1
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Janssen LLG, van Leeuwen-Kerkhoff N, Westers TM, de Gruijl TD, van de Loosdrecht AA. The immunoregulatory role of monocytes and thrombomodulin in myelodysplastic neoplasms. Front Oncol 2024; 14:1414102. [PMID: 39132505 PMCID: PMC11310157 DOI: 10.3389/fonc.2024.1414102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are clonal disorders of the myeloid lineage leading to peripheral blood cytopenias. Dysregulation of innate immunity is hypothesized to be a potent driver of MDS. A recent study revealed increased thrombomodulin (TM) expression on classical monocytes in MDS, which was associated with prolonged survival. TM is a receptor with immunoregulatory capacities, however, its exact role in MDS development remains to be elucidated. In this review we focus on normal monocyte biology and report on the involvement of monocytes in myeloid disease entities with a special focus on MDS. Furthermore, we delve into the current knowledge on TM and its function in monocytes in health and disease and explore the role of TM-expressing monocytes as driver, supporter or epiphenomenon in the MDS bone marrow environment.
Collapse
Affiliation(s)
- Luca L. G. Janssen
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Nathalie van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Theresia M. Westers
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam, Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
3
|
Wang Y, Schneider SW, Gorzelanny C. Crosstalk between Circulating Tumor Cells and Plasma Proteins-Impact on Coagulation and Anticoagulation. Cancers (Basel) 2023; 15:cancers15113025. [PMID: 37296987 DOI: 10.3390/cancers15113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer metastasis is a complex process. After their intravasation into the circulation, the cancer cells are exposed to a harsh environment of physical and biochemical hazards. Whether circulating tumor cells (CTCs) survive and escape from blood flow defines their ability to metastasize. CTCs sense their environment with surface-exposed receptors. The recognition of corresponding ligands, e.g., fibrinogen, by integrins can induce intracellular signaling processes driving CTCs' survival. Other receptors, such as tissue factor (TF), enable CTCs to induce coagulation. Cancer-associated thrombosis (CAT) is adversely connected to patients' outcome. However, cancer cells have also the ability to inhibit coagulation, e.g., through expressing thrombomodulin (TM) or heparan sulfate (HS), an activator of antithrombin (AT). To that extent, individual CTCs can interact with plasma proteins, and whether these interactions are connected to metastasis or clinical symptoms such as CAT is largely unknown. In the present review, we discuss the biological and clinical relevance of cancer-cell-expressed surface molecules and their interaction with plasma proteins. We aim to encourage future research to expand our knowledge of the CTC interactome, as this may not only yield new molecular markers improving liquid-biopsy-based diagnostics but also additional targets for better cancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv 2022; 7:60-72. [PMID: 35849711 PMCID: PMC9827038 DOI: 10.1182/bloodadvances.2021006870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Prior reports indicate that the convex membrane curvature of phosphatidylserine (PS)-containing vesicles enhances formation of binding sites for factor Va and lactadherin. Yet, the relationship of convex curvature to localization of these proteins on cells remains unknown. We developed a membrane topology model, using phospholipid bilayers supported by nano-etched silica substrates, to further explore the relationship between curvature and localization of coagulation proteins. Ridge convexity corresponded to maximal curvature of physiologic membranes (radii of 10 or 30 nm) and the troughs had a variable concave curvature. The benchmark PS probe lactadherin exhibited strong differential binding to the ridges, on membranes with 4% to 15% PS. Factor Va, with a PS-binding motif homologous to lactadherin, also bound selectively to the ridges. Bound factor Va supported coincident binding of factor Xa, localizing prothrombinase complexes to the ridges. Endothelial cells responded to prothrombotic stressors and stimuli (staurosporine, tumor necrosis factor-α [TNF- α]) by retracting cell margins and forming filaments and filopodia. These had a high positive curvature similar to supported membrane ridges and selectively bound lactadherin. Likewise, the retraction filaments and filopodia bound factor Va and supported assembly of prothrombinase, whereas the cell body did not. The perfusion of plasma over TNF-α-stimulated endothelia in culture dishes and engineered 3-dimensional microvessels led to fibrin deposition at cell margins, inhibited by lactadherin, without clotting of bulk plasma. Our results indicate that stressed or stimulated endothelial cells support prothrombinase activity localized to convex topological features at cell margins. These findings may relate to perivascular fibrin deposition in sepsis and inflammation.
Collapse
|
5
|
Nakayama H, Inada H, Inukai T, Kondo K, Hirai K, Tsutsumi T, Adachi Y, Nagi-Miura N, Ohno N, Suzuki K. Recombinant Human Soluble Thrombomodulin Suppresses Arteritis in a Mouse Model of Kawasaki Disease. J Vasc Res 2021; 59:176-188. [PMID: 34929700 DOI: 10.1159/000520717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Kawasaki disease (KD) is associated with diffuse and systemic vasculitis of unknown aetiology and primarily affects infants and children. Intravenous immunoglobulin (IVIG) treatment reduces the risk of developing coronary aneurysms, but some children have IVIG-resistant KD, which increases their risk of developing coronary artery injury. Here, we investigated the effect of recombinant human soluble thrombomodulin (rTM), which has anticoagulant, anti-inflammatory, and cytoprotective properties on the development of coronary arteritis in a mouse model of vasculitis. METHODS An animal model of KD-like vasculitis was created by injecting mice with Candida albicans water-soluble fraction (CAWS). This model was used to investigate the mRNA expression of interleukin (IL)-10, tumour necrosis factor alpha (TNF-α), and tissue factor (TF), in addition to histopathology of heart tissues. RESULTS rTM treatment significantly reduces cardiac vascular endothelium hypertrophy by 34 days after CAWS treatment. In addition, mRNA expression analysis revealed that rTM administration increased cardiac IL-10 expression until day 27, whereas expression of TNF-α was unaffected. Moreover, in the spleen, rTM treatment restores IL-10 and TF expression to normal levels. CONCLUSION These findings suggest that rTM suppresses CAWS-induced vasculitis by upregulating IL-10. Therefore, rTM may be an effective treatment for KD.
Collapse
Affiliation(s)
- Hironobu Nakayama
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Hiroyasu Inada
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Tatsuya Inukai
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan.,Department of Microbiology, Tokyo Medical University, Shinjuku-ku, Japan
| | - Kenta Kondo
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan.,Medicine Department, Suzuka Kaisei Hospital, Suzuka, Japan
| | - Kazuyuki Hirai
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Tomonari Tsutsumi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yoshiyuki Adachi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Noriko Nagi-Miura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Naohito Ohno
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Koji Suzuki
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
6
|
Fecher A, Stimpson A, Ferrigno L, Pohlman TH. The Pathophysiology and Management of Hemorrhagic Shock in the Polytrauma Patient. J Clin Med 2021; 10:4793. [PMID: 34682916 PMCID: PMC8541346 DOI: 10.3390/jcm10204793] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The recognition and management of life-threatening hemorrhage in the polytrauma patient poses several challenges to prehospital rescue personnel and hospital providers. First, identification of acute blood loss and the magnitude of lost volume after torso injury may not be readily apparent in the field. Because of the expression of highly effective physiological mechanisms that compensate for a sudden decrease in circulatory volume, a polytrauma patient with a significant blood loss may appear normal during examination by first responders. Consequently, for every polytrauma victim with a significant mechanism of injury we assume substantial blood loss has occurred and life-threatening hemorrhage is progressing until we can prove the contrary. Second, a decision to begin damage control resuscitation (DCR), a costly, highly complex, and potentially dangerous intervention must often be reached with little time and without sufficient clinical information about the intended recipient. Whether to begin DCR in the prehospital phase remains controversial. Furthermore, DCR executed imperfectly has the potential to worsen serious derangements including acidosis, coagulopathy, and profound homeostatic imbalances that DCR is designed to correct. Additionally, transfusion of large amounts of homologous blood during DCR potentially disrupts immune and inflammatory systems, which may induce severe systemic autoinflammatory disease in the aftermath of DCR. Third, controversy remains over the composition of components that are transfused during DCR. For practical reasons, unmatched liquid plasma or freeze-dried plasma is transfused now more commonly than ABO-matched fresh frozen plasma. Low-titer type O whole blood may prove safer than red cell components, although maintaining an inventory of whole blood for possible massive transfusion during DCR creates significant challenges for blood banks. Lastly, as the primary principle of management of life-threatening hemorrhage is surgical or angiographic control of bleeding, DCR must not eclipse these definitive interventions.
