and blocking studies. RESULTS Our results showed that stretch reduced cell cycle progression in wild-type and single p27-/- podocytes and induced hypertrophy in these cells in all phases of the cell cycle at 24, 48, and 72 hours. In contrast, stretch did not induce hypertrophy in single p21-/- and double p21/p27-/- podocytes. Stretch-induced hypertrophy required cell cycle entry, and was prevented by specifically blocking extracellular signal-regulated kinase 1/2 (Erk1/2) or Akt. Although stretch increased p38 activation, inhibition of this pathway had no effect on hypertrophy. CONCLUSION Mechanical stretch induces hypertrophy in podocytes in vitro in all phases of the cell cycle. This effect is cell cycle dependent, and requires p21, Erk1/2, and Akt. Stretch may play a role in podocyte injury when intraglomerular pressure is increased.
Collapse
Affiliation(s)
- Arndt T Petermann
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wolf G, Jablonski K, Schroeder R, Reinking R, Shankland SJ, Stahl RAK. Angiotensin II-induced hypertrophy of proximal tubular cells requires p27Kip1. Kidney Int 2003; 64:71-81. [PMID: 12787397 DOI: 10.1046/j.1523-1755.2003.00076.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Angiotensin II (Ang II), as a single factor, induces hypertrophy of cultured proximal tubular cells of various species. Cells undergoing hypertrophy are arrested in the G1 phase of the cell cycle. Ang II also stimulated the expression of p27Kip1, an inhibitor of cyclin-dependent kinases (CDK). Although previous studies inhibiting p27Kip1 expression with antisense oligonucleotides suggested that this CDK inhibitor is important for Ang II-induced hypertrophy of proximal tubular cells, nonspecific effects of antisense technology, and the inability to transfect 100% of cells raised concerns about the true role of p27Kip1 in tubular hypertrophy. METHODS Proximal tubular cells were isolated and cultured from wild-type (p27Kip1+/+) and knockout (p27Kip1-/-) mice. p27Kip1 genomic and protein expression was evaluated. Proximal tubular cell origin was confirmed by expression of various markers [3M-1 antigen, gamma-glutamyltransferase, angiotensin-converting enzyme (ACE)]. Cell proliferation (cell number, 3[H]thymidine incorporation) and hypertrophy (de novo protein synthesis as measured by 3[H]leucine incorporation, hypertrophy index, cell size) were evaluated. CDK2 and CDK4 activities were determined by an in vitro kinase assay. In addition, cell cycle analysis was performed by flow cytometry. p27Kip1 expression was reconstituted in two different clones of p27Kip1-/- proximal tubular cells using an inducible vector system based on ecdysone response elements. RESULTS In accordance with previous studies, 10-7 mol/L Ang II induces hypertrophy and cell cycle arrest of p27Kip1+/+ proximal tubular cells. In contrast, Ang II facilitated cell cycle progression of two p27Kip1-/- proximal tubular cell lines without inducing hypertrophy. Ang II activates CDK4/cyclin D kinase activity in p27Kip1+/+ and -/- tubular cells, but stimulates CDK2/cyclin E activity only in wild-type cells. However, in the presence of Ang II, reconstituting p27Kip1 expression in p27Kip1-/- tubular cells using an inducible expression system, restored G1 phase arrest and the hypertrophic phenotype. Ang II did not induce apoptosis of either p27Kip1+/+ or -/- tubular cells. CONCLUSION Our findings are the first clear evidence that p27Kip1 is required for Ang II-induced hypertrophy of proximal tubular cells. However, although p27Kip1 expression is an absolute requirement for this hypertrophy, reconstitution experiments revealed that other factors induced by Ang II contribute to this hypertrophy.
