1
|
Tory K. Throwing off the keratin chains: a potential therapy for hereditary podocytopathy. Kidney Int 2024; 105:663-665. [PMID: 38519231 DOI: 10.1016/j.kint.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/24/2024]
Abstract
In the current issue, Kuzmuk et al. offer a therapeutic option for patients with NPHS2 R138Q-associated nephrotic syndrome. For the first time in hereditary podocytopathies, this is offered by restoring the membrane targeting of a pathogenic protein. The idea that it is enough to liberate podocin from the trap of keratin 8, a key member of endoplasmic-reticulum-associated protein degradation complex, was brilliantly recognized based on former results obtained in cystic fibrosis.
Collapse
Affiliation(s)
- Kálmán Tory
- Pediatric Center, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences - Semmelwies University (MTA-SE) Lendület Nephrogenetic Laboratory, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Ding WY, Kuzmuk V, Hunter S, Lay A, Hayes B, Beesley M, Rollason R, Hurcombe JA, Barrington F, Masson C, Cathery W, May C, Tuffin J, Roberts T, Mollet G, Chu CJ, McIntosh J, Coward RJ, Antignac C, Nathwani A, Welsh GI, Saleem MA. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med 2023; 15:eabc8226. [PMID: 37556557 DOI: 10.1126/scitranslmed.abc8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.
Collapse
Affiliation(s)
- Wen Y Ding
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Sarah Hunter
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Abigail Lay
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew Beesley
- Department of Histopathology, Cheltenham General Hospital, Cheltenham GL53 7AN, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Catrin Masson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - William Cathery
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jack Tuffin
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Geraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Colin J Chu
- Academic Unit of Ophthalmology, Bristol Medical School, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny McIntosh
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Amit Nathwani
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
3
|
Dorison A, Ghobrial I, Graham A, Peiris T, Forbes TA, See M, Das M, Saleem MA, Quinlan C, Lawlor KT, Ramialison M, Howden SE, Little MH. Kidney Organoids Generated Using an Allelic Series of NPHS2 Point Variants Reveal Distinct Intracellular Podocin Mistrafficking. J Am Soc Nephrol 2023; 34:88-109. [PMID: 36167728 PMCID: PMC10101587 DOI: 10.1681/asn.2022060707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND NPHS2 variants are the most common cause of steroid-resistant nephrotic syndrome in children >1 month old. Missense NPHS2 variants were reported to cause mistrafficking of the encoded protein, PODOCIN, but this conclusion was on the basis of overexpression in some nonpodocyte cell lines. METHODS We generated a series of human induced pluripotent stem cell (iPSC) lines bearing pathogenic missense variants of NPHS2 , encoding the protein changes p.G92C, p.P118L, p.R138Q, p.R168H, and p.R291W, and control lines. iPSC lines were also generated from a patient with steroid-resistant nephrotic syndrome (p.R168H homozygote) and a healthy heterozygous parent. All lines were differentiated into kidney organoids. Immunofluorescence assessed PODOCIN expression and subcellular localization. Podocytes were transcriptionally profiled and PODOCIN-NEPHRIN interaction interrogated. RESULTS All variant lines revealed reduced levels of PODOCIN protein in the absence of reduced transcription. Although wild-type PODOCIN localized to the membrane, distinct variant proteins displayed unique patterns of subcellular protein trafficking, some unreported. P118L and R138Q were preferentially retained in the endoplasmic reticulum (ER); R168H and R291W accumulated in the Golgi. Podocyte profiling demonstrated minimal disease-associated transcriptional change. All variants displayed podocyte-specific apoptosis, which was not linked to ER stress. NEPHRIN-PODOCIN colocalization elucidated the variant-specific effect on NEPHRIN association and hence NEPHRIN trafficking. CONCLUSIONS Specific variants of endogenous NPHS2 result in distinct subcellular PODOCIN localization within organoid podocytes. Understanding the effect of each variant on protein levels and localization and the effect on NEPHRIN provides additional insight into the pathobiology of NPHS2 variants. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_01_05_JASN2022060707.mp3.
Collapse
Affiliation(s)
- Aude Dorison
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irene Ghobrial
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Alison Graham
- Murdoch Children’s Research Institute, Melbourne, Australia
| | | | - Thomas A. Forbes
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Children’s Hospital, Melbourne, Australia
| | - Michael See
- Murdoch Children’s Research Institute, Melbourne, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, Australia
| | - Mithun Das
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Moin A. Saleem
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Catherine Quinlan
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Children’s Hospital, Melbourne, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mirana Ramialison
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
- Australian Regenerative Medicine Institute, Clayton, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Tian P, Lennon R. Pinpointing Podocin Trafficking Defects in Kidney Organoids. J Am Soc Nephrol 2023; 34:2-4. [PMID: 36719143 PMCID: PMC10101581 DOI: 10.1681/asn.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
5
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Aulicino F, Pelosse M, Toelzer C, Capin J, Ilegems E, Meysami P, Rollarson R, Berggren PO, Dillingham M, Schaffitzel C, Saleem M, Welsh G, Berger I. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res 2022; 50:7783-7799. [PMID: 35801912 PMCID: PMC9303279 DOI: 10.1093/nar/gkac587] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic β-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.