Collapse
Affiliation(s)
- Alison Fecher
- Division of Acute Care Surgery, Lutheran Hospital of Indiana, Fort Wayne, IN 46804, USA; (A.F.); (A.S.)
| | - Anthony Stimpson
- Division of Acute Care Surgery, Lutheran Hospital of Indiana, Fort Wayne, IN 46804, USA; (A.F.); (A.S.)
| | - Lisa Ferrigno
- Department of Surgery, UCHealth, University of Colorado-Denver, Aurora, CO 80045, USA;
| | | |
Collapse
|
7
|
The protein C activator AB002 rapidly interrupts thrombus development in baboons. Blood 2020; 135:689-699. [PMID: 31977000 DOI: 10.1182/blood.2019002771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.
Collapse
|
8
|
Watanabe-Kusunoki K, Nakazawa D, Ishizu A, Atsumi T. Thrombomodulin as a Physiological Modulator of Intravascular Injury. Front Immunol 2020; 11:575890. [PMID: 33042158 PMCID: PMC7525002 DOI: 10.3389/fimmu.2020.575890] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Thrombomodulin (TM), which is predominantly expressed on the endothelium, plays an important role in maintaining vascular homeostasis by regulating the coagulation system. Intravascular injury and inflammation are complicated physiological processes that are induced by injured endothelium-mediated pro-coagulant signaling, necrotic endothelial- and blood cell-derived damage-associated molecular patterns (DAMPs), and DAMP-mediated inflammation. During the hypercoagulable state after endothelial injury, TM is released into the intravascular space by proteolytic cleavage of the endothelium component. Recombinant TM (rTM) is clinically applied to patients with disseminated intravascular coagulation, resulting in protection from tissue injury. Recent studies have revealed that rTM functions as an inflammatory regulator beyond hemostasis through various molecular mechanisms. More specifically, rTM neutralizes DAMPs, including histones and high mobility group box 1 (HMGB1), suppresses excessive activation of the complement system, physiologically protects the endothelium, and influences both innate and acquired immunity. Neutrophil extracellular traps (NETs) promote immunothrombosis by orchestrating platelets to enclose infectious invaders as part of the innate immune system, but excessive immunothrombosis can cause intravascular injury. However, rTM can directly and indirectly regulate NET formation. Furthermore, rTM interacts with mediators of acquired immunity to resolve vascular inflammation. So far, rTM has shown good efficacy in suppressing inflammation in various experimental models, including thrombotic microangiopathy, sterile inflammatory disorders, autoimmune diseases, and sepsis. Thus, rTM has the potential to become a novel tool to regulate intravascular injury via pleiotropic effects.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
D’Ippolito S, Di Nicuolo F, Papi M, Castellani R, Palmieri V, Masciullo V, Arena V, Tersigni C, Bernabei M, Pontecorvi A, Scambia G, Di Simone N. Expression of Pinopodes in the Endometrium from Recurrent Pregnancy Loss Women. Role of Thrombomodulin and Ezrin. J Clin Med 2020; 9:E2634. [PMID: 32823767 PMCID: PMC7464296 DOI: 10.3390/jcm9082634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pinopode expression has been suggested as a marker of endometrial receptivity. METHODS We set up an experimental study comparing endometrial tissue from recurrent pregnancy loss (RPL, n = 30) and fertile control (CTR, n = 20) women in terms of pinopode expression/morphology; expression of thrombomodulin (TM) and ezrin; cytoskeletal organization. Endometrial samples were collected during implantation window and evaluated by scanning electron microscopy, western blot, and immunofluorescence. RESULTS We found that RPL endometrial tissue showed: (i) increased pinopodes density (* p < 0.05); (ii) a reduced diameter of pinopodes (* p < 0.05); (iii) a decreased TM and ezrin expression (p < 0.05). Additionally, confocal images showed a significantly reduced expression of phosphorylated (p)-ezrin, confirming the results obtained through immunoblot analysis. Immunofluorescence staining showed that in CTR samples, junctions between cells are intact and clearly visible, whereas actin filaments appear completely lost in RPL endometrial samples; this suggests that, due to the impaired expression and activity of TM and ezrin, actin does not bind to plasma membrane in order to orchestrate the cytoskeletal actin filaments. CONCLUSIONS Our findings suggest that an impaired expression of TM and expression/activation of ezrin may affect the connection between the TM and actin cytoskeleton, impairing the organization of cytoskeleton and, eventually, the adequate pinopode development.
Collapse
Affiliation(s)
- Silvia D’Ippolito
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (V.M.); (V.A.); (C.T.); (G.S.)
| | - Fiorella Di Nicuolo
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (F.D.N.); (A.P.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (M.P.); (V.P.)
| | - Roberta Castellani
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (M.P.); (V.P.)
| | - Valeria Masciullo
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (V.M.); (V.A.); (C.T.); (G.S.)
| | - Vincenzo Arena
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (V.M.); (V.A.); (C.T.); (G.S.)
| | - Chiara Tersigni
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (V.M.); (V.A.); (C.T.); (G.S.)
| | - Micaela Bernabei
- Istituto di Anatomia e Istologia Patologica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (F.D.N.); (A.P.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy
- Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (V.M.); (V.A.); (C.T.); (G.S.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Nicoletta Di Simone
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00168 Roma, Italy; (V.M.); (V.A.); (C.T.); (G.S.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| |
Collapse
|
10
|
From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies (Basel) 2020; 9:antib9030033. [PMID: 32708525 PMCID: PMC7551747 DOI: 10.3390/antib9030033] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: To define the autoimmune potential of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Methods: Experimentally validated epitopes cataloged at the Immune Epitope DataBase (IEDB) and present in SARS-CoV-2 were analyzed for peptide sharing with the human proteome. Results: Immunoreactive epitopes present in SARS-CoV-2 were mostly composed of peptide sequences present in human proteins that—when altered, mutated, deficient or, however, improperly functioning—may associate with a wide range of disorders, from respiratory distress to multiple organ failure. Conclusions: This study represents a starting point or hint for future scientific–clinical investigations and suggests a range of possible protein targets of autoimmunity in SARS-CoV-2 infection. From an experimental perspective, the results warrant the testing of patients’ sera for autoantibodies against these protein targets. Clinically, the results warrant a stringent surveillance on the future pathologic sequelae of the current SARS-CoV-2 pandemic.
