1
|
Almutairi M, Rouabhia M, Sahab Almutairi M, Al-Zahrani M, Al-Numair NS, Mohammad Alhadeq A, Reddy Parine N, Semlali A. Correlation between genetic variation in thymine DNA glycosylase and smoking behavior. Gene 2020; 766:145092. [PMID: 32916247 DOI: 10.1016/j.gene.2020.145092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Cigarette smoking is a major lifestyle factor leading to different human diseases. The DNA repair gene, thymine DNA glycosylase, is important to cell survival because it stops cells from becoming cancerous protecting/preventing DNA. Exposure to CS may induce genetic changes such as single nucleotide polymorphisms in DNA repair genes. Therefore, the purpose of this study was to investigate the genotype and allele distributions of four TDG SNPs with only smoking behavior in normal patients. Four TDG SNPs-rs4135066 (C/T), rs3751209 (A/G), rs1866074 (C/T), and rs1882018 (C/T) were analyzed by genotyping 235 and 239 blood samples collected from cigarette smokers and non-smokers, among the Saudi population. The results showed that TDG rs4135066 has a significant susceptibility effect observed in long-term smokers (>5 years; OR = 4.53; P = 0.0347) but not in short-term smokers (≤5 years) in contrast with non-smokers. Also, in smokers aged less than 29 years, the "CT," "TT," and "CT + TT" alleles of rs1882018 increased the risk of developing all diseases related to smoking by approximately 6, 4, and 5 times, respectively, in contrast with the ancestral "CC" homozygous allele. A comparison of the allele distributions of TDG SNPs in a Saudi population with those in other populations represented in the HapMap project showed that the genetic makeup of the Saudi Arabian population appears to differ from that of other ethnicities. Exceptions include the Yoruba people in Ibadan, Nigeria; those of Mexican ancestry in Los Angeles, California; the Luhya population in Webuye, Kenya; Gujarati Indians in Houston, Texas; and the Tuscan population in Italy, which showed similar allelic frequencies for rs3751209 compared to our Saudi population. In this ethnic, we have found a high variation in the distribution of the alleles and genotype frequencies on TDG gene. This variation on TDG SNP's with smoking could lead to increase the susceptibility to many diseases related to smoking habits in this population.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| | | | - Mohammed Al-Zahrani
- Al Imam Mohammad IBN Saud Islamic University (IMSIU), College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Nouf S Al-Numair
- Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
2
|
The Role of O 6-methylguanine-DNA Methyltransferase Polymorphisms in Prostate Cancer Susceptibility: a Meta-Analysis. Pathol Oncol Res 2019; 26:1201-1209. [PMID: 31190217 DOI: 10.1007/s12253-019-00672-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
To assess the associations between O6-methylguanine-DNA methyltransferase(MGMT) polymorphisms and prostate cancer risk. We retrieved PubMed, Cochrane Library and Embase electronic database to search for all eligible studies published from Jan 1, 1970 to Sep 31, 2017 to conduct a Meta-analysis. we identified 11 independent studies in 5 eligible reports, including 5143 cases and 8118 controls. The data suggested that rs12917 was associated with higher PCa risk under the contrast of TT vs CC and recessive model in overall population (TT vs CC: OR = 1.599, 95%CI: 1.007-2.539, P = 0.047; TT vs CC + CT: OR = 1.627, 95%CI: 1.026-2.580, P = 0.038). In subgroup analyses stratified by ethnicity, the remarkable association with higher PCa risk was detected under allelic model, dominant model, the contrast of TC vs CC, and the contrast of TC vs CC + TT in Asian population. (T vs C: OR = 1.911, 95%CI: 1.182-3.090, P = 0.008; TC vs CC: OR = 1.948, 95%CI: 1.152-3.295, P = 0.013; TC + TT vs CC: OR = 1.994, 95%CI: 1.190-3.342, P = 0.009; TC vs CC + TT: OR = 1.926, 95%CI: 1.140-3.255, P = 0.014). However, the data suggest the rs2308327 and rs2308321 polymorphisms of the MGMT gene were nor associated with the susceptibility of prostate cancer. Based on the meta-analysis, MGMT rs12917 polymorphism increase the susceptibility to prostate cancer, which can be taken for a diagnosis and screening molecular biomarker for prostate cancer patients.
Collapse
|
3
|
TDG Gene Polymorphisms and Their Possible Association with Colorectal Cancer: A Case Control Study. JOURNAL OF ONCOLOGY 2019; 2019:7091815. [PMID: 31239841 PMCID: PMC6556271 DOI: 10.1155/2019/7091815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022]
Abstract
Genetic alterations that might lead to colorectal cancer involve essential genes including those involved in DNA repair, inclusive of base excision repair (BER). Thymine DNA glycosylase (TDG) is one of the most well characterized BER genes that catalyzes the removal of thymine moieties from G/T mismatches and is also involved in many cellular functions, such as the regulation of gene expression, transcriptional coactivation, and the control of epigenetic DNA modification. Mutation of the TDG gene is implicated in carcinogenesis. In the present study, we aimed to investigate the association between TDG gene polymorphisms and their involvement in colon cancer susceptibility. One hundred blood samples were obtained from colorectal cancer patients and healthy controls for the genotyping of seven SNPs in the TDG gene. DNA was extracted from the blood, and the polymorphic sites (SNPs) rs4135113, rs4135050, rs4135066, rs3751209, rs1866074, and rs1882018 were investigated using TaqMan genotyping. One of the six TDG SNPs was associated with an increased risk of colon cancer. The AA genotype of the TDG SNP rs4135113 increased the risk of colon cancer development by more than 3.6-fold, whereas the minor allele A increased the risk by 1.6-fold. It also showed a 5-fold higher risk in patients over the age of 57. SNP rs1866074 showed a significant protective association in CRC patients. The GA genotype of TDG rs3751209 was associated with a decreased risk in males. There is a significant relationship between TDG gene function and colorectal cancer progression.
Collapse
|
4
|
Almutairi M, Mohammad Alhadeq A, Almeer R, Almutairi M, Alzahrani M, Semlali A. Effect of the thymine-DNA glycosylase rs4135050 variant on Saudi smoker population. Mol Genet Genomic Med 2019; 7:e00590. [PMID: 30779328 PMCID: PMC6465727 DOI: 10.1002/mgg3.590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Thymine‐DNA glycosylase (TDG) is an essential DNA‐repair enzyme which works in both epigenetic regulation and genome maintenance. It is also responsible for efficient correction of multiple endogenous DNA lesions which occur commonly in mammalian genomes. Research of genetic variants such as SNPs, resulting in disease, is predicted to yield clinical advancements through the identification of sensitive genetic markers and the development of disease prevention and therapy. To that end, the main objective of the present study is to identify the possible interactions between cigarette smoking and the rs4135050 variant of the TDG gene, situated in the intron position, among Saudi individuals. Methods TDG rs4135050 (A/T) was investigated by genotyping 239, and 235 blood specimens were obtained from nonsmokers and smokers of cigarette respectively. Results T allele frequency was found which showed a significant protective effect on Saudi male smokers (OR = 0.64, p = 0.0187) compared to nonsmoking subjects, but not in female smokers. Furthermore, smokers aged less than 29 years, the AT and AT+TT genotypes decreased more than four times the risk of initiation of smoking related‐diseases compare to the ancestral AA homozygous genotype. Paradoxically, the AT (OR = 3.88, p = 0.0169) and AT+TT (OR = 2.86, p = 0.0420) genotypes were present at a higher frequency in smoking patients aged more than 29 years as compared to nonsmokers at the same ages. Conclusion Depending on the gender and age of patients, TDG rs4135050 may provide a novel biomarker for the early diagnosis and prevention of several diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Rafa Almeer
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Alzahrani
- Biology Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Université Laval, Québec, Québec, Canada.,Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia, Riyadh
| |
Collapse
|
5
|
The potential role of MGMT rs12917 polymorphism in cancer risk: an updated pooling analysis with 21010 cases and 34018 controls. Biosci Rep 2018; 38:BSR20180942. [PMID: 30232235 PMCID: PMC6435461 DOI: 10.1042/bsr20180942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aimed at determining the potential role of rs12917 polymorphism of the O-6-methylguanine-DNA methyltransferase (MGMT) gene in the occurrence of cancer. Based on the available data from the online database, we performed an updated meta-analysis. We retrieved 537 articles from our database research and finally selected a total of 54 case–control studies (21010 cases and 34018 controls) for a series of pooling analyses. We observed an enhanced risk in cancer cases compared with controls, using the genetic models T/T compared with C/C (P-value of association test <0.001; odds ratio (OR) = 1.29) and T/T compared with C/C+C/T (P<0.001; OR = 1.32). We detected similar positive results in the subgroups ‘Caucasian’, and ‘glioma’ (all P<0.05; OR > 1). However, we detected negative results in our analyses of most of the other subgroups (P>0.05). Begg’s and Egger’s tests indicated that the results were free of potential publication bias, and sensitivity analysis suggested the stability of the pooling results. In summary, the T/T genotype of MGMT rs12917 is likely to be linked to an enhanced susceptibility to cancer overall, especially glioma, in the Caucasian population.