Collapse
Affiliation(s)
- Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Martin Pelosse
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christine Toelzer
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Parisa Meysami
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Ruth Rollarson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Mark Simon Dillingham
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
8
|
Wu N, Zhu Y, Jiang W, Song Y, Yin L, Lu Y, Tao D, Liu Y, Ma Y. A novel NPHS2 mutation (c.865A > G) identified in a Chinese family with steroid-resistant nephrotic syndrome alters subcellular localization of nephrin. Genes Genomics 2022; 44:551-559. [PMID: 35099763 DOI: 10.1007/s13258-022-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/16/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND NPHS2 is the causative gene of nephrotic syndrome type 2 (MIM 600995) which often clinically manifests as steroid-resistant nephrotic syndrome (SRNS). The NPHS2 gene encodes a slit diaphragm (SD) associated protein podocin. OBJECTIVE This study reported a novel disease-causing mutation of NPHS2 in a Chinese family with SRNS. We also investigated the pathogenic mechanism of the variants in this family. METHOD A Chinese family with SRNS was recruited. Whole exome sequencing was performed to screen for disease-causing mutation. Sanger sequencing was used to confirm the results. In vitro functional experiments including immunoblotting, co-immunoprecipitation and double immunofluorescence staining were performed to explore the pathogenic mechanisms of mutations. RESULTS In this family, compound heterozygous mutations of NPHS2 (c.467dupT and c.865A > G) were identified and segregated with the disease. The maternal c.865A > G was a novel variant, leading to amino acid substitution (p.K289E). In vitro functional assays indicated that c.467dupT (p.L156FfsX11) mutant lost interaction with nephrin. Both K289E and L156FfsX11 mutants showed sharply diminished plasma membrane localization. Furthermore, abnormal distribution of podocin mutants also altered the cell membrane localization of nephrin. CONCLUSION We reported a family with SRNS caused by compound heterozygous mutations of NPHS2 (c.467dupT and c.865A > G). c.865A > G (p.K289E) in NPHS2 was a novel causative variant associated with SRNS. Both variants in this family not only affected the normal cell membrane localization of podocin, but also altered the cell membrane localization of nephrin which is the major architectural protein of SD.
Collapse
Affiliation(s)
- Na Wu
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Yingchuan Zhu
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Wenhao Jiang
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Yue Song
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Lan Yin
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Yilu Lu
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Dachang Tao
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Yunqiang Liu
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, West China Hospital, Sichuan University, 1st Keyuan 4 Lu, High-Tech Zone, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in Podocyte Biology and Disease. Int J Mol Sci 2020; 21:E9645. [PMID: 33348903 PMCID: PMC7766259 DOI: 10.3390/ijms21249645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.
Collapse
Affiliation(s)
- Berkan Savas
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 20007 Washington, DC, USA;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano Italy, 20090 Segrate (Milano), Italy;
| | - Dil Sahali
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
- Service Néphrologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Mario Ollero
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| |
Collapse
|
10
|
Gribouval O, Boyer O, Knebelmann B, Karras A, Dantal J, Fourrage C, Alibeu O, Hogan J, Dossier C, Tête MJ, Antignac C, Servais A. APOL1 risk genotype in European steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis patients of different African ancestries. Nephrol Dial Transplant 2020; 34:1885-1893. [PMID: 29992269 DOI: 10.1093/ndt/gfy176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/03/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Apolipoprotein L1 (APOL1) risk variants are strongly associated with sporadic focal segmental glomerulosclerosis (FSGS) in populations with African ancestry. We determined the frequency of G1/G2 variants in steroid-resistant nephrotic syndrome (SRNS)/FSGS patients with African or French West Indies ancestry in France and its relationships with other SRNS genes. METHODS In a cohort of 152 patients (139 families), the APOL1 risk variants were genotyped by direct Sanger sequencing and pathogenic mutations were screened by next-generation sequencing with a panel including 35 SRNS genes. RESULTS The two risk allele [high-risk (HR)] genotypes were found in 43.1% (66/152) of subjects compared with 18.9% (106/562) in a control population (P < 0.0001): 33 patients homozygous for APOL1 G1 alleles, 4 homozygous for G2 and 29 compound heterozygous for G1 and G2. Compared with patients in the low-risk (LR) group, patients in the HR group were more likely to originate from the French West Indies than from Africa [45/66 (68.2%) versus 30/86 (34.9%); P < 0.0001]. There were more familial cases in the HR group [27 (41.5%) versus 8 (11.4%); P < 0.0001]. However, causative mutations in monogenic SRNS genes were found in only 1 patient in the HR group compared with 16 patients (14 families) in the LR group (P = 0.0006). At diagnosis, patients in the HR group without other mutations were more often adults [35 (53.8%) versus 19 (27.1%); P = 0.003] and had a lower estimated glomerular filtration rate (78.9 versus 98.8 mL/min/1.73 m2; P = 0.02). CONCLUSIONS The HR genotype is frequent in FSGS patients with African ancestry in our cohort, especially in those originating from the West Indies, and confer a poor renal prognosis. It is usually not associated with other causative mutations in monogenic SRNS genes.