Collapse
|
11
|
A critical role of the Gas6-Mer axis in endothelial dysfunction contributing to TA-TMA associated with GVHD. Blood Adv 2020; 3:2128-2143. [PMID: 31300420 DOI: 10.1182/bloodadvances.2019000222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction in the early phases of hematopoietic stem cell transplantation (HSCT) contributes to a common pathology between transplant-associated thrombotic microangiopathy (TA-TMA) and graft-versus-host disease (GVHD), which are serious complications of HSCT. Growth arrest-specific (Gas) 6 structurally belongs to the family of plasma vitamin K-dependent proteins working as a cofactor for activated protein C, and has growth factor-like properties through its interaction with receptor tyrosine kinases of the TAM family: Tyro3, Axl, and Mer. Serum Gas6 levels were significantly increased in HSCT patients with grade II to IV acute GVHD (aGVHD), and Gas6 and Mer expression levels were upregulated in aGVHD lesions of the large intestine and skin. The increased serum Gas6 levels were also correlated with elevated lactate dehydrogenase, d-dimer, and plasmin inhibitor complex values in HSCT patients with aGVHD. In human umbilical vein endothelial cells (ECs), exogenous Gas6 or the exposure of sera isolated from patients with grade III aGVHD to ECs induced the downregulation of thrombomodulin and the upregulation of PAI-1, as well as the upregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which were inhibited by UNC2250, a selective Mer tyrosine kinase inhibitor. In mouse HSCT models, we observed hepatic GVHD with hepatocellular apoptosis, necrosis, and fibrosis, as well as TA-TMA, which is characterized pathologically by thrombosis formation in the microvasculature of the liver and kidney. Of note, intravenous administration of UNC2250 markedly suppressed GVHD and TA-TMA in these mouse HSCT models. Our findings suggest that the Gas6-Mer axis is a promising target for TA-TMA after GVHD.
Collapse
|
12
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
13
|
Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132:148-158. [DOI: 10.1182/blood-2017-12-768994] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
AbstractThrombomodulin (TM) is an integral component of a multimolecular system, localized primarily to the vascular endothelium, that integrates crucial biological processes and biochemical pathways, including those related to coagulation, innate immunity, inflammation, and cell proliferation. These are designed to protect the host from injury and promote healing. The “traditional” role of TM in hemostasis was determined with its discovery in the 1980s as a ligand for thrombin and a critical cofactor for the major natural anticoagulant protein C system and subsequently for thrombin-mediated activation of the thrombin activatable fibrinolysis inhibitor (also known as procarboxypeptidase B2). Studies in the past 2 decades are redefining TM as a molecule with many properties, exhibited via its multiple domains, through its interacting partners, complex regulated expression, and synthesis by cells other than the endothelium. In this report, we review some of the recently reported diverse properties of TM and how these may impact on our understanding of the pathogenesis of several diseases.
Collapse
|
14
|
Tripodi A. Detection of procoagulant imbalance. Thromb Haemost 2017; 117:830-836. [DOI: 10.1160/th16-10-0806] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 01/14/2023]
Abstract
SummaryEach individual possesses his/her own endogenous-thrombin-potential (ETP) (i. e. the ability to generate thrombin) which depends on the relative strength of the pro- and anticoagulant drivers operating in plasma. This ability depends in turn on the clinical conditions in which the balance between the two drivers is variably affected. One of the major determinants of this balance is the factor (F)VIII-protein C(PC) axis and its effect can be conveniently explored by the thrombin generation procedures with results expressed as ETP ratio with/without thrombomodulin (TM) (ETP-TM ratio). Furthermore, owing to the many feedback mechanisms mediated by thrombin (e. g. activation of PC, FXI, FV, FVIII, platelets etc.) it is also possible that any perturbation of the balance between pro- and anticoagulants that may occur in plasma even outside the FVIII-PC axis could result in an increased ETPTM ratio and therefore may suggest a procoagulant imbalance. Indeed, other non-coagulation moieties (e. g. microparticles, neutrophil extracellular traps, pro-inflammatory cytokines and others) circulating in blood of patients with various clinical conditions may also contribute to the procoagulant imbalance even when FVIII and/or PC are apparently normal. It can be postulated that dual ETP measurements performed in the presence and absence of TM with results expressed as their ratio may be the candidate procedure to detect subtle procoagulant imbalance in many clinical conditions characterised by an increased risk of thromboembolism. This article aimed at reviewing the clinical conditions in which evidence for the value of the ETP-TM ratio has been provided.
Collapse
|
15
|
Béland S, Vallin P, Désy O, Lévesque E, De Serres SA. Effects of alloantibodies to human leukocyte antigen on endothelial expression and serum levels of thrombomodulin. J Thromb Haemost 2017; 15:1020-1031. [PMID: 28239987 DOI: 10.1111/jth.13661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 12/25/2022]
Abstract
Essentials The effect of alloantibodies on the endothelial expression of thrombomodulin is unknown. Thrombomodulin was quantified in stimulated endothelial cells and measured in serum samples. Anti-human leukocyte antigen (HLA) I vs. II antibodies have different effects on thrombomodulin. Anti-HLA II antibodies may promote a prothrombotic state and contribute to microangiopathy. SUMMARY Rationale Thrombomodulin (TBM) is an anticoagulant and anti-inflammatory transmembrane protein expressed on endothelial cells. Donor-specific alloantibodies, particularly those against human leukocyte antigen (HLA) class II, are associated with microvascular endothelial damage in solid allografts. Objective Our aim was to characterize the effects of anti-HLA antibodies on endothelial expression of TBM, and in particular, the differential effects of anti-HLA class I compared with those of anti-HLA class II. Methods We used human glomerular microvascular endothelial cells to examine TBM expression on anti-HLA-treated cells, and we tested sera from transplant recipients for soluble TBM. Results We found that whereas membrane TBM expression increased in a dose-dependent manner in the presence of anti-HLA class I antibodies, treatment with anti-HLA class II led to minimal TBM expression on the endothelial surface but to a cytosolic accumulation. Platelet adhesion studies confirmed the functional impact of anti-HLA class II. Quantitative densitometry of the membrane lysates further suggested that anti-HLA class II impairs TBM glycosylation. Furthermore, we found a significant association between the presence of circulating anti-HLA class II antibodies in transplant recipients and low serum levels of TBM. Conclusion These results indicate that ligation of anti-HLA class I and II antibodies produces different effects on the endothelial expression of TBM and on serum levels of TBM in transplant recipients. Anti-HLA class II antibodies may be associated with a prothrombotic state, which could explain the higher occurrence of microangiopathic lesions in the allograft and the poor outcomes observed in patients with these alloantibodies.
Collapse
Affiliation(s)
- S Béland
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - P Vallin
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - O Désy
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - E Lévesque
- Hematology and Oncology Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - S A De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
16
|
Abstract
In addition to its procoagulant and proinflammatory functions mediated by cleavage of fibrinogen and PAR1, the trypsin-like protease thrombin activates the anticoagulant protein C in a reaction that requires the cofactor thrombomodulin and the endothelial protein C receptor. Once in the circulation, activated protein C functions as an anticoagulant, anti-inflammatory and regenerative factor. Hence, availability of a protein C activator would afford a therapeutic for patients suffering from thrombotic disorders and a diagnostic tool for monitoring the level of protein C in plasma. Here, we present a fusion protein where thrombin and the EGF456 domain of thrombomodulin are connected through a peptide linker. The fusion protein recapitulates the functional and structural properties of the thrombin-thrombomodulin complex, prolongs the clotting time by generating pharmacological quantities of activated protein C and effectively diagnoses protein C deficiency in human plasma. Notably, these functions do not require exogenous thrombomodulin, unlike other anticoagulant thrombin derivatives engineered to date. These features make the fusion protein an innovative step toward the development of protein C activators of clinical and diagnostic relevance.