Collapse
Affiliation(s)
- Gunter Wolf
- Division of Nephrology and Osteology, Department of Medicine, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Durante W. Heme oxygenase-1 in growth control and its clinical application to vascular disease. J Cell Physiol 2003; 195:373-82. [PMID: 12704646 DOI: 10.1002/jcp.10274] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme to carbon monoxide (CO), iron, and biliverdin. Biliverdin is subsequently metabolized to bilirubin by the enzyme biliverdin reductase. Although interest in HO-1 originally centered on its heme-degrading function, recent findings indicate that HO-1 exerts other biologically important actions. Emerging evidence suggests that HO-1 plays a critical role in growth regulation. Deletion of the HO-1 gene or inhibition of HO-1 activity results in growth retardation and impaired fetal development, whereas HO-1 overexpression increases body size. Although the mechanisms responsible for the growth promoting properties of HO-1 are not well established, HO-1 can indirectly influence growth by regulating the synthesis of growth factors and by modulating the delivery of oxygen or nutrients to specific target tissues. In addition, HO-1 exerts important effects on critical determinants of tissue size, including cell proliferation, apoptosis, and hypertrophy. However, the actions of HO-1 are highly variable and may reflect a role for HO-1 in maintaining tissue homeostasis. Considerable evidence supports a crucial role for HO-1 in blocking the growth of vascular smooth muscle cells (SMCs). This antiproliferative effect of HO-1 is mediated primarily via the release of CO, which inhibits vascular SMC growth via multiple pathways. Pharmacologic or genetic approaches targeting HO-1 or CO to the blood vessel wall may represent a promising, novel therapeutic approach in treating vascular proliferative disorders.
Collapse
Affiliation(s)
- William Durante
- Houston VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
19
|
Awazu M, Omori S, Ishikura K, Hida M, Fujita H. The lack of cyclin kinase inhibitor p27(Kip1) ameliorates progression of diabetic nephropathy. J Am Soc Nephrol 2003; 14:699-708. [PMID: 12595506 DOI: 10.1097/01.asn.0000051726.41601.c0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cyclin kinase inhibitor p27(Kip(1)) (p27) has been shown to be upregulated in glomeruli of diabetic animals and mesangial cells cultured under high glucose. This study was an investigation of the role of p27 in the progression of diabetic nephropathy. Mice deficient in p27 (p27 -/-) and wild-type mice (p27 +/+) were studied 12 wk after diabetes induction by streptozotocin. Blood glucose and BP were comparable between diabetic p27 +/+ and p27 -/- mice. The kidney weight to body weight ratio and glomerular volume increased in diabetic p27 +/+ mice. In contrast, these parameters did not change in diabetic p27 -/- mice. Similarly, albuminuria developed in diabetic p27 +/+ mice but not in diabetic p27 -/- mice. The mesangial expansion was significantly milder in diabetic p27 -/- mice than that in diabetic p27 +/+ mice. These changes were associated with a similar increase in glomerular TGF-beta expression in diabetic p27 +/+ and p27 -/- mice. However, glomerular protein expression of fibronectin, a target of TGF-beta, increased only in diabetic p27 +/+ mice. In mesangial cells cultured from p27 +/+ mice, exposure to high glucose caused significant increases in total protein content and [(3)H]-leucine incorporation. On the other hand, high glucose caused a significant reduction in these parameters in cells from p27 -/- mice. Phosphorylation of 4E-BP1, the translation inhibitor, increased after exposure to high glucose in p27 +/+ cells. In p27 -/- cells, the level of phosphorylated 4E-BP1 was higher than that in control p27 +/+ cells and decreased under high glucose conditions. In conclusion, renal hypertrophy, glomerular hypertrophy, and albuminuria did not develop, and mesangial expansion was milder in diabetic p27 -/- mice despite glomerular TGF-beta upregulation. These results suggest that controlling p27 function may ameliorate diabetic nephropathy.