Collapse
Affiliation(s)
- Olivier Gribouval
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France
| | - Olivia Boyer
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France.,Pediatric Nephrology Department, Necker Hospital, APHP, Paris, France
| | - Bertrand Knebelmann
- Nephrology and Transplantation Department, Necker Hospital, APHP, Paris, France
| | - Alexandre Karras
- Nephrology Department, European Georges Pompidou Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jacques Dantal
- Nephrology Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Cécile Fourrage
- Bioinformatic Platform, Paris Descartes Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Olivier Alibeu
- Genomic Platform, Inserm UMR1163, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Julien Hogan
- Pediatric Nephrology Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Dossier
- Pediatric Nephrology Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Josèphe Tête
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France
| | - Corinne Antignac
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France.,Genetic Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aude Servais
- Inserm U1163, Institut Imagine, University Paris Descartes, Paris, France.,Nephrology and Transplantation Department, Necker Hospital, APHP, Paris, France
| |
Collapse
|
11
|
Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol 2019; 15:750-765. [DOI: 10.1038/s41581-019-0217-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
|
12
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
13
|
Sahu SN, Moharana M, Sahu R, Pattanayak SK. Impact of mutation on podocin protein involved in type 2 nephrotic syndrome: Insights into docking and molecular dynamics simulation study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Asharam K, Bhimma R, David VA, Coovadia HM, Qulu WP, Naicker T, Gillies CE, Vega-Warner V, Johnson RC, Limou S, Kopp JB, Sampson M, Nelson GW, Winkler CA. NPHS2 V260E Is a Frequent Cause of Steroid-Resistant Nephrotic Syndrome in Black South African Children. Kidney Int Rep 2018; 3:1354-1362. [PMID: 30450462 PMCID: PMC6224675 DOI: 10.1016/j.ekir.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction In South Africa (SA), steroid-resistant nephrotic syndrome (SRNS) is more frequent in black than in Indian children. Methods Seeking a genetic basis for this disparity, we enrolled 33 Indian and 31 black children with steroid-sensitive nephrotic syndrome (SSNS) and SRNS from KwaZulu-Natal, SA; SRNS children underwent kidney biopsy. We sequenced NPHS2 and genotyped APOL1 in 15 SSNS and 64 SRNS unrelated patients and 104 controls and replicated results in 18 black patients with steroid-resistant focal segmental glomerulosclerosis (SR-FSGS). Known FSGS genes (n = 21) were sequenced in a subset of patients. Results Homozygosity for NPHS2 V260E was found in 8 of 30 black children with SRNS (27%); all 260E/E carriers had SR-FSGS. Combining SR-FSGS patients from the 2 groups, 14 of 42 (33%) were homozygous for V260E. One black control was heterozygous for V260E; no Indian patients or controls were carriers. Haplotype analysis indicated that homozygosity for V260E was not explained by cryptic consanguinity. Children with NPHS2 260E/E developed SRNS at earlier age than noncarriers (34 vs. 78 months, P = 0.01), and none achieved partial or complete remission (0% vs. 47%, P = 0.002). APOL1 variants did not associate with NS. Sequencing FSGS genes identified a CD2AP predicted pathogenic variant in the heterozygous state in 1 Indian case with SR-FSGS. Conclusion NPHS2 260E/E was present in one-third of black FSGS patients, was absent in black controls and Indian patients, and affected patients were unresponsive to therapy. Genotyping V260E in black children from South Africa with NS will identify a substantial group with SR-FSGS, potentially sparing these children biopsy and ineffective steroid treatment.
Collapse
Affiliation(s)
| | | | - Victor A. David
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Hoosen M. Coovadia
- University of KwaZulu-Natal, Durban, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | | | | | - Christopher E. Gillies
- Department of Pediatrics-Nephrology; University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Virginia Vega-Warner
- Department of Pediatrics-Nephrology; University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Randall C. Johnson
- Advanced Biomedical Computing Center, Frederick National Laboratory, Frederick, Maryland, USA
| | - Sophie Limou
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Mathew Sampson
- Department of Pediatrics-Nephrology; University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - George W. Nelson
- Advanced Biomedical Computing Center, Frederick National Laboratory, Frederick, Maryland, USA
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
- Correspondence: Cheryl A. Winkler, 8560 Progress Drive, National Cancer Institute, Frederick National Laboratory, Frederick, Maryland 21701, USA.
| |
Collapse
|
15
|
Stráner P, Balogh E, Schay G, Arrondel C, Mikó Á, L'Auné G, Benmerah A, Perczel A, K Menyhárd D, Antignac C, Mollet G, Tory K. C-terminal oligomerization of podocin mediates interallelic interactions. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2448-2457. [PMID: 29660491 DOI: 10.1016/j.bbadis.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r2 = 0.68, P = 9.2 × 10-32). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals.