Collapse
|
17
|
Carnemolla R, Villa CH, Greineder CF, Zaitsev S, Patel KR, Kowalska MA, Atochin DN, Cines DB, Siegel DL, Esmon CT, Muzykantov VR. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury. FASEB J 2016; 31:761-770. [PMID: 27836986 DOI: 10.1096/fj.201600912r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Endothelial thrombomodulin (TM) regulates coagulation and inflammation via several mechanisms, including production of activated protein C (APC). Recombinant APC and soluble fragments of TM (sTM) have been tested in settings associated with insufficiency of the endogenous TM/APC pathway, such as sepsis. We previously designed a fusion protein of TM [single-chain variable fragment antibody (scFv)/TM] targeted to red blood cells (RBCs) to improve pharmacokinetics and antithrombotic effects without increasing bleeding. Here, scFv/TM was studied in mouse models of systemic inflammation and ischemia-reperfusion injury. Injected concomitantly with or before endotoxin, scFv/TM provided more potent protection against liver injury and release of pathological mediators than sTM, showing similar efficacy at up to 50-fold lower doses. scFv/TM provided protection when injected after endotoxin, whereas sTM did not, and augmented APC production by thrombin ∼50-fold more than sTM. However, scFv/TM injected after endotoxin did not reduce thrombin/antithrombin complexes; nor did antibodies that block APC anticoagulant activity suppress the prophylactic anti-inflammatory effect of scFv/TM. Therefore, similar to endogenous TM, RBC-anchored scFv/TM activates several protective pathways. Finally, scFv/TM was more effective at reducing cerebral infarct volume and alleviated neurological deficits than sTM after cerebral ischemia/reperfusion injury. These results indicate that RBC-targeted scFv/TM exerts multifaceted cytoprotective effects and may find utility in systemic and focal inflammatory and ischemic disorders.-Carnemolla, R., Villa, C. H., Greineder, C. F., Zaitseva, S., Patel, K. R., Kowalska, M. A., Atochin, D. N., Cines, D. B., Siegel, D. L., Esmon, C. T., Muzykantov, V. R. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ronald Carnemolla
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Carlos H Villa
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Colin F Greineder
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Sergei Zaitsev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Kruti R Patel
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - M Anna Kowalska
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Dmitriy N Atochin
- Division of Cardiology, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Don L Siegel
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Charles T Esmon
- Department of Pathology, Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; and.,Department of Biochemistry and Molecular Biology, Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA; .,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| |
Collapse
|
18
|
Heurich M, Preston RJS, O'Donnell VB, Morgan BP, Collins PW. Thrombomodulin enhances complement regulation through strong affinity interactions with factor H and C3b-Factor H complex. Thromb Res 2016; 145:84-92. [PMID: 27513882 DOI: 10.1016/j.thromres.2016.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Coagulation and complement systems are simultaneously activated at sites of tissue injury, leading to thrombin generation and opsonisation with C3b. Thrombomodulin (TM) is a cell-bound regulator of thrombin activation, but can also enhance the regulatory activity of complement factor H (FH), thus accelerating the degradation of C3b into inactive iC3b. OBJECTIVES This study sought to determine the biophysical interaction affinities of two recombinant TM analogs with thrombin, FH and C3b in order to analyze their ability to regulate serum complement activity. METHODS Surface plasmon resonance (SPR) analysis was used to determine binding affinities of TM analogs with FH and C3b, and compared to thrombin as positive control. The capacity of the two recombinant TM analogs to regulate complement in serum was tested in standard complement hemolytic activity assays. RESULTS SPR analysis showed that both TM analogs bind FH and C3b-Factor H with nanomolar and C3b with micromolar affinity; binding affinity for its natural ligand thrombin was several fold higher than for FH. At a physiological relevant concentration, TM inhibits complement hemolytic activity in serum via FH dependent and independent mechanisms. CONCLUSIONS TM exhibits significant binding affinity for complement protein FH and C3b-FH complex and its soluble form is capable at physiologically relevant concentrations of inhibiting complement activation in serum.
Collapse
Affiliation(s)
- M Heurich
- Division of Infection & Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | - R J S Preston
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin 12, Ireland
| | - V B O'Donnell
- Division of Infection & Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - B P Morgan
- Division of Infection & Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - P W Collins
- Division of Infection & Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
19
|
Maringer K, Sims-Lucas S. The multifaceted role of the renal microvasculature during acute kidney injury. Pediatr Nephrol 2016; 31:1231-40. [PMID: 26493067 PMCID: PMC4841763 DOI: 10.1007/s00467-015-3231-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell-cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair.
Collapse
Affiliation(s)
- Katherine Maringer
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nat Med 2016; 22:924-32. [PMID: 27455511 DOI: 10.1038/nm.4149] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Direct inhibitors of coagulation factor Xa (FXa) or thrombin are promising oral anticoagulants that are becoming widely adopted. The ability to reverse their anticoagulant effects is important when serious bleeding occurs or urgent medical procedures are needed. Here, using experimental mouse models of hemostasis, we show that a variant coagulation factor, FXa(I16L), rapidly restores hemostasis in the presence of the anticoagulant effects of these inhibitors. The ability of FXa(I16L) to reverse the anticoagulant effects of FXa inhibitor depends, at least in part, on the ability of the active site inhibitor to hinder antithrombin-dependent FXa inactivation, paradoxically allowing uninhibited FXa to persist in plasma. Because of its inherent catalytic activity, FXa(I16L) is more potent (by >50-fold) in the hemostasis models tested than a noncatalytic antidote that is currently in clinical development. FXa(I16L) also reduces the anticoagulant-associated bleeding in vivo that is induced by the thrombin inhibitor dabigatran. FXa(I16L) may be able to fill an important unmet clinical need for a rapid, pro-hemostatic agent to reverse the effects of several new anticoagulants.
Collapse
|
21
|
Allende M, Molina E, Guruceaga E, Tamayo I, González-Porras JR, Gonzalez-López TJ, Toledo E, Rabal O, Ugarte A, Roldán V, Rivera J, Oyarzabal J, Montes R, Hermida J. Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk. Cardiovasc Res 2016; 110:309-18. [PMID: 26976620 DOI: 10.1093/cvr/cvw049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/27/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is a major risk factor for cardio-embolic stroke. Anticoagulant drugs are effective in preventing AF-related stroke. However, the high frequency of anticoagulant-associated major bleeding is a major concern. This study sought to identify new targets to develop safer antithrombotic therapies. METHODS AND RESULTS Here, microarray analysis in peripheral blood cells in eight patients with AF and stroke and eight AF subjects without stroke brought to light a stroke-related gene expression pattern. HSPA1B, which encodes for heat-shock protein 70 kDa (Hsp70), was the most differentially expressed gene. This gene was down-regulated in stroke subjects, a finding confirmed further in an independent AF cohort of 200 individuals. Hsp70 knock-out mice subjected to different thrombotic challenges developed thrombosis significantly earlier than their wild-type (WT) counterparts. Remarkably, the tail bleeding time was unchanged. Accordingly, both TRC051384 and tubastatin A, i.e. two Hsp70 inducers via different pathways, delayed thrombus formation in WT mice, the tail bleeding time still being unaltered. Most interestingly, Hsp70 inducers did not increase the bleeding risk even when aspirin was concomitantly administered. Hsp70 induction was associated with an increased vascular thrombomodulin expression and higher circulating levels of activated protein C upon thrombotic stimulus. CONCLUSIONS Hsp70 induction is a novel approach to delay thrombus formation with minimal bleeding risk, and is especially promising for treating AF patients and in other situations where there is also a major bleeding hazard.