Collapse
|
6
|
Hsu CY, Ho HL, Lin SC, Ho TDH, Ho DMT. The MGMT promoter single-nucleotide polymorphism rs1625649 had prognostic impact on patients with MGMT methylated glioblastoma. PLoS One 2017; 12:e0186430. [PMID: 29036186 PMCID: PMC5643071 DOI: 10.1371/journal.pone.0186430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/29/2017] [Indexed: 01/02/2023] Open
Abstract
Promoter methylation is the most significant mechanism to regulate O6-methylguanine-DNA-methyltransferase (MGMT) expression. Single-nucleotide polymorphisms (SNPs) in the MGMT promoter region may also play a role. The aim of this study was to evaluate the clinical significance of SNPs in the MGMT promoter region of glioblastoma. Genomic DNAs from 118 glioblastomas were collected for polymerase chain reaction (PCR) amplification. Sanger sequencing was used to sequence the MGMT promoter region to detect SNPs. The results were correlated with MGMT status and patient survival. Rs1625649 was the only polymorphic SNP located at the MGMT promoter region in 37.5% of glioblastomas. Homozygous rs1625649 (AA genotype) was correlated with a higher MGMT methylation level and a lower protein expression, but the result was not statistically significant. In patients with MGMT methylated glioblastoma, cases with homozygous rs1625649 (AA genotype) were significantly associated with a lack of MGMT protein expression and a better progression-free survival (PFS) than the cases with wild type rs1625649 (CC genotype) or heterozygous rs1625649 (CA genotype). The survival impact was significant in multivariate analyses. In conclusion, the MGMT promoter homozygous rs1625649 (AA genotype) was found to correlate with a better PFS in patients with MGMT methylated glioblastoma.
Collapse
Affiliation(s)
- Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tiffany Dai-Hwa Ho
- Department of Computer Science and Department of Statistics, Duke University, Durham, United States of America
| | - Donald Ming-Tak Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
7
|
MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression. Cell Oncol (Dordr) 2016; 39:435-447. [PMID: 27306526 DOI: 10.1007/s13402-016-0286-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The O6-methylguanine-DNA methyltransferase (MGMT) protein removes O6-alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. METHODS In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. RESULTS Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. CONCLUSIONS The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.
Collapse
|
8
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
9
|
Wang H, Zhang K, Qin H, Yang L, Zhang L, Cao Y. Genetic Association Between Angiotensinogen Polymorphisms and Lung Cancer Risk. Medicine (Baltimore) 2015; 94:e1250. [PMID: 26376373 PMCID: PMC4635787 DOI: 10.1097/md.0000000000001250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Earlier published studies investigating the association between polymorphisms in the angiotensinogen gene and lung cancer risk showed no consistent results. In this study, we have summarized all currently available data to examine the correlation by meta-analysis. Case-control studies addressing the association being examined were identified through Embase, the Cochrane Library, ISI Web of Science (Web of Knowledge), Google Scholar, PubMed, and CNKI databases. Risk of lung cancer (odds ratio [OR] and 95% confidence interval [CI]) was estimated with the fixed or the random effects model assuming homozygous, allele, heterozygous, dominant, and recessive models for all angiotensinogen polymorphisms. We identified a total of 10 articles in this meta-analysis, including 7 for Leu84Phe, 4 for Ile143Val, and 3 for Leu53Leu. In the meta-analysis of Leu84Phe polymorphism, the homozygous model provided an OR of 1.44 (Phe/Phe vs Ile/Ile: OR = 1.44, 95% CI = 1.04-1.99, P values for heterogeneity test (Q-test) [P(Het)] = 0.382). The significantly increased risk was similarly indicated in the recessive model (Phe/Phe vs Phe/Ile + Ile/Ile: OR = 1.41, 95% CI = 1.02-1.95, P(Het) = 0.381). We also observed a positive association in the Caucasian subgroup. The heterozygous model and the dominant model tested for the Ile143Val polymorphism showed a marginally increased risk (Ile/Val vs Ile/Ile: OR = 1.16, 95% CI = 1.00-1.36, P(Het) = 0.323; Val/Val + Ile/Val vs Ile/Ile: OR = 1.15, 95% CI = 0.99-1.34, P(Het) = 0.253). These data suggest that Leu84Phe and Ile143Val polymorphisms in the angiotensinogen gene may be useful biomarkers for lung cancer in some specific populations.
Collapse
Affiliation(s)
- Hong Wang
- From the Department of Lung Cancer, 307 Hospital of PLA, Affiliated Hospital of Academy of Military Medical Sciences, FengTai Area, Beijing, China
| | | | | | | | | | | |
Collapse
|
10
|
Kycler W, Korski K, Loziński C, Teresiak-Mańczak A, Przybyła A, Mackiewicz A, Cybulski Z, Lamperska K. The anti-cancer actions of O6-methylguanine-DNA-methyltransferase in relation to colon polyps. Pharmacol Rep 2014; 66:1060-4. [PMID: 25443735 DOI: 10.1016/j.pharep.2014.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 05/05/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Genetic variability in DNA repair genes may contribute to differences in DNA repair capacity and susceptibility to colon polyps and cancer. In this study, we examined the role of MGMT polymorphisms in colon polyps formation. METHODS PCR-SSCP analysis was performed included 254 patients with colon polyps and 330 controls. RESULTS The homozygous F84F genotype was significantly more prevalent in study group than in controls. The polymorphic allele 84F was more frequent appeared in group of older patients and in group of smoking patients. On the other hand, there were no association between 84F and gender, size of polyps, cancer family history. CONCLUSIONS We concluded that high frequency of 84F allele in the group of patients may suggest the role of the MGMT variant in colon polyps etiology.
Collapse
Affiliation(s)
- Witold Kycler
- Department of Oncological Surgery II, Greater Poland Cancer Centre, Poznań, Poland.
| | - Konstanty Korski
- Department of Pathology, Greater Poland Cancer Centre, Poznań, Poland
| | - Cezary Loziński
- Department of Oncological Surgery II, Greater Poland Cancer Centre, Poznań, Poland
| | | | | | - Andrzej Mackiewicz
- University of Medical Sciences, Poznań, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznań, Poland
| | - Zefiryn Cybulski
- Microbiology Laboratory, Greater Poland Cancer Centre, Poznań, Poland
| | | |
Collapse
|
11
|
A germline polymorphism of thymine DNA glycosylase induces genomic instability and cellular transformation. PLoS Genet 2014; 10:e1004753. [PMID: 25375110 PMCID: PMC4222680 DOI: 10.1371/journal.pgen.1004753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/14/2014] [Indexed: 11/19/2022] Open
Abstract
Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer. DNA repair is vital to the survival and propagation of cells. It helps protect DNA from becoming permanently damaged and prevents cells from becoming cancerous. The base excision repair (BER) pathway is responsible for the removal of up to 20,000 lesions/cell/day. Thymine DNA glycosylase (TDG) is one of the DNA glycosylases that initiates BER. There is a germline variant of TDG that is found in 10% of the global population, where amino acid residue glycine 199 is mutated to serine. Here, we provide evidence that TDG variant G199S binds significantly more tightly to its abasic product and leads to increased DNA strand breaks in cells. We go on to show that G199S induces genomic instability, in the form of chromosomal aberrations, and leads to cellular transformation, both hallmarks of tumorigenesis. Collectively, our work suggests that a germline variant of TDG can drive carcinogenesis.
Collapse
|
12
|
Kim HN, Kim NY, Yu L, Kim YK, Lee IK, Yang DH, Lee JJ, Shin MH, Park KS, Choi JS, Kim HJ. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma. Int J Mol Sci 2014; 15:6703-16. [PMID: 24756092 PMCID: PMC4013656 DOI: 10.3390/ijms15046703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 01/22/2023] Open
Abstract
The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA=0.80, p=0.02; OROGG1 GG=0.70, p=0.008; ORBRCA1 TT=0.71, p=0.048; ORWRN TT=0.68, p=0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR=1.25, p=0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR=0.74, p=0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT=1.50, p<0.0001; OR3435TT=1.43, p=0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.
Collapse
Affiliation(s)
- Hee Nam Kim
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 501-746, Korea; E-Mails: (H.N.K.); (M.-H.S.)
| | - Nan Young Kim
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
| | - Li Yu
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
| | - Yeo-Kyeoung Kim
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
| | - Il-Kwon Lee
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
| | - Deok-Hwan Yang
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
| | - Je-Jung Lee
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
| | - Min-Ho Shin
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 501-746, Korea; E-Mails: (H.N.K.); (M.-H.S.)
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 501-746, Korea; E-Mail:
| | - Kyeong-Soo Park
- Department of Preventive Medicine, College of Medicine, Seonam University, Namwon 590-711, Korea; E-Mail:
| | - Jin-Su Choi
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 501-746, Korea; E-Mail:
| | - Hyeoung-Joon Kim
- Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Hwasun Hospital, Jeollanamdo 519-763, Korea; E-Mails: (N.Y.K.); (L.Y.); (I.-K.L.)