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Monkawa T, Hiromura K, Wolf G, Shankland SJ. The hypertrophic effect of transforming growth factor-beta is reduced in the absence of cyclin-dependent kinase-inhibitors p21 and p27. J Am Soc Nephrol 2002; 13:1172-8. [PMID: 11961004 DOI: 10.1097/01.asn.0000013162.29833.45] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) has both antiproliferative and hypertrophic effects on mesangial cells (MC). However, it is not known if these processes are independent or if they share common signaling pathways. Proliferation and hypertrophy are regulated by specific cell-cycle regulatory proteins, where the cyclin-dependent kinase (CDK) inhibitors inhibit target cyclin-CDK complexes. This study examined whether the growth regulatory effects of TGF-beta were determined by the CDK inhibitors p21 and p27. Accordingly, cultured MC from wild type (+/+) and single and double null (-/-) p21 and p27 mice were grown in 5% serum in the presence or absence of TGF-beta1 (2 ng/ml). Proliferation ([(3)H]-thymidine incorporation, cell number, cell cycle) and hypertrophy ([(3)H]-leucine incorporation, total protein content, forward light scatter) were measured after 24 h, 48 h, and 96 h. TGF-beta inhibited proliferation in +/+ and p21/p27 double -/- MC to a similar extent. TGF-beta induced hypertrophy in +/+ MC (18.0% increase at 48 h), and to lesser extent in p21 -/- (12.8%) and p27 -/- MC (11.5%) measured by forward light scatter analysis. In p21/p27 double -/-, the hypertrophic effects of TGF-beta were significantly reduced (3.9% at 48 h). Similar results were obtained by measuring hypertrophy by total protein and [(3)H]-leucine incorporation. In conclusion, the CDK inhibitors p21 and p27 are not required for the antiproliferative effects of TGF-beta. However, the hypertrophic growth effects of TGF-beta are reduced in the absence of both p21 and p27. These data suggest that the regulation of the antiproliferative and hypertrophic effects of TGF-beta may be distinct processes.
Collapse
Affiliation(s)
- Toshiaki Monkawa
- Department of Medicine, Division of Nephrology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
22
|
Gerth JH, Kriegsmann J, Trinh TT, Stahl RAK, Wendt T, Sommer M, Stein G, Wolf G. Induction of p27KIP1 after unilateral ureteral obstruction is independent of angiotensin II. Kidney Int 2002; 61:68-79. [PMID: 11786086 DOI: 10.1046/j.1523-1755.2002.00111.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Unilateral ureteral obstruction (UUO) is characterized by proliferation of tubular and interstitial cells, and infiltration of the renal parenchyma with macrophages/monocytes. These alterations lead ultimately to tubulointerstitial fibrosis and tubular atrophy. Some of these changes are caused by an activated renin-angiotensin system (RAS). We have previously demonstrated that angiotensin II induces the expression of the cell cycle inhibitor p27KIP1 in cultured tubular cells. The current study tested the hypothesis that interference with the RAS may modulate renal expression of p27KIP1 after UUO. METHODS The ureter of the left kidney of Sprague-Dawley rats was ligated. Sham-operated animals served as controls. Rats were randomized in four groups and received one of the following: no therapy, enalapril, losartan, or triple therapy (hydralazine, reserpine, hydrochlorothiazide). Kidneys were removed and cortical protein lysates were prepared for the detection of p27KIP1 by Western blotting. Immunohistochemistry was performed for p27KIP1, PCNA, ED-1, and alpha-smooth muscle actin. Apoptosis was quantified by TUNEL-staining. RESULTS p27KIP1 expression as detected by Western blotting reached a maximum 10 days after UUO. Tubular and interstitial cells contributed to this increase in p27KIP1 expression whereas the number of glomerular p27KIP1 positive cell did not change. p27KIP1-positive cells were macrophages/monocytes (positive ED-1 staining) or had the characteristics of myofibroblasts (positive alpha-smooth muscle actin staining). Tubular and interstitial proliferation [proliferating cell nuclear antigen (PCNA)-positive staining] and apoptosis [terminal deoxy transferase uridine triphosphate nick end labeling (TUNEL) staining] also was increased after UUO. However, individual cells stained either positive for p27KIP1 or PCNA, but not both. Although enalapril and losartan reduced the number of macrophages/monocytes and attenuated the degree of tubular and interstitial apoptosis, these drugs did not influence p27KIP1 expression. There was no change in the number of p27KIP1-positive cells in the contralateral kidney undergoing hypertrophy. CONCLUSION Induction of p27KIP1 in this model represents an endogenous response to likely limit proliferation that is independent of angiotensin II. Since there was no close correlation between apoptosis and p27KIP1 expression, it may be that the overall number of p27KIP1 expressing cells sets a general restriction point for apoptosis rather than defines an individual level of cell fate.