Collapse
Affiliation(s)
- Mikel Allende
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pío XII, 55, Pamplona, Spain
| | - Eva Molina
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pío XII, 55, Pamplona, Spain
| | - Elisabet Guruceaga
- Proteomics, Genomics & Bioinformatics Unit, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pamplona, Spain
| | - Ibai Tamayo
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pío XII, 55, Pamplona, Spain
| | | | | | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, School of Medicine, IdiSNA, Navarra's Health Research Institute, University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pamplona, Spain
| | - Ana Ugarte
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pamplona, Spain
| | - Vanesa Roldán
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Rivera
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pamplona, Spain
| | - Ramón Montes
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pío XII, 55, Pamplona, Spain
| | - José Hermida
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Center for Applied Medical Research (CIMA), IdiSNA, Navarra's Health Research Institute, University of Navarra, Pío XII, 55, Pamplona, Spain
| |
Collapse
|
22
|
The lectin like domain of thrombomodulin is involved in the defence against pyelonephritis. Thromb Res 2015; 136:1325-31. [PMID: 26573396 DOI: 10.1016/j.thromres.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/22/2015] [Accepted: 11/06/2015] [Indexed: 11/21/2022]
Abstract
Pyelonephritis, a common complication of urinary tract infections, is frequently associated with kidney scarring and may lead to end-stage renal disease. During bacterial infections inflammatory and coagulation pathways and their mutual interaction are playing pivotal roles in the host response. Given that thrombomodulin (TM) is crucially involved in the interplay between coagulation and inflammation, we aimed to investigate the roles of its EGF and lectin-like domains in inflammation during acute pyelonephritis. Indeed, the EGF-like and the lectin-like domains of TM, are especially known to orchestrate inflammation and coagulation in different ways. Acute pyelonephritis was induced by intravesical inoculation of 1 × 10(8) CFU of uropathogenic Escherichia coli in two strains of TM transgenic mice. TM(pro/pro) mice carry a mutation in the EGF-like domain making them unable to activate protein C, an anticoagulant and anti-inflammatory protein. TM(LeD/LeD) mice lack the lectin-like domain of TM, which is critical for its anti-inflammatory and cytoprotective properties. Mice were sacrificed 24 and 48 h after inoculation. Bacterial loads, the immune response and the activation of coagulation were evaluated in the kidney and the bladder. TM(LeD/LeD) mice showed elevated bacterial load in bladder and kidneys compared to WT mice, whereas TM(pro/pro) had similar bacterial load as WT mice. TM(LeD/LeD) mice displayed a reduced local production of pro-inflammatory cytokines and neutrophil renal infiltration. Activation of coagulation was comparable in TM(LeD/LeD) and WT mice. From these data, we conclude that the lectin-like domain of thrombomodulin is critically involved in host defence against E. coli induced acute pyelonephritis.
Collapse
|
23
|
Ohkawara H, Ishibashi T, Sugimoto K, Ikeda K, Ogawa K, Takeishi Y. Membrane type 1-matrix metalloproteinase/Akt signaling axis modulates TNF-α-induced procoagulant activity and apoptosis in endothelial cells. PLoS One 2014; 9:e105697. [PMID: 25162582 PMCID: PMC4146507 DOI: 10.1371/journal.pone.0105697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Toshiyuki Ishibashi
- Department of Cardiovascular Medicine, Ohara General Hospital Medical Center, Fukushima, Japan
| | - Koichi Sugimoto
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
24
|
Braach N, Frommhold D, Buschmann K, Pflaum J, Koch L, Hudalla H, Staudacher K, Wang H, Isermann B, Nawroth P, Poeschl J. RAGE controls activation and anti-inflammatory signalling of protein C. PLoS One 2014; 9:e89422. [PMID: 24586767 PMCID: PMC3933550 DOI: 10.1371/journal.pone.0089422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/21/2014] [Indexed: 12/30/2022] Open
Abstract
AIMS The receptor for advanced glycation endproducts, RAGE, is a multiligand receptor and NF-κB activator leading to perpetuation of inflammation. We investigated whether and how RAGE is involved in mediation of anti-inflammatory properties of protein C. METHODS AND RESULTS We analyzed the effect of protein C on leukocyte adhesion and transmigration in WT- and RAGE-deficient mice using intravital microscopy of cremaster muscle venules during trauma- and TNFα-induced inflammation. Both, protein C (PC, Ceprotin, 100 U/kg) and activated protein C (aPC, 24 µg/kg/h) treatment significantly inhibited leukocyte adhesion in WT mice in these inflammation models. The impaired leukocyte adhesion after trauma-induced inflammation in RAGE knockout mice could not be further reduced by PC and aPC. After TNFα-stimulation, however, aPC but not PC treatment effectively blocked leukocyte adhesion in these mice. Consequently, we asked whether RAGE is involved in PC activation. Since RAGE-deficient mice and endothelial cells showed insufficient PC activation, and since thrombomodulin (TM) and endothelial protein C receptor (EPCR) are reduced on the mRNA and protein level in RAGE deficient endothelial cells, an involvement of RAGE in TM-EPCR-dependent PC activation is likely. Moreover, TNFα-induced activation of MAPK and upregulation of ICAM-1 and VCAM-1 are reduced both in response to aPC treatment and in the absence of RAGE. Thus, there seems to be interplay of the RAGE and the PC pathway in inflammation. CONCLUSION RAGE controls anti-inflammatory properties and activation of PC, which might involve EPCR and TM.
Collapse
Affiliation(s)
- Natascha Braach
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - David Frommhold
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Kirsten Buschmann
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Johanna Pflaum
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Lutz Koch
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Hannes Hudalla
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Kathrin Staudacher
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Hongjie Wang
- Department of Clinical Chemistry and Biochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Berend Isermann
- Department of Clinical Chemistry and Biochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital, Heidelberg, Germany
| | - Johannes Poeschl
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| |
Collapse
|
25
|
Sedano-Balbas S, Lyons M, Cleary B, Murray M, Gaffney G, Maher M. Placental prothrombin mRNA levels in APC resistance (APCR) women with increased placental fibrin deposition. Ir J Med Sci 2013; 183:477-80. [PMID: 24362889 DOI: 10.1007/s11845-013-1056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/03/2013] [Indexed: 11/29/2022]
Abstract
We investigated the link between the mRNA of the procoagulant prothrombin in the placental tissue with the increased placental fibrin deposition associated with activated protein C resistance (APCR). Women with APCR were not found to produce higher levels of prothrombin transcript compared to women with a normal APC ratio. This indicates that accumulated fibrin in the placenta is not the consequence of too much production of the procoagulant prothrombin transcript, but may be associated with altered function of other haemostatic factors interacting with APC in the placenta.
Collapse
Affiliation(s)
- S Sedano-Balbas
- Molecular Diagnostics Research Group, National Centre for Biomedical Engineering Science, National Diagnostics Centre, National University of Ireland, Galway, Ireland,
| | | | | | | | | | | |
Collapse
|
26
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 Suppl 1:242-53. [PMID: 23809128 PMCID: PMC3713536 DOI: 10.1111/jth.12247] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein C pathway provides multiple important functions to maintain a regulated balance between hemostasis and host defense systems in response to vascular and inflammatory injury. The anticoagulant protein C pathway is designed to regulate coagulation, maintain the fluidity of blood within the vasculature, and prevent thrombosis, whereas the cytoprotective protein C pathway prevents vascular damage and stress. The cytoprotective activities of activated protein C (APC) include anti-apoptotic activity, anti-inflammatory activity, beneficial alterations of gene expression profiles, and endothelial barrier stabilization. These cytoprotective activities of APC, which require the endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR1), have been a major research focus. Recent insights, such as non-canonical activation of PAR1 at Arg46 by APC and biased PAR1 signaling, provided better understanding of the molecular mechanisms by which APC elicits cytoprotective signaling through cleavage of PAR1. The discovery and development of anticoagulant-selective and cytoprotective-selective APC mutants provided unique opportunities for preclinical research that has been and may continue to be translated to clinical research. New mechanisms for the regulation of EPCR functionality, such as modulation of EPCR-bound lipids that affect APC's cytoprotective activities, may provide new research directions to improve the efficacy of APC to convey its cytoprotective activities to cells. Moreover, emerging novel functions for EPCR expand the roles of EPCR beyond mediating protein C activation and APC-induced PAR1 cleavage. These discoveries increasingly develop our understanding of the protein C pathway, which will conceivably expand its physiological implications to many areas in the future.