Collapse
Affiliation(s)
- Pál Stráner
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Balogh
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Gusztáv Schay
- Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | - Christelle Arrondel
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Ágnes Mikó
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Gerda L'Auné
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - András Perczel
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France; Assistance Publique - Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Département de Génétique, Paris, France
| | - Géraldine Mollet
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary; Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary; Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
16
|
Calender A, Rollat Farnier PA, Buisson A, Pinson S, Bentaher A, Lebecque S, Corvol H, Abou Taam R, Houdouin V, Bardel C, Roy P, Devouassoux G, Cottin V, Seve P, Bernaudin JF, Lim CX, Weichhart T, Valeyre D, Pacheco Y, Clement A, Nathan N. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genomics 2018; 11:23. [PMID: 29510755 PMCID: PMC5839022 DOI: 10.1186/s12920-018-0338-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcoidosis (OMIM 181000) is a multi-systemic granulomatous disorder of unknown origin. Despite multiple genome-wide association (GWAS) studies, no major pathogenic pathways have been identified to date. To find out relevant sarcoidosis predisposing genes, we searched for de novo and recessive mutations in 3 young probands with sarcoidosis and their healthy parents using a whole-exome sequencing (WES) methodology. METHODS From the SARCFAM project based on a national network collecting familial cases of sarcoidosis, we selected three families (trios) in which a child, despite healthy parents, develop the disease before age 15 yr. Each trio was genotyped by WES (Illumina HiSEQ 2500) and we selected the gene variants segregating as 1) new mutations only occurring in affected children and 2) as recessive traits transmitted from each parents. The identified coding variants were compared between the three families. Allelic frequencies and in silico functional results were analyzed using ExAC, SIFT and Polyphenv2 databases. The clinical and genetic studies were registered by the ClinicalTrials.gov - Protocol Registration and Results System (PRS) ( https://clinicaltrials.gov ) receipt under the reference NCT02829853 and has been approved by the ethical committee (CPP LYON SUD EST - 2 - REF IRB 00009118 - September 21, 2016). RESULTS We identified 37 genes sharing coding variants occurring either as recessive mutations in at least 2 trios or de novo mutations in one of the three affected children. The genes were classified according to their potential roles in immunity related pathways: 9 to autophagy and intracellular trafficking, 6 to G-proteins regulation, 4 to T-cell activation, 4 to cell cycle and immune synapse, 2 to innate immunity. Ten of the 37 genes were studied in a bibliographic way to evaluate the functional link with sarcoidosis. CONCLUSIONS Whole exome analysis of case-parent trios is useful for the identification of genes predisposing to complex genetic diseases as sarcoidosis. Our data identified 37 genes that could be putatively linked to a pediatric form of sarcoidosis in three trios. Our in-depth focus on 10 of these 37 genes may suggest that the formation of the characteristic lesion in sarcoidosis, granuloma, results from combined deficits in autophagy and intracellular trafficking (ex: Sec16A, AP5B1 and RREB1), G-proteins regulation (ex: OBSCN, CTTND2 and DNAH11), T-cell activation (ex: IDO2, IGSF3), mitosis and/or immune synapse (ex: SPICE1 and KNL1). The significance of these findings needs to be confirmed by functional tests on selected gene variants.