Collapse
Affiliation(s)
- Jens H Gerth
- Klinik für Innere Medizin IV der Universität Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA. Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int 2001; 60:2181-91. [PMID: 11737592 DOI: 10.1046/j.1523-1755.2001.00046.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Induction of heme oxygenase-1 (HO-1) protects against diverse insults in the kidney and other tissues. We examined the effect of overexpression of HO-1 on cell growth, expression of p21, and susceptibility to apoptosis. METHODS LLC-PK1 cells were genetically engineered to exhibit stable overexpression of HO-1. The effects of such overexpression on cell growth, the cell cycle, and the cell cycle-inhibitory protein, p21, were assessed; additionally, the susceptibility of these HO-1 overexpressing cells to apoptosis induced by three different stimuli (TNF-alpha/cycloheximide, staurosporine, or serum deprivation) was evaluated by such methods as the quantitation of caspase-3 activity, phase contrast microscopy, and the TUNEL method. RESULTS HO-1 overexpressing LLC-PK1 cells demonstrated cellular hypertrophy, decreased hyperplastic growth, and growth arrest in the G0/G1 phase of the cell cycle. HO-1 overexpressing cells were markedly resistant to apoptosis induced by TNFalpha/cycloheximide or staurosporine as assessed by the caspase-3 activity assay. Such overexpression also conferred resistance to apoptosis induced by serum deprivation as evaluated by the TUNEL method; in these studies, inhibition of HO attenuated the resistance to apoptosis. Expression of the cyclin dependent kinase inhibitor, p21CIP1, WAF1, SDI1, as judged by Northern and Western analyses, was significantly increased in HO-1 overexpressing cells, and decreased as HO activity was inhibited. Moreover, this reduction in expression of p21 attendant upon the inhibition of HO activity in HO-1 overexpressing cells paralleled the loss of resistance of these cells to apoptosis when HO activity is inhibited. The pharmacologic inducer of HO-1, hemin, increased expression of p21 in wild-type cells and decreased apoptosis provoked by TNF-alpha/cycloheximide. CONCLUSION Cellular overexpression of HO-1 up-regulates p21, diminishes proliferative cell growth, and confers marked resistance to apoptosis. We speculate that such up-regulation of p21 contributes to the altered pattern of cell growth and resistance to apoptosis. Our studies uncover the capacity of HO-1 to markedly influence the cell cycle in renal epithelial cells. In light of the profound importance of the cell cycle as a determinant of cell fate, we speculate that the inductive effect of HO-1 on p21 and the attendant inhibitory effect on the cell cycle provide a hitherto unsuspected mechanism underlying the cytoprotective actions of HO-1.
Collapse
Affiliation(s)
- P Inguaggiato
- Division of Nephrology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wolf G, Schroeder R, Zahner G, Stahl RA, Shankland SJ. High glucose-induced hypertrophy of mesangial cells requires p27(Kip1), an inhibitor of cyclin-dependent kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1091-100. [PMID: 11238057 PMCID: PMC1850372 DOI: 10.1016/s0002-9440(10)64056-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hypertrophy of mesangial cells is one of the earliest morphological alterations in the kidney after the onset of diabetes mellitus. We have previously shown that cultured mesangial cells exposed to high ambient glucose arrest in the G1 phase of the cell cycle and that this is associated with an increased expression of inhibitors of the cyclin-dependent kinase (CDK)-inhibitors p21(Cip) and p27(Kip1). To further investigate a potential role of p27Kip1 in the development of glucose-induced hypertrophy, mesangial cells from p27Kip1 wild-type (+/+) and knockout (-/-) mice were established. High glucose medium (450 mg/dl) increased p21(Cip1) protein in p27Kip1+/+ and -/- mesangial cells, and increased p27Kip1 protein levels in p27Kip1+/+ cells. In contrast to high glucose increasing de novo protein synthesis in p27Kip1+/+ cells, high glucose did not increase protein synthesis in p27Kip1-/- cells. High glucose also reduced DNA synthesis and caused cell cycle arrest in p27Kip1+/+ cells. In contrast, despite an increase in transforming growth factor (TGF)-beta mRNA and protein expression, DNA synthesis and cell cycle progression were increased by high glucose in p27Kip1-/- cells. Exogenous TGF-beta comparably induced fibronectin mRNA in p27Kip1+/+ and -/- cells suggesting intact TGF-beta receptor transduction. In addition, high glucose failed to increase the total protein/cell number ratio in p27Kip1-/- cells. However, in the presence of high glucose, reconstituting p27Kip1 expression by transient or stable transfection in p27Kip1-/- cells, using an inducible expression system, increased the de novo protein synthesis and restored G1-phase arrest. These results show that p27Kip1 is required for glucose-induced mesangial cell hypertrophy and cell cycle arrest.