Collapse
Affiliation(s)
- E A M Bouwens
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
27
|
Festoff BW, Li C, Woodhams B, Lynch S. Soluble thrombomodulin levels in plasma of multiple sclerosis patients and their implication. J Neurol Sci 2012; 323:61-5. [PMID: 22967748 DOI: 10.1016/j.jns.2012.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022]
Abstract
Thrombomodulin (TM) on the cell-surface of cerebrovascular endothelial cells (CECs) is released into blood upon CEC damage. TM promotes activation of protein C (APC), an anticoagulant, anti-inflammatory, neuroprotective molecule that protects CECs and impedes inflammatory cell migration across the blood-brain barrier (BBB). Multiple sclerosis (MS) is associated with CEC damage and BBB dysfunction. We evaluated soluble TM (sTM) levels as a biomarker of BBB integrity and whether glatiramer acetate (GA) influenced sTM levels in MS patients. sTM levels quantified by 2-site ELISA from sera of healthy controls and systemic lupus erythematosus (SLE) patients (CEC-damage positive control) were compared with levels from patients with relapsing-remitting (RRMS) or secondary-progressive MS (SPMS), stratified as: RRMS/GA/no relapse, RRMS/GA/in relapse, RRMS no GA/no relapse, RRMS/no GA/in relapse; and SPMS/no GA. Additionally, soluble endothelial protein C receptor (sEPCR) levels were assessed in the non-stratified MS group, SLE patients, and controls. sTM levels were highest in RRMS patients taking GA with or without relapse, followed in decreasing order by SLE, RRMS/no GA/in relapse, SPMS, RRMS/no GA/no relapse, healthy controls. sEPCR levels were highest in MS patients, then SLE, then controls. sTM may be a useful biomarker of BBB integrity in RRMS patients. Further evaluation of sEPCR is needed. The finding that the highest sTM levels were in RRMS patients taking GA is interesting and warrants further investigation.
Collapse
Affiliation(s)
- Barry W Festoff
- Neurobiology Research Laboratory, Veterans Affairs Medical Center, Kansas City, MO 64128, USA.
| | | | | | | |
Collapse
|
28
|
Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, Robson SC, Rees MA, Ayares D, Gridelli B, Tector AJ, Cooper DKC. Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol 2012; 8:621-34. [PMID: 23078060 PMCID: PMC3774271 DOI: 10.1586/eci.12.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pigs are currently the preferred species for future organ xenotransplantation. With advances in the development of genetically modified pigs, clinical xenotransplantation is becoming closer to reality. In preclinical studies (pig-to-nonhuman primate), the xenotransplantation of livers from pigs transgenic for human CD55 or from α1,3-galactosyltransferase gene-knockout pigs+/- transgenic for human CD46, is associated with survival of approximately 7-9 days. Although hepatic function, including coagulation, has proved to be satisfactory, the immediate development of thrombocytopenia is very limiting for pig liver xenotransplantation even as a 'bridge' to allotransplantation. Current studies are directed to understand the immunobiology of platelet activation, aggregation and phagocytosis, in particular the interaction between platelets and liver sinusoidal endothelial cells, hepatocytes and Kupffer cells, toward identifying interventions that may enable clinical application.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Christopher Burlak
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Joshua P Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | - Andrew J Lutz
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Leela L Paris
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Simon C Robson
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | | | - Bruno Gridelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - A Joseph Tector
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Pathogenic and Diagnostic Potential of BLCA-1 and BLCA-4 Nuclear Proteins in Urothelial Cell Carcinoma of Human Bladder. Adv Urol 2012; 2012:397412. [PMID: 22811704 PMCID: PMC3395315 DOI: 10.1155/2012/397412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/13/2012] [Accepted: 06/01/2012] [Indexed: 12/24/2022] Open
Abstract
Transitional cell carcinoma (TCC) of the bladder is one of the most common malignancies of genitourinary tract. Patients with bladder cancer need a life-long surveillance, directly due to the relatively high recurrence rate of this tumor. The use of cystoscopy represents the gold standard for the followup of previously treated patients. Nevertheless, several factors, including cost and invasiveness, render cystoscopy not ideal for routine controls. Advances in the identification of specific alterations in the nuclear structure of bladder cancer cells have opened novel diagnostic landscapes. The members of nuclear matrix protein family BLCA-1 and BLCA-4, are currently under evaluation as bladder cancer urinary markers. They are involved in tumour cell proliferation, survival, and angiogenesis. In this paper, we illustrate the role of BLCA-1 and BLCA-4 in bladder carcinogenesis and their potential exploitation as biomarkers in this cancer.
Collapse
|
30
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Protein C anticoagulant and cytoprotective pathways. Int J Hematol 2012; 95:333-45. [PMID: 22477541 DOI: 10.1007/s12185-012-1059-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Plasma protein C is a serine protease zymogen that is transformed into the active, trypsin-like protease, activated protein C (APC), which can exert multiple activities. For its anticoagulant action, APC causes inactivation of the procoagulant cofactors, factors Va and VIIIa, by limited proteolysis, and APC's anticoagulant activity is promoted by protein S, various lipids, high-density lipoprotein, and factor V. Hereditary heterozygous deficiency of protein C or protein S is linked to moderately increased risk for venous thrombosis, while a severe or total deficiency of either protein is linked to neonatal purpura fulminans. In recent years, the beneficial direct effects of APC on cells which are mediated by several specific receptors have become the focus of much attention. APC-induced signaling can promote multiple cytoprotective actions which can minimize injuries in various preclinical animal injury models. Remarkably, pharmacologic therapy using APC demonstrates substantial neuroprotective effects in various murine injury models, including ischemic stroke. This review summarizes the molecules that are central to the protein C pathways, the relationship of pathway deficiencies to venous thrombosis risk, and mechanisms for the beneficial effects of APC.
Collapse
|
32
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Della Valle P, Pavani G, D'Angelo A. The protein C pathway and sepsis. Thromb Res 2011; 129:296-300. [PMID: 22154246 DOI: 10.1016/j.thromres.2011.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
After the discovery of the key components of the protein C (PC) pathway a beneficial effect on survival of the infusion of activated protein C (APC) in animal models of sepsis was demonstrated, leading to the development of recombinant human activated protein C (rh-APC) as a therapeutic agent. It soon became clear that rather than the anticoagulant and profibrinolytic activities of APC, its anti-inflammatory and cytoprotective properties played a major role in the treatment of patients with severe sepsis. Such properties affect the response to inflammation of endothelial cells and leukocytes and are exerted through binding of APC to at least five receptors with intracellular signaling. The main APC protective mechanism involves binding of the Gla-domain to the endothelial protein C receptor (EPCR) and cleavage of protease activated receptor 1 (PAR-1), eliciting suppression of proinflammatory cytokines synthesis and of intracellular proapoptotic pathways and activation of endothelial barrier properties. However, thrombin cleaves PAR-1 with much higher catalytic efficiency, followed by pro-inflammatory, pro-apoptotic and barrier disruptive intracellular signaling, and it is unclear how APC can exert a protective activity through the cleavage of PAR-1 when thrombin is also present in the same environment. Interestingly, in endothelial cell cultures, PAR-1 cleavage by thrombin results in anti-inflammatory and barrier protective signaling provided occupation of EPCR by the PC gla-domain, raising the possibility that the beneficial effects of rh-APC might be recapitulated in vivo by administration of h-PC zymogen to patients with severe sepsis. Recent reports of h-PC infusion in animal models of sepsis support this hypothesis.