Collapse
Affiliation(s)
- Alain Calender
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | | | - Adrien Buisson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
| | - Abderrazzaq Bentaher
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Serge Lebecque
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
| | - Harriet Corvol
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
| | - Rola Abou Taam
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
| | - Véronique Houdouin
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
| | - Claire Bardel
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Pascal Roy
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
| | - Gilles Devouassoux
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
| | - Vincent Cottin
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
| | - Pascal Seve
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
| | | | - Clarice X. Lim
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
| | - Dominique Valeyre
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
| | - Yves Pacheco
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| | - Annick Clement
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - Nadia Nathan
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| | - in the frame of GSF (Groupe Sarcoïdose France)
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, LYON, B-A3, 59 Bld Pinel, 69677 BRON Cedex, France
- Department of biostatistics, University Hospital, Hospices Civils de LYON (HCL), Lyon, France
- Inflammation & Immunity of the Respiratory Epithelium - EA7426 (PI3) – South Medical University Hospital – Lyon 1 Claude Bernard University, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
- Cancer Research Center, INSERM U-1052, CNRS 5286, 69008 Lyon, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, AP-HP, INSERM UMR-S938, Sorbonne University, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Necker, Paris, France
- Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Robert Debré, INSERM U-1142, University Paris Diderot VII, Paris, France
- Department of Pulmonology, University Hospital, Hôpital Croix Rousse, Lyon, France
- Department of Pulmonology, University Hospital, Hôpital Louis Pradel, Lyon, France
- Department of Internal medicine, University Hospital, Hôpital Croix Rousse, Lyon, France
- Histology and Tumor Biology, ER2 UPMC, Hôpital Tenon, Paris, France
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Währinger Straße 10, 1090 Vienna, Austria
- EA2363, University Paris 13, COMUE Sorbonne-Paris-Cité, 74 rue Marcel Cachin, 93009 Bobigny, France
- Assistance Publique Hôpitaux de Paris, Department of Pulmonology, Avicenne University Hospital, 93009 Bobigny, France
- AP-HP Pediatric pulmonology and Reference Center for rare lung diseases RespiRare, Hôpital Trousseau, INSERM UMR-S933, Sorbonne University, Paris, France
| |
Collapse
|
17
|
Serrano-Perez MC, Tilley FC, Nevo F, Arrondel C, Sbissa S, Martin G, Tory K, Antignac C, Mollet G. Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome. J Biol Chem 2018; 293:4122-4133. [PMID: 29382718 DOI: 10.1074/jbc.ra117.001159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Podocin is a key component of the slit diaphragm in the glomerular filtration barrier, and mutations in the podocin-encoding gene NPHS2 are a common cause of hereditary steroid-resistant nephrotic syndrome. A mutant allele encoding podocin with a p.R138Q amino acid substitution is the most frequent pathogenic variant in European and North American children, and the corresponding mutant protein is poorly expressed and retained in the endoplasmic reticulum both in vitro and in vivo To better understand the defective trafficking and degradation of this mutant, we generated human podocyte cell lines stably expressing podocinwt or podocinR138Q Although it has been proposed that podocin has a hairpin topology, we present evidence for podocinR138QN-glycosylation, suggesting that most of the protein has a transmembrane topology. We find that N-glycosylated podocinR138Q has a longer half-life than non-glycosylated podocinR138Q and that the latter is far more rapidly degraded than podocinwt Consistent with its rapid degradation, podocinR138Q is exclusively degraded by the proteasome, whereas podocinwt is degraded by both the proteasomal and the lysosomal proteolytic machineries. In addition, we demonstrate an enhanced interaction of podocinR138Q with calnexin as the mechanism of endoplasmic reticulum retention. Calnexin knockdown enriches the podocinR138Q non-glycosylated fraction, whereas preventing exit from the calnexin cycle increases the glycosylated fraction. Altogether, we propose a model in which hairpin podocinR138Q is rapidly degraded by the proteasome, whereas transmembrane podocinR138Q degradation is delayed due to entry into the calnexin cycle.
Collapse
Affiliation(s)
- Maria-Carmen Serrano-Perez
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Frances C Tilley
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Fabien Nevo
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Christelle Arrondel
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Selim Sbissa
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Gaëlle Martin
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Kalman Tory
- the MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences and First Department of Pediatrics, Semmelweis University, Budapest 1083, Hungary, and
| | - Corinne Antignac
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France.,the Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Géraldine Mollet
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France, .,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
18
|
Tabatabaeifar M, Wlodkowski T, Simic I, Denc H, Mollet G, Weber S, Moyers JJ, Brühl B, Randles MJ, Lennon R, Antignac C, Schaefer F. An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS One 2017; 12:e0186574. [PMID: 29049388 PMCID: PMC5648285 DOI: 10.1371/journal.pone.0186574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4–5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11–13) weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12–16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria, glomerulosclerosis and progressive renal failure.
Collapse
Affiliation(s)
- Mansoureh Tabatabaeifar
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanja Wlodkowski
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ivana Simic
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Helga Denc
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Geraldine Mollet
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Stefanie Weber
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Philipps-University Marburg, Marburg, Germany
| | | | - Barbara Brühl
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Michael Joseph Randles
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Corinne Antignac
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Department of Genetics, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
19
|
Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2342-2354. [PMID: 28629718 PMCID: PMC5557291 DOI: 10.1016/j.bbadis.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvβ3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvβ3-integrin as potential therapeutic targets.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Boyer O, Dorval G, Servais A. Hereditary Podocytopathies in Adults: The Next Generation. KIDNEY DISEASES 2017; 3:50-56. [PMID: 28868292 DOI: 10.1159/000477243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023]
Abstract
Idiopathic nephrotic syndrome may have two underlying mechanisms: either (1) an alteration of the immune system resulting in the production of a putative circulating factor of glomerular permeability; or (2) mutations in the structural genes of the glomerular filtration barrier in which case patients are typically multidrug resistant and do not recur after transplantation. The latter forms have been recently recognized as "hereditary podocytopathies." In the past few years, positional cloning approaches that allow the identification of gene mutations underlying diseases whose pathophysiology is unknown and animal models have helped decipher the pathophysiological mechanisms of the glomerular filtration process. Recently, the advent of next-generation sequencing (NGS) techniques has greatly facilitated the identification of numerous novel causative genes in hereditary podocytopathies. Moreover, it has revealed mutations in unexpected genes and has widened the phenotypes associated with podocyte gene mutations. The list of genes mutated in hereditary podocytopathies is constantly evolving and consists to date of more than 40 genes. However, the most recently identified genes are extremely rarely mutated and may concern only a couple of families worldwide. These discoveries provided crucial insight into the pathophysiological mechanisms linking podocyte proteins to kidney function. This review will focus on monogenic podocytopathies affecting adult patients.