- Department of Hematology/Oncology, Chonnam National University Hwasun Hospital 160 Ilsim-ri, Hwasun-eup, Hwasun-gun, Jellanam-do 519-809, Korea; E-Mails: (Y.-K.K.); (D.-H.Y.); (J.-J.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-61-379-7637; Fax: +82-61-379-7736
| |
Collapse
|
13
|
Chen C, Wang L, Liao Q, Xu L, Huang Y, Zhang C, Ye H, Xu X, Ye M, Duan S. Association between six genetic polymorphisms and colorectal cancer: a meta-analysis. Genet Test Mol Biomarkers 2014; 18:187-95. [PMID: 24552298 DOI: 10.1089/gtmb.2013.0425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine whether six genetic polymorphisms confer susceptibility to colorectal cancer (CRC). METHODS A systematic search for candidate genes of CRC was performed among several online databases, including PubMed, Embase, Web of Science, the Cochrane Library, CNKI, and Wanfang online libraries. After a comprehensive filtering procedure, we harvested five genes, including MGMT (rs12917 and rs2308321), ADH1B (rs1229984), SOD2 (rs4880), XPC (rs2228001), and PPARG (rs1801282). Using the REVMAN and Stata software, six meta-analyses were conducted for associations between CRC and the just-mentioned genetic variants. RESULTS A total of 34 comparative studies among 17,289 cases and 54,927 controls were involved in our meta-analyses. Significant association was found between ADH1B rs1229984 polymorphism and CRC (p=0.03, odds ratio [OR]=1.18, 95% confidence interval [CI]=1.01-1.36). We also found significant association between PPARG rs1801282 polymorphism and CRC (p=0.004, OR=1.498, 95% CI=1.139-1.970), and this significant association is specific in Caucasians (p=0.004, OR=1.603, 95% CI=1.165-2.205). CONCLUSIONS The current meta-analysis has established that ADH1B (rs1229984) and PPARG (rs1801282) are two risk variants of CRC.
Collapse
Affiliation(s)
- Cheng Chen
- 1 Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University , Ningbo, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qiu ZX, Xue F, Shi XF, He X, Ma HN, Chen L, Chen PZ. MGMT Leu84Phe gene polymorphism and lung cancer risk: a meta-analysis. Tumour Biol 2014; 35:4381-7. [DOI: 10.1007/s13277-013-1576-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 01/20/2023] Open
|
15
|
Xu M, Nekhayeva I, Cross CE, Rondelli CM, Wickliffe JK, Abdel-Rahman SZ. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents. Carcinogenesis 2013; 35:564-71. [PMID: 24163400 DOI: 10.1093/carcin/bgt355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18-119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29-97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents.
Collapse
Affiliation(s)
- Meixiang Xu
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
| | | | | | | | | | | |
Collapse
|
16
|
Liu J, Zhang R, Chen F, Yu C, Sun Y, Jia C, Zhang L, Salahuddin T, Li X, Lang J, Song X. MGMT Leu84Phe polymorphism contributes to cancer susceptibility: evidence from 44 case-control studies. PLoS One 2013; 8:e75367. [PMID: 24086516 PMCID: PMC3784571 DOI: 10.1371/journal.pone.0075367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023] Open
Abstract
Background O6-methylguanine-DNA methyltransferase is one of the few proteins to directly remove alkylating agents in the human DNA direct reversal repair pathway. A large number of case-control studies have been conducted to explore the association between MGMT Leu84Phe polymorphism and cancer risk. However, the results were not consistent. Methods We carried out a meta-analysis of 44 case-control studies to clarify the association between the Leu84Phe polymorphism and cancer risk. Results Overall, significant association of the T allele with cancer susceptibility was verified with meta-analysis under a recessive genetic model (P<0.001, OR=1.30, 95%CI 1.24-1.50) and TT versus CC comparison (P=0.001, OR=1.29, 95% CI 1.12-1.50). In subgroup analysis, a significant increased risk was found for lung cancer (TT versus CC, P=0.027, OR=1.67, 95% CI 1.06-2.63; recessive genetic model, P=0.32, OR=1.64, 95% CI 1.04-2.58), whereas risk of colorectal cancer was significantly low under a dominant genetic model (P=0.019, OR=0.84, 95% CI 0.72-0.97). Additionally, a significant association between TT genetic model and total cancer risk was found in the Caucasian population (TT versus CC, P=0.014, OR=1.29, 95% CI 1.05-1.59; recessive genetic model, P=0.009, OR=1.31, 95% CI 1.07-1.61), but not in the Asian population. An increased risk for lung cancer was also verified in the Caucasian population (TT versus CC, P=0.035, OR=1.62, 95% CI 1.04-2.53; recessive genetic model, P=0.048, OR=1.57, 95% CI 1.01-2.45). Conclusions These results suggest that MGMT Leu84Phe polymorphism might contribute to the susceptibility of certain cancers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renxia Zhang
- Department of Anesthesia, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
| | - Fei Chen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cuicui Yu
- Department of Anesthesia, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
| | - Yan Sun
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
| | - Chuanliang Jia
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
- Binzhou Medical School, Yantai, Shandong, China
| | - Lijing Zhang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
- Qingdao Medical School, Qingdao, Shandong, China
| | - Taufiq Salahuddin
- Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiaodong Li
- The 3People’s Hospital of Jinan, Jinan, Shandong, China
| | - Juntian Lang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (XS); (J. Lang)
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
- * E-mail: (XS); (J. Lang)
| |
Collapse
|
17
|
Abstract
The base excision repair system is vital to the repair of endogenous and exogenous DNA damage. This pathway is initiated by one of several DNA glycosylases that recognizes and excises specific DNA lesions in a coordinated fashion. Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase (TDG) are the two major G:T glycosylases that remove thymine generated by the deamination of 5-methylcytosine. Both of these glycosylases also remove a variety of other base lesions, including G:U and preferentially act at CpG sites throughout the genome. Many have questioned the purpose of seemingly redundant glycosylases, but new information has emerged to suggest MBD4 and TDG have diverse biological functions. MBD4 has been closely linked to apoptosis, while TDG has been clearly implicated in transcriptional regulation. This article reviews all of these developments, and discusses the consequences of germline and somatic mutations that lead to non-synonymous amino acid substitutions on MBD4 and TDG protein function. In addition, we report the finding of alternatively spliced variants of MBD4 and TDG and the results of functional studies of a tumor-associated variant of MBD4.
Collapse
|
18
|
Ruczinski I, Jorgensen TJ, Shugart YY, Schaad YB, Kessing B, Hoffman-Bolton J, Helzlsouer KJ, Kao W, Wheless L, Francis L, Alani RM, Strickland PT, Smith MW, Alberg AJ. A population-based study of DNA repair gene variants in relation to non-melanoma skin cancer as a marker of a cancer-prone phenotype. Carcinogenesis 2012; 33:1692-8. [PMID: 22581838 PMCID: PMC3514896 DOI: 10.1093/carcin/bgs170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 11/13/2022] Open
Abstract
For unknown reasons, non-melanoma skin cancer (NMSC) is associated with increased risk of other malignancies. Focusing solely on DNA repair or DNA repair-related genes, this study tested the hypothesis that DNA repair gene variants contribute to the increased cancer risk associated with a personal history of NMSC. From the parent CLUE II cohort study, established in 1989 in Washington County, MD, the study consisted of a cancer-free control group (n 5 2296) compared with three mutually exclusive groups of cancer cases ascertained through 2007: (i) Other (non-NMSC) cancer only (n 5 2349); (ii) NMSC only (n 5 694) and (iii) NMSC plus other cancer (n 5 577). The frequency of minor alleles in 759 DNA repair gene single nucleotide polymorphisms (SNPs) was compared in these four groups. Comparing those with both NMSC and other cancer versus those with no cancer, 10 SNPs had allelic trend P-values <0.01. The two top-ranked SNPs were both within the thymine DNA glycosylase gene (TDG). One was a non-synonymous coding SNP (rs2888805) [per allele odds ratio (OR) 1.40, 95% confidence interval (CI) 1.16-1.70; P-value 5 0.0006] and the other was an intronic SNP in high linkage disequilibrium with rs2888805 (rs4135150). None of the associations had a P-value <6.6310(-5), the threshold for statistical significance after correcting for multiple comparisons. The results pinpoint DNA repair genes most likely to contribute to the NMSC cancer-prone phenotype. A promising lead is genetic variants in TDG, important not only in base excision repair but also in regulating the epigenome and gene expression, which may contribute to the NMSC-associated increase in overall cancer risk.
Collapse
Affiliation(s)
- Ingo Ruczinski
- Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Timothy J. Jorgensen
- Department of Radiation Medicine, Georgetown University School of MedicineWashington, DC, USA,
- These authors contributed equally to this work
| | - Yin Yao Shugart
- Division of Intramural Research Program, National Institute of Mental HealthBethesda, MD, USA
| | - Yvette Berthier Schaad
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-FrederickFrederick, MD
| | - Bailey Kessing
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-FrederickFrederick, MD
| | - Judith Hoffman-Bolton
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
- George W. Comstock Center for Public Health Research and PreventionWashington County, MD, USA,
| | | | - W.H.Linda Kao
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
| | - Lee Wheless
- Hollings Cancer Center and Division of Epidemiology and Biostatistics, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA,
| | - Lesley Francis
- Hollings Cancer Center and Division of Epidemiology and Biostatistics, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA,
| | - Rhoda M. Alani
- Department of Dermatology, Boston University School of MedicineBoston, MA, USA
| | - Paul T. Strickland
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public HealthBaltimore, MD, USA
| | - Michael W. Smith
- Genetics and Genomics Group, Advanced Technology Program, SAIC-Frederick, Inc., NCI-FrederickFrederick, MD, USA
| | - Anthony J. Alberg
- Hollings Cancer Center and Division of Epidemiology and Biostatistics, Department of Medicine, Medical University of South CarolinaCharleston, SC, USA,
| |
Collapse
|
19
|
Christmann M, Kaina B. O(6)-methylguanine-DNA methyltransferase (MGMT): impact on cancer risk in response to tobacco smoke. Mutat Res 2012; 736:64-74. [PMID: 21708177 DOI: 10.1016/j.mrfmmm.2011.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
Tobacco, smoked, snuffed and chewed, contains powerful mutagens and carcinogens. At least three of them, N-dimethylnitrosamine, N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, attack DNA at the O(6)-position of guanine. The resulting O(6)-alkylguanine adducts are repaired by the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is known to protect against the mutagenic, genotoxic and carcinogenic effects of monofunctional alkylating agents. While in rat liver MGMT was shown to be subject to regulation by genotoxic stress leading to adaptive changes in its activity, in humans evidence of adaptive modulation of MGMT levels is still lacking. Several polymorphisms are known, which are suspected to impact on the risk of developing cancer. In this review we focus on three questions: (a) Has tobacco consumption by smoking or chewing an impact on MGMT expression and MGMT promoter methylation in normal and tumor tissue? (b) Is there an association between MGMT polymorphisms and cancer risk and is this risk related to smoking? (c) Does MGMT protect against tobacco-associated cancer? There are several lines of evidence for an increase of MGMT activity in the normal tissue of smokers compared to non-smokers. Furthermore, in tumors developed in smokers a tendency towards an increase of MGMT expression was found. The data points to the possibility that agents in tobacco smoke are able to trigger upregulation of MGMT in normal and tumor tissue. For MGMT promoter methylation data is conflicting. There is some evidence for an association between MGMT polymorphisms and smoking-induced cancer risk. The key question whether or not MGMT protects against tobacco smoke-induced cancer is difficult to answer since prospective studies on smokers versus non-smokers are lacking and appropriate animal studies with MGMT transgenic mice exposed to the complex mixture of tobacco smoke have not been performed, which indicates the need for further explorations.
