Cauvi D, Nlend MC, Venot N, Chabaud O. Sulfate transport in porcine thyroid cells. Effects of thyrotropin and iodide.
Am J Physiol Endocrinol Metab 2001;
281:E440-8. [PMID:
11500298 DOI:
10.1152/ajpendo.2001.281.3.e440]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In porcine thyroid cells, thyroglobulin sulfation is controlled by thyrotropin (TSH) and iodide, which contribute to regulating the intracellular sulfate concentration, as we previously established. Here, we studied the transport of sulfate and its regulation by these two effectors. Kinetic studies were performed after [(35)S]sulfate was added to either the basal or apical medium of cell monolayers cultured without any effectors, or with TSH with or without iodide. The basolateral uptake rates were about tenfold higher than the apical uptake rates. TSH increased the basolateral and apical uptake values (by 24 and 9%, respectively, compared with unstimulated cells), and iodide inhibited these effects of TSH. On the basis of results of the pulse-chase experiments, the basolateral and apical effluxes appeared to be well balanced in unstimulated cells and in cells stimulated by both TSH and iodide: approximately 40-50% of the intracellular radioactivity was released into each medium, whereas in the absence of iodide, 70% of the intracellular radioactivity was released on the basolateral side. The rates of transepithelial sulfate transport were increased by TSH compared with unstimulated cells, and these effects decreased in response to iodide. These results suggest that TSH and iodide may each control the sulfate transport process on two sides of the polarized cells, and that the absence of iodide in the TSH-stimulated cells probably results in an unbalanced state of sulfate transport.
Collapse