Collapse
Affiliation(s)
- Olivia Boyer
- Néphrologie pédiatrique, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| | - Guillaume Dorval
- Néphrologie pédiatrique, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| | - Aude Servais
- Néphrologie, Centre de référence MARHEA, Hôpital Necker - Enfants Malades, APHP, Paris, France.,Inserm U1163, Institut Imagine, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
Sorting Nexin 9 facilitates podocin endocytosis in the injured podocyte. Sci Rep 2017; 7:43921. [PMID: 28266622 PMCID: PMC5339724 DOI: 10.1038/srep43921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
The irreversibility of glomerulosclerotic changes depends on the degree of podocyte injury. We have previously demonstrated the endocytic translocation of podocin to the subcellular area in severely injured podocytes and found that this process is the primary disease trigger. Here we identified the protein sorting nexin 9 (SNX9) as a novel facilitator of podocin endocytosis in a yeast two-hybrid analysis. SNX9 is involved in clathrin-mediated endocytosis, actin rearrangement and vesicle transport regulation. Our results revealed and confirmed that SNX9 interacts with podocin exclusively through the Bin–Amphiphysin–Rvs (BAR) domain of SNX9. Immunofluorescence staining revealed the expression of SNX9 in response to podocyte adriamycin-induced injury both in vitro and in vivo. Finally, an analysis of human glomerular disease biopsy samples demonstrated strong SNX9 expression and co-localization with podocin in samples representative of severe podocyte injury, such as IgA nephropathy with poor prognosis, membranous nephropathy and focal segmental glomerulosclerosis. In conclusion, we identified SNX9 as a facilitator of podocin endocytosis in severe podocyte injury and demonstrated the expression of SNX9 in the podocytes of both nephropathy model mice and human patients with irreversible glomerular disease.
Collapse
|
22
|
Swiatecka-Urban A. Endocytic Trafficking at the Mature Podocyte Slit Diaphragm. Front Pediatr 2017; 5:32. [PMID: 28286744 PMCID: PMC5324021 DOI: 10.3389/fped.2017.00032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Endocytic trafficking couples cell signaling with the cytoskeletal dynamics by organizing a crosstalk between protein networks in different subcellular compartments. Proteins residing in the plasma membrane are internalized and transported as cargo in endocytic vesicles (i.e., endocytosis). Subsequently, cargo proteins can be delivered to lysosomes for degradation or recycled back to the plasma membrane. The slit diaphragm is a modified tight junction connecting foot processes of the glomerular epithelial cells, podocytes. Signaling at the slit diaphragm plays a critical role in the kidney while its dysfunction leads to glomerular protein loss (proteinuria), manifesting as nephrotic syndrome, a rare condition with an estimated incidence of 2-4 new cases per 100,000 each year. Relatively little is known about the role of endocytic trafficking in podocyte signaling and maintenance of the slit diaphragm integrity. This review will focus on the role of endocytic trafficking at the mature podocyte slit diaphragm.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Ogino D, Hashimoto T, Hattori M, Sugawara N, Akioka Y, Tamiya G, Makino S, Toyota K, Mitsui T, Hayasaka K. Analysis of the genes responsible for steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis in Japanese patients by whole-exome sequencing analysis. J Hum Genet 2015; 61:137-41. [PMID: 26467726 DOI: 10.1038/jhg.2015.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) represents glomerular disease resulting from a number of different etiologies leading to focal segmental glomerulosclerosis (FSGS). Recently, many genes causing SRNS/FSGS have been identified. These genes encode the proteins associated with the formation and/or maintenance of glomerular filtration barrier. Next-generation sequencing is used to analyze large numbers of genes at lower costs. To identify the genetic background of Japanese patients, we studied 26 disease-causing genes using whole-exome sequencing analysis in 24 patients with SRNS and/or FSGS from 22 different Japanese families. We finally found eight causative gene mutations, four recessive and four dominant gene mutations, including three novel mutations, in six patients from five different families, and one novel predisposing mutation in two patients from two different families. Causative gene mutations have only been identified in ~20% of families and further analysis is necessary to identify the unknown disease-causing gene. Identification of the disease-causing gene would support clinical practices, including the diagnosis, understanding of pathogenesis and treatment.