Collapse
Affiliation(s)
- Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | | |
Collapse
|
20
|
Sloan JA, de Andrade M, Decker P, Wampfler J, Oswold C, Clark M, Yang P. Genetic variations and patient-reported quality of life among patients with lung cancer. J Clin Oncol 2012; 30:1699-704. [PMID: 22454423 PMCID: PMC3383115 DOI: 10.1200/jco.2010.34.5629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 12/20/2011] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Recent evidence has suggested a relationship between the baseline quality of life (QOL) self-reported by patients with cancer and genetic disposition. We report an analysis exploring relationships among baseline QOL assessments and candidate genetic variations in a large cohort of patients with lung cancer. PATIENTS AND METHODS QOL data were provided by 1,299 patients with non-small-cell lung cancer observed at the Mayo Clinic between 1997 and 2007. Overall QOL and subdomains were assessed by either Lung Cancer Symptom Scale or Linear Analog Self Assessment measures; scores were transformed to a scale of 0 to 10, with higher scores representing better status. Baseline QOL scores assessed within 1 year of diagnosis were dichotomized as clinically deficient (CD) or not. A total of 470 single nucleotide polymorphisms (SNPs) in 56 genes of three biologic pathways were assessed for association with QOL measures. Logistic regression with training/validation samples was used to test the association of SNPs with CD QOL. RESULTS Six SNPs on four genes were replicated using our split schemes. Three SNPs in the MGMT gene (adjusted analysis, rs3858300; unadjusted analysis, rs10741191 and rs3852507) from DNA repair pathway were associated with overall QOL. Two SNPs (rs2287396 [GSTZ1] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with fatigue in unadjusted analysis. In adjusted analysis, two SNPs (rs2756109 [ABCC2] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with pain. CONCLUSION We identified three SNPs in three glutathione metabolic pathway genes and three SNPs in two DNA repair pathway genes associated with QOL measures in patients with non-small-cell lung cancer.
Collapse
|
21
|
Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett 2012; 327:73-89. [PMID: 22252118 DOI: 10.1016/j.canlet.2011.12.038] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 01/13/2023]
Abstract
Base excision repair is the system used from bacteria to man to remove the tens of thousands of endogenous DNA damages produced daily in each human cell. Base excision repair is required for normal mammalian development and defects have been associated with neurological disorders and cancer. In this paper we provide an overview of short patch base excision repair in humans and summarize current knowledge of defects in base excision repair in mouse models and functional studies on short patch base excision repair germ line polymorphisms and their relationship to cancer. The biallelic germ line mutations that result in MUTYH-associated colon cancer are also discussed.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, 05405-0068, United States.
| | | | | |
Collapse
|
22
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
23
|
Molecular epidemiology of female lung cancer. Cancers (Basel) 2011; 3:1861-76. [PMID: 24212786 PMCID: PMC3757394 DOI: 10.3390/cancers3021861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is still a leading cause of cancer mortality in the world. The incidence of lung cancer in developed countries started to decrease mainly due to global anti-smoking campaigns. However, the incidence of lung cancer in women has been increasing in recent decades for various reasons. Furthermore, since the screening of lung cancer is not as yet very effective, clinically applicable molecular markers for early diagnosis are much required. Lung cancer in women appears to have differences compared with that in men, in terms of histologic types and susceptibility to environmental risk factors. This suggests that female lung cancer can be derived by carcinogenic mechanisms different from those involved in male lung cancer. Among female lung cancer patients, many are non-smokers, which could be studied to identify alternative carcinogenic mechanisms independent from smoking-related ones. In this paper, we reviewed molecular susceptibility markers and genetic changes in lung cancer tissues observed in female lung cancer patients, which have been validated by various studies and will be helpful to understand the tumorigenesis of lung cancer.
Collapse
|
24
|
Leng S, Bernauer AM, Hong C, Do KC, Yingling CM, Flores KG, Tessema M, Tellez CS, Willink RP, Burki EA, Picchi MA, Stidley CA, Prados MD, Costello JF, Gilliland FD, Crowell RE, Belinsky SA. The A/G allele of rs16906252 predicts for MGMT methylation and is selectively silenced in premalignant lesions from smokers and in lung adenocarcinomas. Clin Cancer Res 2011; 17:2014-23. [PMID: 21355081 DOI: 10.1158/1078-0432.ccr-10-3026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To address the association between sequence variants within the MGMT (O(6)-methylguanine-DNA methyltransferase) promoter-enhancer region and methylation of MGMT in premalignant lesions from smokers and lung adenocarcinomas, their biological effects on gene regulation, and targeting MGMT for therapy. EXPERIMENTAL DESIGN Single nucleotide polymorphisms (SNP) identified through sequencing a 1.9 kb fragment 5' of MGMT were examined in relation to MGMT methylation in 169 lung adenocarcinomas and 1,731 sputum samples from smokers. The effect of promoter haplotypes on MGMT expression was tested using a luciferase reporter assay and cDNA expression analysis along with allele-specific sequencing for methylation. The response of MGMT methylated lung cancer cell lines to the alkylating agent temozolomide (TMZ) was assessed. RESULTS The A allele of rs16906252 and the haplotype containing this SNP were strongly associated with increased risk for MGMT methylation in adenocarcinomas (ORs ≥ 94). This association was observed to a lesser extent in sputum samples in both smoker cohorts. The A allele was selectively methylated in primary lung tumors and cell lines heterozygous for rs16906252. With the most common haplotype as the reference, a 20 to 41% reduction in promoter activity was seen for the haplotype carrying the A allele that correlated with lower MGMT expression. The sensitivity of lung cancer cell lines to TMZ was strongly correlated with levels of MGMT methylation and expression. CONCLUSIONS These studies provide strong evidence that the A allele of a MGMT promoter-enhancer SNP is a key determinant for MGMT methylation in lung carcinogenesis. Moreover, TMZ treatment may benefit a subset of lung cancer patients methylated for MGMT.
Collapse
Affiliation(s)
- Shuguang Leng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A functional analysis of G23A polymorphism and the alternative splicing in the expression of the XPA gene. Cell Mol Biol Lett 2010; 15:611-29. [PMID: 20865363 PMCID: PMC6275895 DOI: 10.2478/s11658-010-0032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022] Open
Abstract
The XPA gene has a commonly occurring polymorphism (G23A) associated with cancer risk. This study assessed the functional significance of this polymorphism, which is localised near the translation start codon. Lymphoblastoid cell lines with alternative homozygous genotypes showed no significant differences in their XPA levels. The luciferase reporter assay detected no functional difference between the two sequences. Unexpectedly, we found that the alternatively spliced form of XPA mRNA lacked a part of exon 1. Only the reading frame downstream of codon Met59 was preserved. The alternative mRNA is expressed in various human tissues. The analysis of the 5’cDNA ends showed similar transcription start sites for the two forms. The in vitro expression of the alternative XPA labelled with the red fluorescent protein (mRFP) showed a lack of preferential nuclear accumulation of the XPA isoform. The biological role of the alternative XPA mRNA form remains to be elucidated.
Collapse
|
26
|
Huang SH, Chang PY, Liu CJ, Lin MW, Hsia KT. O6-methylguanine-DNA methyltransferase gene coding region polymorphisms and oral cancer risk. J Oral Pathol Med 2010; 39:645-50. [DOI: 10.1111/j.1600-0714.2009.00880.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Polymorphisms of the DNA repair gene MGMT and risk and progression of head and neck cancer. DNA Repair (Amst) 2010; 9:558-66. [PMID: 20206583 DOI: 10.1016/j.dnarep.2010.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/27/2010] [Accepted: 02/05/2010] [Indexed: 11/22/2022]
Abstract
Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.