Collapse
Affiliation(s)
- Patrizia Della Valle
- Coagulation Service & Thrombosis Research Unit, Scientific Institute San Raffaele, Milano, Italy
| | | | | |
Collapse
|
34
|
Davies RS, Abdelhamid M, Wall ML, Vohra RK, Bradbury AW, Adam DJ. Coagulation, fibrinolysis, and platelet activation in patients undergoing open and endovascular repair of abdominal aortic aneurysm. J Vasc Surg 2011; 54:865-78. [DOI: 10.1016/j.jvs.2011.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/29/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
|
35
|
Abstract
The mechanisms of vascular control of thrombotic events remain unclear. The vasculature possesses essential anticoagulant factors that regulate coagulation. Because the endothelium-to-blood ratios are much higher in the microcirculation, it is likely that stasis contributes to thrombotic risk, due in large part to failure to rapidly access the microcirculation and to gain access to this highly anticoagulant environment. Inflammation can potentiate thrombosis in part through downregulation of the vascular anticoagulants, a process that appears to be exacerbated in aging, a well-known risk factor for thrombosis. Surgery and trauma, two major risk factors for thrombosis, result in the release of a variety of cellular components that trigger coagulation through separate mechanisms.
Collapse
Affiliation(s)
- Charles T Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA.
| | | |
Collapse
|
36
|
Uygur F, Noyan N, Hahaolu A. The effect of simvastatin on the survival of ischaemic skin flap: An experimental study in rats. J Plast Reconstr Aesthet Surg 2010; 63:1723-32. [DOI: 10.1016/j.bjps.2009.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 08/30/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
37
|
Mesothelial proteins are expressed in the human cornea. Exp Eye Res 2010; 91:623-9. [PMID: 20709057 DOI: 10.1016/j.exer.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/24/2022]
Abstract
The goal of our study was to determine whether proteins typical of the human mesothelial cell phenotype, such as mesothelin, HBME-1 (Hector Battifora mesothelial cell-1) protein and calbindin 2, are expressed in the human cornea, especially in endothelial cells. Cryosections and endothelial and epithelial imprints of sixteen human cadaverous corneoscleral discs were used. The presence of proteins was examined using immunohistochemistry and Western blotting, while mRNA levels were determined by qRT-PCR. A strong signal for mesothelin was present in the corneal epithelium, while less intense staining was visible in the endothelium. Similarly, higher and lower mRNA levels were detected using qRT-PCR in the corneal epithelium and endothelium, respectively. HBME-1 antibody strongly stained the corneal endothelium and stromal keratocytes. Marked positivity was present in the corneal stromal extracellular matrix, while no staining was present in the sclera. Calbindin 2 was detected using immunohistochemistry and Western blotting in the corneal epithelium, endothelium and stroma. qRT-PCR confirmed its expression in epithelial and endothelial cells. Three proteins expressed constitutively in mesothelial cells were detected in the human cornea. The possible function of mesothelin in cell-cell contact on the ocular surface is discussed. The presence of HBME-1 protein in the endothelial layer may indicate a still unknown function that could be shared with mesothelial cells of the pleura and peritoneum. The much more pronounced occurrence of calbindin 2 in the corneal epithelium compared to fewer positive endothelial cells explains the higher turnover of epithelial cells compared to the proliferatively inactive endothelium.
Collapse
|
38
|
Affiliation(s)
- C T Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, and Departments of Pathology and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
39
|
|
40
|
Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW, Molitoris BA. Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 2009; 20:524-34. [PMID: 19176699 DOI: 10.1681/asn.2008060593] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Altered coagulation and inflammation contribute to the pathogenesis of ischemic renal injury. Thrombomodulin is a necessary factor in the anticoagulant protein C pathway and has inherent anti-inflammatory properties. We studied the effect of soluble thrombomodulin (sTM) in a hypoperfusion model of ischemic kidney injury. To markedly reduce infrarenal aortic blood flow and femoral arterial pressures, we clamped the suprarenal aorta of rats, occluding them 90%, for 60 min. Reversible acute kidney injury (AKI) occurred at 24 h in rats subjected to hypoperfusion. Histologic analysis at 24 h revealed acute tubular necrosis (ATN), and intravital two-photon microscopy showed flow abnormalities in the microvasculature and defects of endothelial permeability. Pretreatment with rat sTM markedly reduced both I-R-induced renal dysfunction and tubular histologic injury scores. sTM also significantly improved microvascular erythrocyte flow rates, reduced microvascular endothelial leukocyte rolling and attachment, and minimized endothelial permeability to infused fluorescence dextrans, assessed by intravital quantitative multiphoton microscopy. Furthermore, sTM administered 2 h after reperfusion protected against ischemia-induced renal dysfunction at 24 h and improved survival. By using an sTM variant, we also determined that the protective effects of sTM were independent of its ability to generate activated protein C. These data suggest that sTM may have therapeutic potential for ischemic AKI.
Collapse
Affiliation(s)
- Asif A Sharfuddin
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
White TC, Berny MA, Tucker EI, Urbanus RT, de Groot PG, Fernández JA, Griffin JH, Gruber A, McCarty OJT. Protein C supports platelet binding and activation under flow: role of glycoprotein Ib and apolipoprotein E receptor 2. J Thromb Haemost 2008; 6:995-1002. [PMID: 18489431 DOI: 10.1111/j.1538-7836.2008.02979.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activated protein C (APC) regulates thrombin generation and inhibits apoptosis. Endothelial protein C receptor (EPCR)-bound protein C is activated by thrombomodulin-bound thrombin. APC inactivates coagulation factors (F)Va/VIIIa and generates cytoprotective signaling downstream of protease-activated receptor-1 (PAR-1). Binding of APC to EPCR both modifies and induces PAR-1 signaling, but it is unknown if protein C interacts with cells in an alternative manner. AIM To determine whether platelets possess receptors for protein C that can generate intracellular signals. RESULTS Immobilized protein C or APC supported platelet adhesion, lamellipodia formation and elevation of intracellular Ca(2+). Adhesion of platelets to protein C or APC was inhibited by soluble recombinant apolipoprotein E receptor 2' (ApoER2') and by receptor-associated protein (RAP), an inhibitor of the low-density lipoprotein receptor family. Under shear, surface-bound protein C supported platelet adhesion and aggregation in a glycoprotein (GP)Ibalpha-dependent manner, and adhesion of platelets to immobilized protein C was abrogated by the addition of soluble forms of ApoER2' or RAP. APC bound to purified recombinant ApoER2' or GPIbalpha. CONCLUSIONS Our data demonstrate that activation of platelets with rapid intracellular signaling caused by binding to immobilized protein C or APC occurs via mechanisms that require ApoER2 and GPIbalpha and that APC directly binds to purified ectodomains of the receptors ApoER2 and GPIbalpha. These findings imply that protein C and APC may directly promote cell signaling in other cells by binding to ApoER2 and/or GPIbalpha.