Collapse
Affiliation(s)
- Daisuke Ogino
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Taeko Hashimoto
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Noriko Sugawara
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Gen Tamiya
- Statistical Genetics and Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Satoshi Makino
- Statistical Genetics and Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kentaro Toyota
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuo Mitsui
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan.,Department of Pediatrics, Miyukikai Hospital, Kaminoyma, Japan
| |
Collapse
|
24
|
Guaragna MS, Lutaif ACGB, Piveta CSC, Souza ML, de Souza SR, Henriques TB, Maciel-Guerra AT, Belangero VMS, Guerra-Junior G, De Mello MP. NPHS2 mutations account for only 15% of nephrotic syndrome cases. BMC MEDICAL GENETICS 2015; 16:88. [PMID: 26420286 PMCID: PMC4589073 DOI: 10.1186/s12881-015-0231-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/15/2015] [Indexed: 01/27/2023]
Abstract
Background Nephrotic syndrome is traditionally classified on the basis of the response to standard steroid treatment. Mutations in more than 24 genes have been associated with nephrotic syndrome in children, although the great majority of steroid-resistant cases have been attributed to mutations in three main genes: NPHS1, NPHS2 and WT1. The aims of this study were to identify mutations in these genes more frequently reported as mutated and to characterize each variation using different in silico prediction algorithms in order to understand their biological functions. Methods We performed direct sequence analysis of exons 8 and 9 of WT1, 8 exons of NPHS2 and 29 exons of NPHS1, including NPHS2 and NPHS1 intron–exon boundary sequences, as well as 700 bp of the 5′ UTR from both genes in 27 steroid-resistant patients aged between 3 months and 18 years. Results Analysis of the NPHS2 gene revealed four missense mutations, one frameshift mutation and three variations in the 5′ UTR. Four patients presented compound heterozygosis, and four other patients presented one heterozygous alteration only. WT1 and NPHS1 gene analysis did not reveal any mutations. Discussion This is the first study focusing on genetics of SRNS in Brazilian children. Identification of mutations is important because it could influence physicians’ decision on patient treatment, as patients carrying mutations can be spared the side effects of immunosuppressive therapy and ultimately could be considered for kidney transplantation from a living donor. Conclusions After molecular analysis of the genes more frequently reported as mutated in 27 steroid-resistant nephrotic syndrome patients, we identified NPHS2 mutations confirming the hereditary character of the kidney disease in only 14.8 % of patients. Therefore, the next step is to perform a next generation sequencing based analysis of glomeluropathy-related panel of genes for the remaining patients in order to search for mutations in other genes related to steroid-resistant nephrotic syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0231-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mara Sanches Guaragna
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Anna Cristina G B Lutaif
- Nefrologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Cristiane S C Piveta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil. .,Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Marcela L Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Suéllen R de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Taciane B Henriques
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| | - Andréa T Maciel-Guerra
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil. .,Grupo Interdisciplinar de Estudos da Determinação e Diferenciação do Sexo, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Vera M S Belangero
- Nefrologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Gil Guerra-Junior
- Centro de Investigação em Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil. .,Grupo Interdisciplinar de Estudos da Determinação e Diferenciação do Sexo, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil. .,Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Maricilda P De Mello
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Caixa Postal 6010, Brasil.
| |
Collapse
|
25
|
Stefanou C, Pieri M, Savva I, Georgiou G, Pierides A, Voskarides K, Deltas C. Co-Inheritance of Functional Podocin Variants with Heterozygous Collagen IV Mutations Predisposes to Renal Failure. Nephron Clin Pract 2015; 130:200-12. [PMID: 26138234 DOI: 10.1159/000432406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS A subset of patients who present with proteinuria and are diagnosed with focal segmental glomerulosclerosis (FSGS) have inherited heterozygous COL4A3/A4 mutations and are also diagnosed with thin basement membrane nephropathy (TBMN-OMIM: 141200). Two studies showed that co-inheritance of NPHS2-p.Arg229Gln, a podocin variant, may increase the risk for proteinuria and renal function decline. METHODS We hypothesized that additional podocin variants may exert a similar effect. We studied genetically a well-characterized Cypriot TBMN patient cohort by re-sequencing the NPHS2 coding region. We also performed functional studies in cell culture experiments, investigating the interaction of podocin variants with itself and with nephrin. RESULTS Potentially disease-modifying podocin variants were searched for by analyzing NPHS2 in 35 'severe' TBMN patients. One non-synonymous variant, p.Glu237Gln, was detected. Both variants, p.Arg229Gln and p.Glu237Gln, were tested in a larger cohort of 122 TBMN patients, who were categorized as 'mild' or 'severe' based on the presence of microscopic hematuria alone or combined with chronic renal failure and/or proteinuria. Seven 'severe' patients carried either of the 2 variants; none was present in the 'mild' patients (p = 0.05, Pearson χ(2)). The 7 carriers belong in 2 families segregating mutation COL4A3-p.Gly1334Glu. Inheritance of the wild-type (WT) and mutant alleles correlated with the phenotype (combined concordance probability 0.003). Immunofluorescence (IF) experiments after dual co-transfection of WT and mutant podocin suggested altered co-localization of mutant homodimers. IF experiments after co-transfection of WT podocin and nephrin showed normal membrane localization, while both podocin variants interfered with normal trafficking, demonstrating perinuclear staining. Immunoprecipitation experiments showed stronger binding of mutant podocin to WT podocin or nephrin. CONCLUSION The results support the hypothesis that certain hypomorphic podocin variants may act as adverse genetic modifiers when co-inherited with COL4A3/A4 mutations, thus predisposing to FSGS and severe kidney function decline.