Collapse
|
28
|
Zhong Y, Huang Y, Huang Y, Zhang T, Ma C, Zhang S, Fan W, Chen H, Qian J, Lu D. Effects of O6-methylguanine-DNA methyltransferase (MGMT) polymorphisms on cancer: a meta-analysis. Mutagenesis 2009; 25:83-95. [PMID: 19892775 DOI: 10.1093/mutage/gep050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
O(6)-methylguanine-DNA methyltransferase is one of the rare proteins to directly remove alkylating agents in the human DNA direct reversal repair pathway. Its two common single-nucleotide polymorphisms, Leu84Phe and Ile143Val, had previously been identified to contribute to susceptibility of cancer. However, there are conflicting results in studies on the association of the two polymorphisms with cancer. Therefore, we conducted a meta-analysis to clarify the paradox with a large collected sample (13,069 cancer patients and 20,290 controls). We found significant association between the T allele (84Phe) and cancer risk, under the recessive genetic model [P = 0.023, odds ratio (OR) = 1.251, 95% confidence interval (CI) 1.031-1.517, P(heterogeneity) = 0.270], TT versus CC comparison (P = 0.035, OR = 1.239, 95% CI 1.015-1.511, P(heterogeneity) = 0.225) and TT versus CT comparison (P = 0.007, OR = 1.292, 95% CI 1.071-1.559, P(heterogeneity) = 0.374), using the random-effect model. In the ethnicity subgroup analysis, a significant association with cancer among Caucasians was found under the recessive genetic model, homozygote comparison and TT versus TC comparison. In the tumour sites subgroup analysis, only the protective effects of Leu84Phe polymorphism were found in colorectal cancer, under CT versus CC comparison. No significant association between the G allele of Ile143Val and cancer risk was found. The G allele showed an increased lung cancer risk under the dominant genetic model and AG versus AA comparison in all Hardy-Weinberg equilibrium subjects, only when the fixed-effect model was used. However, it was insignificant in the random-effect model.
Collapse
Affiliation(s)
- Yu Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Micronucleus Occurrence Related to Base Excision Repair Gene Polymorphisms in Chinese Workers Occupationally Exposed to Vinyl Chloride Monomer. J Occup Environ Med 2009; 51:578-85. [DOI: 10.1097/jom.0b013e3181990d19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Hung RJ, Baragatti M, Thomas D, McKay J, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Chabrier A, Moullan N, Canzian F, Hall J, Boffetta P, Brennan P. Inherited predisposition of lung cancer: a hierarchical modeling approach to DNA repair and cell cycle control pathways. Cancer Epidemiol Biomarkers Prev 2008; 16:2736-44. [PMID: 18086781 DOI: 10.1158/1055-9965.epi-07-0494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The DNA repair systems maintain the integrity of the human genome and cell cycle checkpoints are a critical component of the cellular response to DNA damage. We hypothesized that genetic variants in DNA repair and cell cycle control pathways will influence the predisposition to lung cancer, and studied 27 variants in 17 DNA repair enzymes and 10 variants in eight cell cycle control genes in 1,604 lung cancer patients and 2,053 controls. To improve the estimation of risks for specific variants, we applied a Bayesian approach in which we allowed the prior knowledge regarding the evolutionary biology and physicochemical properties of the variant to be incorporated into the hierarchical model. Based on the estimation from the hierarchical modeling, subjects who carried OGG1 326C/326C homozygotes, MGMT 143V or 178R, and CHEK2 157I had an odds ratio of lung cancer equal to 1.45 [95% confidence interval (95% CI), 1.05-2.00], 1.18 (95% CI, 1.01-1.40), and 1.58 (95% CI, 1.14-2.17). The association of CHEK2 157I seems to be overestimated in the conventional analysis. Nevertheless, this association seems to be robust in the hierarchical modeling. None of the pathways seem to have a prominent effect. In general, our study supports the notion that sequence variation may explain at least some of the variation of inherited susceptibility. In particular, further investigation of OGG1, MGMT, and CHEK2 focusing on the genetic regions where the present markers are located or the haplotype blocks tightly linked with these markers might be warranted.
Collapse
Affiliation(s)
- Rayjean J Hung
- IARC, 150 cours Albert Thomas, F-69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Association between lung cancer risk and single nucleotide polymorphisms in the first intron and codon 178 of the DNA repair gene,O6-alkylguanine–DNA alkyltransferase. Int J Cancer 2008; 122:791-5. [DOI: 10.1002/ijc.23059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Hill CE, Wickliffe JK, Guerin AT, Kinslow CJ, Wolfe KJ, Ammenheuser MM, Abdel-Rahman SZ. The L84F polymorphism in the O6-Methylguanine-DNA-Methyltransferase (MGMT) gene is associated with increased hypoxanthine phosphoribosyltransferase (HPRT) mutant frequency in lymphocytes of tobacco smokers. Pharmacogenet Genomics 2007; 17:743-53. [PMID: 17700363 DOI: 10.1097/fpc.0b013e3281111eb1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES O-methylguanine-DNA-methyltransferase (MGMT) is a crucial DNA repair protein that removes DNA adducts formed by alkylating mutagens. Several coding single nucleotide polymorphisms (cSNPs) in the MGMT gene have been reported. Their biological significance, however, is not known. METHODS We used a newly modified cloning HPRT mutant lymphocyte assay to test the hypothesis that inheritance of the L84F and I143V coding single nucleotide polymorphism in the MGMT gene is associated with increases in HPRT mutant frequency in lymphocytes of individuals exposed to alkylating agents. In addition, we expanded and sequenced 109 mutant clones to test the hypothesis that the mutation spectrum would shift to a larger percentage of base substitutions and G-->A transition mutations in cells with L84F and I143 V coding single nucleotide polymorphisms. RESULTS We observed no significant effect for the I143 V coding single nucleotide polymorphism on mutant frequency. In contrast, we observed a significant increase in mutant frequency (P<0.01) in lymphocytes from smokers with the 84F coding single nucleotide polymorphism compared with smokers homozygous for the referent L84 wild-type allele. A multiple regression analysis indicated that the mutant frequency increased significantly as a function of the 84F coding single nucleotide polymorphism and smoking, according to the model; mutant frequency (x10)=0.90+0.618 (84F polymorphism)+0.46 (smoking) with R=0.22. Mutation spectra analysis revealed an apparent increase, which was short of statistical significance (P=0.08), in base substitutions in cells with the 84F polymorphism. CONCLUSIONS These new data suggest that the 84F coding single nucleotide polymorphism may alter the phenotype of the MGMT protein, resulting in suboptimal repair of O-methylguanine lesions after exposure to alkylating agents.
Collapse
Affiliation(s)
- Courtney E Hill
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Fang Q, Loktionova NA, Moschel RC, Javanmard S, Pauly GT, Pegg AE. Differential inactivation of polymorphic variants of human O6-alkylguanine-DNA alkyltransferase. Biochem Pharmacol 2007; 75:618-26. [PMID: 17996846 DOI: 10.1016/j.bcp.2007.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/25/2022]
Abstract
The human DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) is an important source of resistance to some therapeutic alkylating agents and attempts to circumvent this resistance by the use of hAGT inhibitors have reached clinical trials. Several human polymorphisms in the MGMT gene that encodes hAGT have been described including L84F and the linked double alteration I143V/K178R. We have investigated the inactivation of these variants and the much rarer variant W65C by O(6)-benzylguanine, which is currently in clinical trials, and a number of other second generation hAGT inhibitors that contain folate derivatives (O(4)-benzylfolic acid, the 3' and 5' folate esters of O(6)-benzyl-2'-deoxyguanosine and the folic acid gamma ester of O(6)-(p-hydroxymethyl)benzylguanine). The I143V/K178R variant was resistant to all of these compounds. The resistance was due solely to the I143V change. These results suggest that the frequency of the I143V/K178R variant among patients in the clinical trials with hAGT inhibitors and the correlation with response should be considered.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
34
|
Felini MJ, Olshan AF, Schroeder JC, North KE, Carozza SE, Kelsey KT, Liu M, Rice T, Wiencke JK, Wrensch MR. DNA repair polymorphisms XRCC1 and MGMT and risk of adult gliomas. Neuroepidemiology 2007; 29:55-8. [PMID: 17898525 DOI: 10.1159/000108919] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
X-ray cross complementing group 1 (XRCC1) and O6-methylguanine-DNA methyltransferase (MGMT) are pivotal repair genes focused on repairing lesions due to ionizing radiation, alkylating agents, and oxidative DNA damage, risk factors previously linked to gliomas. Using the population based San Francisco Adult Glioma study, we evaluated associations between XRCC1 Arg399Gln, MGMT Leu84Phe, and MGMT Ile143Val polymorphisms with glioma risk among white cases (n = 441 to 453) and controls (n = 487 to 526). We found no evidence of an association between XRCC1 genotypes and glioma. We observed a weak positive association for the MGMT Leu84Phe polymorphism (Leu or Phe/Phe versus Leu/Leu: adjusted OR = 1.26; CI 0.90-1.75) and the MGMT Ile143Val polymorphism (Ile or Val/Val versus Ile/Ile: adjusted OR = 1.20; CI 0.85-1.71).