Collapse
Affiliation(s)
- T C White
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The cost-benefit ratio of screening pregnant women for thrombophilia. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2007; 5:189-203. [PMID: 19204775 DOI: 10.2450/2007.0022-07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
|
43
|
Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT. Masquerader: High Mobility Group Box-1 and Cancer. Clin Cancer Res 2007; 13:2836-48. [PMID: 17504981 DOI: 10.1158/1078-0432.ccr-06-1953] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since its identification a third of a century ago, the high-mobility group box-1 (HMGB1) protein has been linked to varied diverse cellular processes, including release from necrotic cells and secretion by activated macrophages engulfing apoptotic cells. Initially described as solely chromatin-associated, HMGB1 was additionally discovered in the cytoplasm of several types of cultured mammalian cells 6 years later. In addition to its intracellular role, HMGB1 has been identified extracellularly as a putative leaderless cytokine and differentiation factor. In the years since its discovery, HMGB1 has also been implicated in disease states, including Alzheimer's, sepsis, ischemia-reperfusion, arthritis, and cancer. In cancer, overexpression of HMGB1, particularly in conjunction with its receptor for advanced glycation end products, has been associated with the proliferation and metastasis of many tumor types, including breast, colon, melanoma, and others. This review focuses on current knowledge and speculation on the role of HMGB1 in the development of cancer, metastasis, and potential targets for therapy.
Collapse
Affiliation(s)
- Jessica E Ellerman
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang L, Bastarache JA, Wickersham N, Fang X, Matthay MA, Ware LB. Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am J Respir Cell Mol Biol 2006; 36:497-503. [PMID: 17099142 PMCID: PMC1899324 DOI: 10.1165/rcmb.2005-0425oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intra-alveolar fibrin deposition is a common response to localized and diffuse lung infection and acute lung injury (ALI). We hypothesized that the alveolar epithelium modulates intra-alveolar fibrin deposition through activation of protein C. Our objectives [corrected] were to determine whether components of the protein C activation pathway are present in the alveolar compartment in ALI and whether alveolar epithelium is a potential source. In patients with ALI, pulmonary edema fluid levels of endothelial protein C receptor (EPCR) were higher than plasma, suggesting a source in the lung. To determine whether alveolar epithelial cells are a potential source, protein C activation by A549, small airway epithelial, and primary human alveolar epithelial type II cells was measured. All three cell types express thrombomodulin (TM) and EPCR, and activate protein C on the cell surface. Activation of protein C was inhibited by cytomix (TNF-alpha, IL-1beta, and IFN-gamma). Release of EPCR and TM into the conditioned medium was inhibited by the metalloproteinase inhibitors tumor necrosis factor protease inhibitor (TAPI) and GM6001, indicating that the shedding of EPCR and TM from the alveolar epithelium is mediated by a metalloproteinase. These findings provide new evidence that the alveolar epithelium can modulate the protein C pathway and thus could be an important determinant of alveolar fibrin deposition. Local fibrin deposition may be a fundamental mechanism for the lung to localize and confine injury, thus limiting the risk of dissemination of injury or infection to the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hanly AM, Redmond M, Winter DC, Brophy S, Deasy JM, Bouchier-Hayes DJ, Kay EW. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer 2006; 94:1320-5. [PMID: 16622452 PMCID: PMC2361416 DOI: 10.1038/sj.bjc.6603098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Thrombomodulin (TM) is an endothelial receptor that exhibits anticoagulant, antifibrinolytic and anti-inflammatory activity by inhibiting thrombin and cellular adhesion. In this study, the expression and significance of TM was examined in primary colorectal cancer and its prognostic implications explored. TM immunostaining was performed on formalin-fixed, paraffin-embedded tissue sections, from primary lesions of 200 patients with colorectal carcinoma. Institutional Ethical approval was granted and clinical data retrieved from patients' records. All normal colonic tissue expressed TM on endothelial cells. TM tumour cell expression was demonstrated in 53 (26.5%) cases and 147 (73.5%) showed no neoplastic cell staining. On univariate and multivariate analysis TM expression on tumour cells correlated significantly with tumour stage, differentiation, Jass score and 5 year survival. TM expression decreases as overall stage and tumour size increase (P=0.03). In all, 91% TM positive tumours were well differentiated and 85% of TM negative tumours were poorly differentiated (P<0.01). Five year survival rates of patients with positive and negative TM expression were 71 and 41%, respectively. Survival rate was poorer in those patients who were TM negative compared with those who were positive (P<0.01). A total of 101 (50.5%) of the cases were node negative. In this group, 5 year survival rates of patients with positive and negative TM expression were 87.5 and 37.8%, respectively, demonstrating a poorer survival rate for those who are node negative and TM negative at the time of surgery (P<0.001). This study demonstrates that loss of TM is a key indicator in tumour biology and prognosis.
Collapse
Affiliation(s)
- A M Hanly
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - M Redmond
- Department of Histopathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - D C Winter
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - S Brophy
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - J M Deasy
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - D J Bouchier-Hayes
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - E W Kay
- Department of Histopathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
- Department of Histopathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland. E-mail:
| |
Collapse
|
46
|
Stenflo J, Kjellberg M, Strandberg K, Svensson PJ, Kölbel T, Lindblad B. The complex between activated protein C and protein C inhibitor: A clinically useful indicator of aortic aneurysms? Blood Cells Mol Dis 2006; 36:118-21. [PMID: 16466952 DOI: 10.1016/j.bcmd.2005.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
The concentration of the complex between activated protein C and the protein C inhibitor reflects the degree of activation of blood coagulation. A sandwich method has been devised that measures the complex concentration in blood plasma. A key feature of the method is that the catching monoclonal antibody recognizes a complex-dependent neoepitope in PCI, which is a prerequisite, since the concentration of uncomplexed PCI is approximately 10(4)-fold higher than that of the complex. In patients with atherosclerotic disease, those with aortic aneurysms exhibit a three-fold increase in complex concentration compared to that of normal subjects.
Collapse
Affiliation(s)
- J Stenflo
- Department of Clinical Chemistry, Lund University, University Hospital, Malmö, S205 02 Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- W Bode
- Proteinase Research Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz, Martinsried, Germany.
| |
Collapse
|
48
|
Affiliation(s)
- T J Raife
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
49
|
Jackson CM, Esnouf MP. Has the time arrived to replace the quick prothrombin time test for monitoring oral anticoagulant therapy? Clin Chem 2005; 51:483-5. [PMID: 15738512 DOI: 10.1373/clinchem.2004.045393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24:1374-83. [PMID: 15178554 DOI: 10.1161/01.atv.0000134298.25489.92] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Late in the 18th century, William Hewson recognized that the formation of a clot is characteristic of many febrile, inflammatory diseases (Owen C. A History of Blood Coagulation. Rochester, Minnesota: Mayo Foundation; 2001). Since that time, there has been steady progress in our understanding of coagulation and inflammation, but it is only in the past few decades that the molecular mechanisms linking these 2 biologic systems have started to be delineated. Most of these can be traced to the vasculature, where the systems most intimately interact. Thrombomodulin (TM), a cell surface-expressed glycoprotein, predominantly synthesized by vascular endothelial cells, is a critical cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell protein C receptor (EPCR). Activated PC (APC), in turn, is best known for its natural anticoagulant properties. Recent evidence has revealed that TM, APC, and EPCR have activities that impact not only on coagulation but also on inflammation, fibrinolysis, and cell proliferation. This review highlights recent insights into the diverse functions of this complex multimolecular system and how its components are integrated to maintain homeostasis under hypercoagulable and/or proinflammatory stress conditions. Overall, the described advances underscore the usefulness of elucidating the relevant molecular pathways that link both systems for the development of novel therapeutic and diagnostic targets for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- The Center for Transgene Technology and Gene Therapy, University of Leuven and the Flanders Interuniversity Institute for Biotechnology (VIB), Belgium
| | | | | |
Collapse
|