Collapse
Affiliation(s)
- G Wolf
- University of Hamburg, University Hospital Eppendorf, Department of Medicine, Division of Nephrology and Osteology, Pavilion 61, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Ding G, Franki N, Kapasi AA, Reddy K, Gibbons N, Singhal PC. Tubular cell senescence and expression of TGF-beta1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp Mol Pathol 2001; 70:43-53. [PMID: 11170790 DOI: 10.1006/exmp.2000.2346] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kidney aging has been recognized as a chronic process of compromised renal function and structural changes in the tubulointerstitium and glomerulus. Cell senescence is associated with alterations in cell structure and function, including expression of cytokines and structural and regulatory components of extracellular matrix proteins. In this investigation, we tested the hypothesis that senescent renal cells may accumulate in vivo with advancing age. We also evaluated the expression of transforming growth factor (TGF)-beta1 and p21WAF1/CIP1 in aging kidneys. Sprague-Dawley rats at the ages of 3, 12, and 24 months were used for this study. Renal tissues were processed for morphometric and senescence analysis. Expression of TGF-beta1 and p21WAF1/CIP1 was evaluated by Northern or Western blot analysis and immunohistochemistry. Substantial tubulointerstitial injury occurred at the age of 12 months, but significant glomerular structure alteration was observed at the age of 24 months. Tubular cells developed senescence, which was detected by beta-galactosidase staining. This staining increased in frequency and intensity with age. Renal cortices showed a significant increase in the mRNA expression for TGF-beta1 and protein level for p21WAF1/CIP1. The enhanced expression of TGF-beta1 and p21WAF1/CIP1 was localized in the tubulointersititial cells. These data suggest that tubular cells undergo senescence and express increased TGF-beta1 and p21WAF1/CIP1 with advancing age. These age-related cellular and molecular alterations may play an important role in the initiation and/or progression of tubulointerstitial fibrosis and glomerulosclerosis in aging.
Collapse
Affiliation(s)
- G Ding
- Section of Molecular Biology and Experimental Pathology, Long Island Jewish Medical Center, New Hyde Park, New York 11040, USA
| | | | | | | | | | | |
Collapse
|
26
|
Pochampally R, Li C, Lu W, Chen L, Luftig R, Lin J, Chen J. Temperature-sensitive mutants of p53 homologs. Biochem Biophys Res Commun 2000; 279:1001-10. [PMID: 11162465 DOI: 10.1006/bbrc.2000.4056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two homologs of the p53 tumor suppressor, p63 and p73 have recently been discovered. These proteins have activities similar to p53 in cell culture but have distinct developmental functions in vivo. We found that temperature-sensitive mutants of certain p63 and p73 isoforms can be created by single amino acid substitutions of an alanine residue corresponding to alanine 135 of murine p53. The mutants (p63gamma-Pro167, p73alpha-Leu156 and p73beta-Ile156) can be controlled by temperature shift between 32 degrees C and 39 degrees C. They can be stably expressed in p53-null H1299 cells at 39 degrees C, become transcriptionally activated at 32 degrees C, and induce expression of p53-responsive genes MDM2 and p21WAF1. Activation of p73beta-Ile156 in H1299 cells inhibits cell division but induces significant increase in cell size (hypertrophy), whereas activation of p73alpha-Leu156 and p63gamma-Pro167 induces apoptosis. These mutants may be useful tools for gaining further insight to the functions of p53 homologs.
Collapse
Affiliation(s)
- R Pochampally
- Molecular Oncology Program, H. Lee Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|