Collapse
Affiliation(s)
- Martha J Felini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Povey AC, Margison GP, Santibáñez-Koref MF. Lung cancer risk and variation in MGMT activity and sequence. DNA Repair (Amst) 2007; 6:1134-44. [PMID: 17569600 DOI: 10.1016/j.dnarep.2007.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (MGMT) repairs DNA adducts that result from alkylation at the O(6) position of guanine. These lesions are mutagenic and toxic and can be produced by a variety of agents including the tobacco-specific nitrosamines, carcinogens present in cigarette smoke. Here, we review some of our work in the context of inter-individual differences in MGMT expression and their potential influence on lung cancer risk. In humans there are marked inter-individual differences in not only levels of DNA damage in the lung (N7-methylguanine) that can arise from exposure to methylating agents but also in MGMT activity in lung tissues. In the presence of such exposure, this variability in MGMT activity may alter cancer susceptibility, particularly as animal models have demonstrated that the complete absence of MGMT activity predisposes to alkylating-agent induced cancer while overexpression is protective. Recent studies have uncovered a series of polymorphisms that affect protein activity or are associated with differences in expression levels. The associations between these (and other) polymorphisms and cancer risk are inconsistent, possibly because of small sample sizes and inter-study differences in lung cancer histology. We have recently analysed a consecutive series of case-control studies and found evidence that lung cancer risk was lower in subjects with the R178 allele.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
36
|
Bugni JM, Han J, Tsai MS, Hunter DJ, Samson LD. Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 2007; 6:1116-26. [PMID: 17569599 DOI: 10.1016/j.dnarep.2007.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA repair protein, O(6)-methylguanine DNA-methyltransferase (MGMT) prevents mutations and cell death that result from aberrant alkylation of DNA. The polymorphic variants Leu84Phe, Ile143Val, and Lys178Arg are frequent in the human population. We review here studies of these and other MGMT polymorphisms and their association with risk for lung, breast, colorectal and endometrial cancer with a consideration of gene-environment interactions. In addition, we review studies of the effects of polymorphic variation on alkyltransferase activity and expression. It is formally possible that polymorphic variation could modify functions of MGMT other than its alkyltransferase activity. While it was previously reported that an alkylated form of MGMT modifies Estrogen Receptor alpha activity, from our studies we conclude that this regulation is not a major function of MGMT. Overall, the effects of polymorphic variation on protein function are subtle, and further investigation is required to provide a comprehensive mechanism that explains the observed associations of these variants with risk for cancer.
Collapse
Affiliation(s)
- James M Bugni
- Biological Engineering Division, Biology Department, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
37
|
Tudek B. Base excision repair modulation as a risk factor for human cancers. Mol Aspects Med 2007; 28:258-75. [PMID: 17628657 DOI: 10.1016/j.mam.2007.05.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/23/2007] [Indexed: 12/20/2022]
Abstract
Oxidative DNA damage and DNA repair mediate the development of several human pathologies, including cancer. The major pathway for oxidative DNA damage repair is base excision repair (BER). Functional assays performed in blood leukocytes of cancer patients and matched controls show that specific BER pathways are decreased in cancer patients, and may be risk factors. These include 8-oxoguanine (8-oxoG) repair in lung and head and neck cancer patients and repair of lipid peroxidation (LPO) induced 1,N(6)-ethenoadenine (epsilonA) in lung cancer patients. Decrease of excision of LPO-induced DNA damage, epsilonA and 3,N(4)-ethenocytosine (epsilonC) was observed in blood leukocytes of patients developing lung adenocarcinoma, specific histological type of cancer related to inflammation and healing of scars. BER proteins activity depends on gene polymorphism, interactions between BER system partners and post-translational modifications. Polymorphisms of DNA glycosylases may change their enzymatic activities, and some polymorphisms increase the risk of inflammation-related cancers, colorectal, lung and other types. Polymorphisms of BER platform protein, XRCC1 are connected with increased risk of tobacco-related cancers. BER efficiency may also be changed by reactive oxygen species and some diet components, which induce transcription of several glycosylases as well as a major human AP-endonuclease, APE1. BER is also changed in tumors in comparison to unaffected surrounding tissues, and this change may be due to transcription stimulation, post-translational modification of BER enzymes as well as protein-protein interactions. Modulation of BER enzymes activities may be, then, an important factor determining the risk of cancer and also may participate in cancer development.
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
38
|
Abstract
This article summarizes the current understanding of known variant forms of the MGMT gene that encode an altered protein. Epidemiological studies have been carried out to test whether these alterations are associated with altered cancer risk. Laboratory studies using recombinant proteins and cells expressing the known variants have investigated the possible effects of these sequence alterations on the ability of the encoded O(6)-alkylguanine-DNA alkyltransferase protein to protect cells from alkylation damage and to respond to therapeutic inactivators currently undergoing trials for cancer chemotherapy.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
39
|
Hu Z, Wang H, Shao M, Jin G, Sun W, Wang Y, Liu H, Wang Y, Ma H, Qian J, Jin L, Wei Q, Lu D, Huang W, Shen H. Genetic variants inMGMTand risk of lung cancer in Southeastern Chinese: a haplotype-based analysis. Hum Mutat 2007; 28:431-40. [PMID: 17285603 DOI: 10.1002/humu.20462] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
O6-alkylguanine-DNA alkyltransferase (MGMT) is a universal DNA repair protein involved in the DNA direct reversal repair pathway that copes with alkylating carcinogens. Reduced MGMT expression as well as enzyme activity may result in an increased susceptibility to cancers. To elucidate the role of sequence variation in MGMT in the etiology of lung cancer, we conducted a comprehensive association study focusing on linkage disequilibrium (LD) structure of common variations across the MGMT sequence and its modification effect on smoking-related lung cancer risk. We rebuilt the LD block of MGMT by genotyping 39 SNPs and selected a subset of 10 haplotype-tagging SNPs (htSNP) and three pre- and interblock SNPs to capture variation across MGMT. By using a haplotype-based multifactor dimensionality reduction (MDR) analysis, we found that there were significant more-than-multiplicative interactions between diplotypes in block 5 and cumulative smoking and additive interaction between genotypes of preblock SNP rs1625649:C>A and smoking status in relation on lung cancer risk. Diplotypes in block 3 and block 5, genotypes of rs1625649:C>A, and trichotomized cumulative smoking are the four factors included in the MDR-defined best model on lung cancer risk. When these variables were combined and dichotomized, we found that subjects carrying the combined risk stratum had a significantly increased risk for lung cancer of 4.10-fold (odds ratio [OR]=4.10, 95% confidence interval [CI]=3.12-5.37, P=2.09 x 10(-24)). These findings suggest that genetic variants in MGMT may modulate the risk of smoking-related lung cancer. This haplotype-based interaction analysis might provide a "proof-of-principle" approach for studying candidate genes in cancer susceptibility.
Collapse
Affiliation(s)
- Zhibin Hu
- Department of Epidemiology and Biostatistics, Cancer Research Center of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Anderson LM. Environmental genotoxicants/carcinogens and childhood cancer: Bridgeable gaps in scientific knowledge. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 608:136-56. [PMID: 16829162 DOI: 10.1016/j.mrgentox.2006.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Cancer in children is a major concern in many countries. An important question is whether these childhood cancers are caused by something, or are just tragic random events. Causation of at least some children's cancers is suggested by direct and indirect evidence, including epidemiological data, and animal studies that predict early life sensitivity of humans to carcinogenic effects. Candidate risk factors include genotoxic agents (chemicals and radiation), but also diet/nutrition, and infectious agents/immune responses. With regard to likelihood of risks posed by genotoxicants, there are pros and cons. The biological properties of fetuses and infants are consistent with sensitivity to preneoplastic genotoxic damage. Recent studies of genetic polymorphisms in carcinogen-metabolizing enzymes confirm a role for chemicals. On the other hand, in numerous epidemiological studies, associations between childhood cancers and exposure to genotoxicants, including tobacco smoke, have been weak and hard to reproduce. Possibly, sensitive genetic or ontogenetic subpopulations, and/or co-exposure situations need to be discovered to allow identification of susceptible individuals and their risk factors. Among the critical knowledge gaps needing to be bridged to aid in this effort include detailed tissue and cellular ontogeny of carcinogen metabolism and DNA repair enzymes, and associations of polymorphisms in DNA repair enzymes with childhood cancers. Perinatal bioassays in animals of specific environmental candidates, for example, benzene, could help guide epidemiology. Genetically engineered animal models could be useful for identification of chemical effects on specific genes. Investigations of interactions between factors may be key to understanding risk. Finally, fathers and newborn infants should receive more attention as especially sensitive targets.
Collapse
Affiliation(s)
- Lucy M Anderson
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
41
|
Mijal RS, Kanugula S, Vu CC, Fang Q, Pegg AE, Peterson LA. DNA sequence context affects repair of the tobacco-specific adduct O(6)-[4-Oxo-4-(3-pyridyl)butyl]guanine by human O(6)-alkylguanine-DNA alkyltransferases. Cancer Res 2006; 66:4968-74. [PMID: 16651455 DOI: 10.1158/0008-5472.can-05-3803] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) protects cells from the mutagenic and carcinogenic effects of alkylating agents by removing O(6)-alkylguanine adducts from DNA. Recently, we established that AGT protects against the mutagenic effects of pyridyloxobutylation resulting from the metabolic activation of the tobacco-specific nitrosamines (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine by repairing O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobG). There have been several epidemiologic studies examining the association between the I143V/K178R AGT genotype and lung cancer risk. Two studies have found positive associations, suggesting that AGT proteins differ in their repair of DNA damage caused by TSNA. However, it is not known how this genotype alters the biochemical activity of AGT. We proposed that AGT proteins may differ in their ability to remove large O(6)-alkylguanine adducts, such as O(6)-pobG, from DNA. Therefore, we examined the repair of O(6)-pobG by wild-type (WT) human, I143V/K178R, and L84F AGT proteins when contained in multiple sequence contexts, including the twelfth codon of H-ras, a mutational hotspot within this oncogene. The AGT-mediated repair of O(6)-pobG was more profoundly influenced by sequence context than that of O(6)-methylguanine. These differences are not the result of secondary structure (hairpin) formation in DNA. In addition, the I143V/K178R variant seems less sensitive to the effects of sequence context than the WT or L84F proteins. These studies indicate that the sequence dependence of O(6)-pobG repair by human AGT (hAGT) varies with subtle changes in protein structure. These data establish a novel functional difference between the I143V/K178R protein and other hAGTs in the repair of a toxicologically relevant substrate, O(6)-pobG.
