1
|
Sivagangabalan G, Nazzari H, Bignolais O, Maguy A, Naud P, Farid T, Massé S, Gaborit N, Varro A, Nair K, Backx P, Vigmond E, Nattel S, Demolombe S, Nanthakumar K. Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts. PLoS One 2014; 9:e82179. [PMID: 24427266 PMCID: PMC3888386 DOI: 10.1371/journal.pone.0082179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/22/2013] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Structural differences between ventricular regions may not be the sole determinant of local ventricular fibrillation (VF) dynamics and molecular remodeling may play a role. OBJECTIVES To define regional ion channel expression in myopathic hearts compared to normal hearts, and correlate expression to regional VF dynamics. METHODS AND RESULTS High throughput real-time RT-PCR was used to quantify the expression patterns of 84 ion-channel, calcium cycling, connexin and related gene transcripts from sites in the LV, septum, and RV in 8 patients undergoing transplantation. An additional eight non-diseased donor human hearts served as controls. To relate local ion channel expression change to VF dynamics localized VF mapping was performed on the explanted myopathic hearts right adjacent to sampled regions. Compared to non-diseased ventricles, significant differences (p<0.05) were identified in the expression of 23 genes in the myopathic LV and 32 genes in the myopathic RV. Within the myopathic hearts significant regional (LV vs septum vs RV) expression differences were observed for 13 subunits: Nav1.1, Cx43, Ca3.1, Cavα2δ2, Cavβ2, HCN2, Na/K ATPase-1, CASQ1, CASQ2, RYR2, Kir2.3, Kir3.4, SUR2 (p<0.05). In a subset of genes we demonstrated differences in protein expression between control and myopathic hearts, which were concordant with the mRNA expression profiles for these genes. Variability in the expression of Cx43, hERG, Na(+)/K(+) ATPase ß1 and Kir2.1 correlated to variability in local VF dynamics (p<0.001). To better understand the contribution of multiple ion channel changes on VF frequency, simulations of a human myocyte model were conducted. These simulations demonstrated the complex nature by which VF dynamics are regulated when multi-channel changes are occurring simultaneously, compared to known linear relationships. CONCLUSIONS Ion channel expression profile in myopathic human hearts is significantly altered compared to normal hearts. Multi-channel ion changes influence VF dynamic in a complex manner not predicted by known single channel linear relationships.
Collapse
Affiliation(s)
| | | | - Olivier Bignolais
- INSERM, UMR915, l'institut du thorax, Nantes, France
- CNRS, ERL3147, Nantes, France
- Université de Nantes, Nantes, France
| | - Ange Maguy
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Pessac, France
- Lab IMB, University Bordeaux 1, Talence, France
| | - Patrice Naud
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Pessac, France
- Lab IMB, University Bordeaux 1, Talence, France
| | | | | | - Nathalie Gaborit
- INSERM, UMR915, l'institut du thorax, Nantes, France
- CNRS, ERL3147, Nantes, France
- Université de Nantes, Nantes, France
| | - Andras Varro
- University of Szeged and Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | - Edward Vigmond
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Pessac, France
- Lab IMB, University Bordeaux 1, Talence, France
| | - Stanley Nattel
- Montreal Heart Institute (MHI) and Université de Montréal Faculty of Medicine, Montreal, Canada
| | - Sophie Demolombe
- INSERM, UMR915, l'institut du thorax, Nantes, France
- CNRS, ERL3147, Nantes, France
- Université de Nantes, Nantes, France
| | | |
Collapse
|
2
|
Chorro FJ, Pelechano F, Trapero I, Ibañez-Catalá X, Such-Miquel L, Tormos A, Guerrero J, Cánoves J, Mainar L, Millet J, Alberola A, Such L. Modifications in ventricular fibrillation and capture capacity induced by a linear radiofrequency lesion. Rev Esp Cardiol 2011; 65:143-51. [PMID: 22177961 DOI: 10.1016/j.recesp.2011.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/08/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION AND OBJECTIVES An analysis was made of the effects of a radiofrequency-induced linear lesion during ventricular fibrillation and the capacity to capture myocardium through high-frequency pacing. METHODS Using multiple epicardial electrodes, ventricular fibrillation was recorded in 22 isolated perfused rabbit hearts, analyzing the activation maps upon applying trains of stimuli at 3 different frequencies close to that of the arrhythmia: a) at baseline; b) after radio-frequency ablation to induce a lesion of the left ventricular free wall (length=10 [1] mm), and c) after lengthening the lesion (length=23 [2] mm). RESULTS Following lesion induction, the regularity of the recorded signals decreased and significant variations in the direction of the activation fronts were observed. On lengthening the lesion, there was a slight increase in the episodes with at least 3 consecutive captures when pacing at cycles 10% longer than the arrhythmia (baseline: 0.6 [0.7]; initial lesion: 1 [1], no significant differences; lengthened lesion: 3 [2.8]; P<.001), while a decrease was observed in those obtained upon pacing at cycles 10% shorter than the arrhythmia. CONCLUSIONS The radio-frequency -induced lesion increases the heterogeneity of myocardial activation during ventricular fibrillation and modifies arrival of the activation fronts in the adjacent zones. High-frequency pacing during ventricular fibrillation produces occasional captures during at least 3 consecutive stimuli. The lengthened lesion in turn slightly increases capture capacity when using cycles slightly longer than the arrhythmia.
Collapse
Affiliation(s)
- Francisco J Chorro
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Tang L, Hwang GS, Song J, Chen PS, Lin SF. Post-shock synchronized pacing in isolated rabbit left ventricle: evaluation of a novel defibrillation strategy. J Cardiovasc Electrophysiol 2007; 18:740-9. [PMID: 17388914 DOI: 10.1111/j.1540-8167.2007.00792.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION A failed near-threshold defibrillation shock is followed by an isoelectric window (IEW) and rapid repetitive responses that reinitiate ventricular fibrillation (VF). We hypothesized that properly timed (synchronized) postshock pacing stimuli (SyncP) may capture the recovered tissues during the repetitive responses and prevent postshock reinitiation of VF, resulting in improved defibrillation efficacy. METHODS AND RESULTS We explored the effect of postshock SyncP on defibrillation efficacy in isolated rabbit hearts (n = 12). Optical recording-guided real-time detection and electrical stimulation (5 mA) of recovered tissues in anterior/posterior left ventricle (LV) were performed following IEW. The IEW duration was found to be 69 +/- 13 ms. With the same shock strength, successful and failed defibrillation episodes were associated with 50% and 15% of the myocardium, respectively, captured by the SyncP (P < 0.001). Electrical stimulation from the posterior LV resulted in 75% of episodes capturing myocardium, as compared with anterior LV stimulation (55%; P < 0.01) and higher successful defibrillation rate (14%, posterior vs. 3%, anterior LV). The overall success in terminating VF by postshock SyncP was approximately 10%. The causes for failed myocardium capture by postshock SyncP included lack of IEW after low-strength shock (42.9%), incorrect locations of reference site (25.7%) and pacing electrodes (17.9%), and others, such as wave breakthroughs (13.5%). CONCLUSION Postshock SyncP was feasible and the larger the myocardium captured area, the more likely was the successful defibrillation. Postshock SyncP delivered to the posterior LV was more effective than anterior LV to terminate VF.
Collapse
Affiliation(s)
- Liang Tang
- Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, UCLA, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
4
|
Ravi K, Nihei M, Willmer A, Hayashi H, Lin SF. Optical recording-guided pacing to create functional line of block during ventricular fibrillation. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:021013. [PMID: 16674188 DOI: 10.1117/1.2190987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Low-energy defibrillation is very desirable in cardiac rhythm management. We previously reported that ventricular fibrillation (VF) can be synchronized with a novel synchronized pacing technique (SyncP) using low-energy pacing pulses. This study sought to create a line of block during VF using SyncP. SyncP was performed in six isolated rabbit hearts during VF using optical recording to control the delivery of pacing pulses in real time. Four pacing electrodes with interelectrode distances of 5 mm were configured in a line along and across the myocardial fiber direction. The electrodes were controlled independently (independent mode) or fired together (simultaneous mode). Significant wavefront synchronization was observed along the electrode line as indicated by a decrease in variance. With the independent SyncP protocol, the decrease in the variance was 19.3 and 13.7% (P<0.001) for the along-, and across-fiber configurations, respectively. With the simultaneous SyncP protocol, the variance was reduced by 24.2 and 10.7% (P<0.001) in the along- and across-fiber configurations. The effect of synchronization dropped off with distance from the line of pacing. We conclude that SyncP can effectively create a line of functional block that isolates regions of VF propagation. Further optimization of this technique may prove useful for low-energy ventricular defibrillation.
Collapse
Affiliation(s)
- Krishna Ravi
- Cedars-Sinai Medical Center, Department of Medicine, Division of Cardiology, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|