Collapse
Affiliation(s)
- Renée S Mijal
- Division of Environmental Health Sciences and The Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chae MH, Jang JS, Kang HG, Park JH, Park JM, Lee WK, Kam S, Lee EB, Son JW, Park JY. O6-alkylguanine-DNA alkyltransferase gene polymorphisms and the risk of primary lung cancer. Mol Carcinog 2006; 45:239-49. [PMID: 16385589 DOI: 10.1002/mc.20171] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
O6-alkylguanine-DNA alkyltransferase (AGT) plays an important role in the repair of O6-alkylguanine adducts, which are major mutagenic lesions produced by environmental carcinogens. Polymorphisms in the AGT gene may affect the capacity to repair DNA damage and thereby have influence on individual's susceptibility to smoking-related cancer. To test this hypothesis, we investigated the potential association of AGT polymorphisms (485C > A, Leu53Leu (C > T) and Leu84Phe] with the risk of lung cancer in a Korean population. The AGT genotypes were determined in 432 lung cancer patients and in 432 healthy controls who were frequency-matched for age and gender. The 485 AA genotype was associated with a significantly increased risk for overall lung cancer as compared with the 485 CC genotype and the combined 485 CC + CA genotype, respectively (adjusted odds ratio (OR) = 1.83, 95% confidence interval (CI) = 1.12-2.99, P = 0.02, and Bonferroni corrected P-value (Pc) = 0.04; and adjusted OR = 1.67, 95% CI = 1.05-2.66, P = 0.03, respectively). When the lung cancer cases were categorized by the tumor histology, the 485 AA genotype was associated with a significantly increased risk of adenocarcinoma (AC) and small cell carcinoma (SmCC), respectively, as compared with the combined 485 CC + CA genotype (adjusted OR = 2.54, 95% CI = 1.39-4.66, P = 0.003; and adjusted OR = 2.19, 95% CI = 1.06-4.55, P = 0.04, respectively). However, the genotype distributions of the Leu53Leu and Leu84Phe polymorphisms were not significantly different between the lung cancer cases and the controls. On a promoter assay, the 485C > A polymorphism did not have an effect on the promoter activity of the AGT gene. These results suggest that the effect of the AGT 485C > A polymorphism on the risk of lung cancer may be secondary to linkage disequilibrium (LD) with either another AGT variant or with a true susceptibility gene, and that the AGT 485C > A polymorphism could be used as a marker for the genetic susceptibility to lung cancer.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adult
- Carcinoma, Large Cell/enzymology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Small Cell/enzymology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/pathology
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- DNA Damage
- DNA Repair
- Female
- Genetic Predisposition to Disease
- Genotype
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- O(6)-Methylguanine-DNA Methyltransferase/metabolism
- Polymorphism, Genetic/genetics
- Promoter Regions, Genetic/genetics
- Risk Factors
Collapse
Affiliation(s)
- Myung Hwa Chae
- Cancer Research Institute, Kyungpook National University Hospital, Samduk, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang WY, Olshan AF, Schwartz SM, Berndt SI, Chen C, Llaca V, Chanock SJ, Fraumeni JF, Hayes RB. Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis. Cancer Epidemiol Biomarkers Prev 2005; 14:1747-53. [PMID: 16030112 DOI: 10.1158/1055-9965.epi-05-0162] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tobacco and alcohol consumption are the major risk factors for head and neck cancer, likely due to DNA-damaging processes. Genetic variations in DNA repair genes may affect an individual's susceptibility to head and neck cancer. Pooling data and DNA specimens from three case-control studies in western Washington State, North Carolina, and Puerto Rico, totaling 555 cases (430 whites) and 792 controls (695 whites), we studied the risk of head and neck cancer in relation to common nonsynonymous single-nucleotide polymorphisms in four DNA repair genes: MGMT (Leu84Phe and Ile143Val), XRCC1 (Arg399Gln), XPD (Lys751Gln), and XRCC3 (Thr241Met). All single-nucleotide polymorphisms were assayed in a single laboratory. Among whites, carriage of the MGMT Phe84 [odds ratio (OR), 0.71; 95% confidence interval (95% CI), 0.51-0.98] or Val143 (OR, 0.66; 95% CI, 0.47-0.92) allele was associated with a decreased risk of head and neck cancer; the haplotype distribution for MGMT differed significantly between cases and controls (covariate-adjusted global permutation test, P = 0.012). The XRCC1 GlnGln399 genotype was also associated with decreased risk among whites (OR, 0.56; 95% CI, 0.32-0.94), whereas XPD751 and XRCC3241 were not associated with risk. Alcohol-related risks tended to vary with DNA repair genotypes, especially for MGMT variants, whereas no effect modification was noted with tobacco use. Consistent findings from three case-control studies suggest that selected DNA repair enzymes may play a role in head and neck carcinogenesis.
Collapse
Affiliation(s)
- Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, EPS 8113, MSC 7240, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wiencke JK, Aldape K, McMillan A, Wiemels J, Moghadassi M, Miike R, Kelsey KT, Patoka J, Long J, Wrensch M. Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in O6-methylguanine-DNA-methyltransferase. Cancer Epidemiol Biomarkers Prev 2005; 14:1774-83. [PMID: 16030116 DOI: 10.1158/1055-9965.epi-05-0089] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Risk factors for adult glioma in the San Francisco Bay Area include well-known demographic features such as age and race/ethnicity, and our previous studies indicated that these characteristics are associated with the TP53 mutation status of patients' tumors. We enlarged our study to assess the relationships of risk factors with TP53 as well as epidermal growth factor receptor (EGFR) and murine double minute-2 (MDM2) gene amplification and expression and the germ line Leu84Phe polymorphism in the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT). MGMT expression may depend on the TP53 status of cells. METHODS Molecular analyses were carried out on 556 incident astrocytic tumors. MGMT genotype data were collected on germ line DNA from 260 of these cases. RESULTS The tumor data confirm the inverse relationships between TP53 mutation and MDM2 (P = 0.04) or EGFR (P = 0.004) amplification and that patients whose tumors contain TP53 mutations are younger than those without (P < 0.001). Although there was little difference in age of patient by EGFR amplification or expression among glioblastoma multiforme cases, EGFR gene amplification was associated with much older age of onset of anaplastic astrocytoma; for example, EGFR-amplified anaplastic astrocytoma cases were on average 63 years old compared with 48 years for nonamplified cases (P = 0.005). An increased prevalence of TP53 mutation positive glioblastoma multiforme was noted among nonwhites (African American and Asian) compared with whites (Latino and non-Latino; P = 0.004). Carriers of the MGMT variant 84Phe allele were significantly less likely to have tumors with TP53 overexpression (odds ratio, 0.30; 95% confidence interval, 0.13-0.71) and somewhat less likely to have tumors with any TP53 mutation (odds ratio, 0.47; 95% confidence interval, 0.13-1.69) after adjusting for age, gender, and ethnicity. Interestingly, EGFR gene amplification and EGFR protein overexpression were also inversely associated with the MGMT 84Phe allele. CONCLUSIONS Our results are consistent with ethnic variation in glioma pathogenesis. The data on MGMT show that an inherited factor involving the repair of methylation and other alkylation damage, specifically to the O6 position of guanine, may be associated with the development of tumors that proceed in their development without TP53 mutations or accumulation of TP53 protein and possibly also those that do not involve amplification of the EGFR locus.
Collapse
Affiliation(s)
- John K Wiencke
- Division of Neuroepidemiology, Department of Neurological Surgery, School of Medicine, University of California San Francisco, Box 0441, San Francisco, CA 94143-0441, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rzeszowska-Wolny J, Polanska J, Pietrowska M, Palyvoda O, Jaworska J, Butkiewicz D, Hancock R. Influence of polymorphisms in DNA repair genes XPD, XRCC1 and MGMT on DNA damage induced by gamma radiation and its repair in lymphocytes in vitro. Radiat Res 2005; 164:132-40. [PMID: 16038584 DOI: 10.1667/rr3400] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA single-strand breaks (SSBs) were quantified by single-cell gel electrophoresis and micronucleated and apoptotic cells were quantified by microscopic assays in peripheral blood lymphocytes after irradiation on ice with 2 Gy of 60Co gamma radiation, and their association with polymorphisms of genes that encode proteins of different DNA repair pathways and influence cancer risk (XPD codon 312Asp --> Asn and 751Lys --> Gln, XRCC1 399Arg --> Gln, and MGMT 84Leu --> Phe) was studied. In unirradiated lymphocytes, SSBs were significantly more frequent in individuals older than the median age (52 years) (P = 0.015; n = 81), and the frequency of apoptotic or micronucleated cells was higher in individuals with alleles coding for Asn at XPD 312 or Gln at 751 (P = 0.030 or 0.023 ANOVA, respectively; n = 54). The only polymorphism associated with the background SSB level was MGMT 84Phe (P = 0.04, ANOVA; n = 66). After irradiation, SSB levels and repair parameters did not differ significantly with age or smoking habit. The SSB level varied more than twofold and the repair rate and level of unrepaired SSBs more than 10-fold between individuals. The presence of variant alleles coding for Asn at XPD 312 was associated with more radiation-induced SSBs (P = 0.014) and fewer unrepaired SSBs (P = 0.008), and the phenotype (> median induced SSBs/< median unrepaired SSBs) was seen in the majority of XPD 312Asn/Asn homozygotes; the odds ratio for variant homozygotes to show this phenotype was 5.2 (95% confidence interval 1.4-19.9). The hypothesis is discussed that XPD could participate in repair of ionizing radiation-induced DNA damage. While it cannot be excluded that the effects observed are due to cosegregating polymorphisms or that the responses of lymphocytes are not typical of other cell types, the results suggest that polymorphism of DNA repair genes, particularly XPD, is one factor implicated in the variability of responses to ionizing radiation between different individuals.
Collapse
Affiliation(s)
- Joanna Rzeszowska-Wolny
- Department of Experimental and Clinical Radiobiology, Center of Oncology, Maria Sklodowska-Curie Memorial Institute, Gliwice, Poland
| | | | | | | | | | | | | |
Collapse
|
46
|
Li C, Liu J, Li A, Qian L, Wang X, Wei Q, Zhou J, Zhang Z. Exon 3 polymorphisms and haplotypes of O6-methylguanine-DNA methyltransferase and risk of bladder cancer in southern China: A case–control analysis. Cancer Lett 2005; 227:49-57. [PMID: 15885889 DOI: 10.1016/j.canlet.2005.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/25/2005] [Accepted: 03/28/2005] [Indexed: 11/26/2022]
Abstract
Methylating agents are involved in bladder carcinogenesis. O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes methyl group from O6-methylguanine and thus plays an important role in the etiology of cancer. We hypothesized that two MGMT polymorphisms in exon 3, C16195T (or MGMT L53L) and C16286T (or MGMT L84F) are associated with risk of bladder cancer. In a hospital-based case-control study of 167 patients with bladder cancer and 204 cancer-free controls frequency-matched by age, sex, smoking status, and alcohol use, we genotyped these two MGMT polymorphisms. We found that these two polymorphisms alone had a non-significant main effect on risk of bladder cancer. However, when these two polymorphisms were evaluated together, individuals with the combined genotypes or haplotypes with one or more variant alleles (i.e. the 16195T and 16286T alleles) had statistically significantly increased risk of bladder cancer (adjusted odd ratio [OR]=1.67, 95% confidence interval [CI], 1.01-2.77) compared with those with no variant allele. In the stratification analysis, the risk of bladder cancer was increased in a dose-response manner as the age increased (P(trend)=0.010), and the increased risk was more pronounced among old subjects (>65 years) (adjusted OR=2.51, 95% CI, 1.05-6.04), men (1.76, 1.00-3.10), and non-drinkers (1.91, 1.08-3.36). In conclusion, these two MGMT polymorphisms may jointly play a role, in the etiology of bladder cancer in southern Chinese population. Larger studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Chunping Li
- Department of Molecular Cell Biology and Toxicology, Jiangsu Provincial Key Laboratories of Human Functional Genomics and of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hill CE, Wickliffe JK, Wolfe KJ, Kinslow CJ, Lopez MS, Abdel-Rahman SZ. The L84F and the I143V polymorphisms in the O6-methylguanine-DNA-methyltransferase (MGMT) gene increase human sensitivity to the genotoxic effects of the tobacco-specific nitrosamine carcinogen NNK. Pharmacogenet Genomics 2005; 15:571-8. [PMID: 16007001 DOI: 10.1097/01.fpc.0000167332.38528.a5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
O-Methylguanine-DNA-methyltransferase (MGMT) is a direct-reversal DNA repair protein that removes DNA adducts formed by alkylating mutagens found in tobacco smoke. Several coding single nucleotide polymorphisms (cSNPs) in the MGMT gene have been reported. However, their effect on the levels and types of genetic damage induced by specific environmental carcinogens remains to be fully elucidated. We developed two novel genotyping techniques and used them, in conjunction with the mutagen-sensitivity assay, to test the hypothesis that the L84F and I143V cSNPs in the MGMT gene confer increased sensitivity to genetic damage induced by the alkylating tobacco-specific nitrosamine carcinogen NNK. Lymphocytes from 114 healthy volunteers were exposed in vitro to NNK, and the genotoxic response was assessed by measuring chromosome aberration (CA) frequencies. A significant (P<0.02) increase in NNK-induced CA was observed in cells from individuals with the 84F polymorphism compared to cells from individuals homozygous for the referent L84 allele. A significant positive interaction between this cSNP and smoking, gender and age was observed (P<0.03). In subjects with the variant 143V allele, significantly higher levels of NNK-induced CA were observed in males and in young subjects (<43 years old) compared to subjects homozygous for the referent I143 allele (P<0.02). Individuals who inherited two cSNPs had significantly higher levels of NNK-induced CA compared to individuals with none or with one cSNP (P<0.002). These new data suggest that the 84F and 143V cSNPs may alter the function characteristics of the MGMT protein, resulting in suboptimal repair of genetic damage induced by NNK.
Collapse
Affiliation(s)
- Courtney E Hill
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas 77555-1110, USA
| | | | | | | | | | | |
Collapse
|
48
|
Shen J, Terry MB, Gammon MD, Gaudet MM, Teitelbaum SL, Eng SM, Sagiv SK, Neugut AI, Santella RM. MGMT genotype modulates the associations between cigarette smoking, dietary antioxidants and breast cancer risk. Carcinogenesis 2005; 26:2131-7. [PMID: 16014702 DOI: 10.1093/carcin/bgi179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
O(6)-methylguanine DNA methyl-transferase (MGMT) is the only known critical gene involved in cellular defense against alkylating agents in the DNA direct reversal repair (DRR) pathway. Three single nucleotide polymorphism (SNP) coding for non-conservative amino acid substitutions have been identified [C250T (Leu84Phe), A427G (Ile143Val) and A533G (Lys178Arg)]. To examine the importance of the DRR pathway in risk for breast cancer and the potential interaction with cigarette smoking and dietary antioxidants, we genotyped for these variants using biospecimens from the Long Island Breast Cancer Study Project. Genotyping was performed by a high throughput assay with fluorescence polarization and included 1067 cases and 1110 controls. Overall, there was no main effect between any variant genotype, haplotype or diplotype and breast cancer risk. Heavy smoking (>31 pack-year) significantly increased breast cancer risk for women with the codon 84 variant T-allele [odds ratio, OR = 3.0, 95% confidence interval (95% CI) = 1.4-6.2]. An inverse association between fruits and vegetables consumption and breast cancer risk was observed among women with the wild-type genotype for codon 84 (OR = 0.8, 95% CI = 0.6-0.9 for > or =35 servings of fruits and vegetables per week and CC genotype versus those with <35 servings per week and CC genotype). The association between fruits and vegetables consumption and reduced breast cancer risk was apparent among women with at least one variant allele for codon 143 (OR = 0.6, 95% CI = 0.5-0.9 for > or =35 servings of fruits and vegetables per week and AG or GG genotype versus those with <35 servings per week and AA genotype). Similar patterns were observed for dietary alpha-carotene and supplemental beta-carotene, but not for supplemental vitamins C and E. These data suggest that polymorphisms in MGMT may modulate the inverse association previously observed between fruits and vegetables consumption, dietary antioxidants and breast cancer risk, and support the importance of fruits and vegetables on breast cancer risk reduction.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Margison GP, Heighway J, Pearson S, McGown G, Thorncroft MR, Watson AJ, Harrison KL, Lewis SJ, Rohde K, Barber PV, O'Donnell P, Povey AC, Santibáñez-Koref MF. Quantitative trait locus analysis reveals two intragenic sites that influence O6-alkylguanine-DNA alkyltransferase activity in peripheral blood mononuclear cells. Carcinogenesis 2005; 26:1473-80. [PMID: 15831531 DOI: 10.1093/carcin/bgi087] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The repair of specific types of DNA alkylation damage by O6-alkylguanine-DNA alkyltransferase (MGMT) is a major mechanism of resistance to the carcinogenic and chemotherapeutic effects of certain alkylating agents. MGMT expression levels vary widely between individuals but the underlying causes of this variability are not known. To address this, we used an expressed single nucleotide polymorphism (SNP) and demonstrated that the MGMT alleles are frequently expressed at different levels in peripheral blood mononuclear cells (PBMC). This suggests that there is a genetic component of inter-allelic variation of MGMT levels that maps close to or within the MGMT locus. We then used quantitative trait locus (QTL) analysis using intragenic SNPs and found that there are at least two sites influencing inter-individual variation in PBMC MGMT activity. One is characterized by an SNP at the 3' end of the first intron and the second by two SNPs in the last exon. The latter are in perfect disequilibrium and both result in amino acid substitutions-one of them, Ile143Val, affecting an amino acid close to the Cys145 residue at the active site of MGMT. Using in vitro assays, we further showed that while the Val143 variant did not affect the activity of the protein on methylated DNA substrate, it was more resistant to inactivation by the MGMT pseudosubstrate, O6-(4-bromothenyl)guanine. These findings suggest that further investigations of the potential epidemiological and clinical significance of inherited differences in MGMT expression and activity are warranted.
Collapse
Affiliation(s)
- Geoffrey P Margison
- Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|