Collapse
Affiliation(s)
- Charalambos Stefanou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
26
|
Podocin is translocated to cytoplasm in puromycin aminonucleoside nephrosis rats and in poor-prognosis patients with IgA nephropathy. Cell Tissue Res 2015; 360:391-400. [PMID: 25676004 PMCID: PMC4544490 DOI: 10.1007/s00441-014-2100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022]
Abstract
Podocytes serve as the final barrier to urinary protein loss through a highly specialized structure called a slit membrane and maintain foot process and glomerular basement membranes. Podocyte injury results in progressive glomerular damage and accelerates sclerotic changes, although the exact mechanism of podocyte injury is still obscure. We focus on the staining gap (podocin gap) defined as the staining difference between podocin and synaptopodin, which are normally located in the foot process. In puromycin aminonucleoside nephrosis rats, the podocin gap is significantly increased (p < 0.05) and podocin is translocated to the cytoplasm on days 7 and 14 but not on day 28. Surprisingly, the gap is also significantly increased (p < 0.05) in human kidney biopsy specimens of poor-prognosis IgA nephropathy patients. This suggests that the podocin gap could be a useful marker for classifying the prognosis of IgA nephropathy and indicating the translocation of podocin to the cytoplasm. Next, we find more evidence of podocin trafficking in podocytes where podocin merges with Rab5 in puromycin aminonucleoside nephrosis rats at day 14. In immunoelectron microscopy, the podocin positive area was significantly translocated from the foot process areas to the cytoplasm (p< 0.05) on days 7 and 14 in puromycin aminonucleoside nephrosis rats. Interestingly, podocin is also translocated to the cytoplasm in poor-prognosis human IgA nephropathy. In this paper, we demonstrate that the translocation of podocin by endocytosis could be a key traffic event of critical podocyte injury and that the podocin gap could indicate the prognosis of IgA nephropathy.
Collapse
|
27
|
Jaffer A, Unnisa W, Raju DSB, Jahan P. NPHS2mutation analysis and primary nephrotic syndrome in southern Indians. Nephrology (Carlton) 2014; 19:398-403. [DOI: 10.1111/nep.12241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Asra Jaffer
- Department of Genetics; Osmania University; Hyderabad Andhra Pradesh India
| | - Wali Unnisa
- Department of Genetics; Osmania University; Hyderabad Andhra Pradesh India
| | - DSB Raju
- Department of Nephrology; Nizam's Institute of Medical Sciences; Hyderabad Andhra Pradesh India
| | - Parveen Jahan
- Department of Genetics; Osmania University; Hyderabad Andhra Pradesh India
| |
Collapse
|
28
|
Tomar R, Mudumana SP, Pathak N, Hukriede NA, Drummond IA. osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol 2014; 25:2539-45. [PMID: 24722440 DOI: 10.1681/asn.2013121327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Odd-skipped related 1 (Osr1) encodes a zinc finger transcription factor required for kidney development. Osr1 deficiency in mice results in metanephric kidney agenesis, whereas knockdown or mutation studies in zebrafish revealed that pronephric nephrons require osr1 for proximal tubule and podocyte development. osr1-deficient pronephric podocyte progenitors express the Wilms' tumor suppressor wt1a but do not undergo glomerular morphogenesis or express the foot process junctional markers nephrin and podocin. The function of osr1 in podocyte differentiation remains unclear, however. Here, we found by double fluorescence in situ hybridization that podocyte progenitors coexpress osr1 and wt1a. Knockdown of wt1a disrupted podocyte differentiation and prevented expression of osr1. Blocking retinoic acid signaling, which regulates wt1a, also prevented osr1 expression in podocyte progenitors. Furthermore, unlike the osr1-deficient proximal tubule phenotype, which can be rescued by manipulation of endoderm development, podocyte differentiation was not affected by altered endoderm development, as assessed by nephrin and podocin expression in double osr1/sox32-deficient embryos. These results suggest a different, possibly cell- autonomous requirement for osr1 in podocyte differentiation downstream of wt1a. Indeed, osr1-deficient embryos did not exhibit podocyte progenitor expression of the transcription factor lhx1a, and forced expression of activated forms of the lhx1a gene product rescued nephrin expression in osr1-deficient podocytes. Our results place osr1 in a framework of transcriptional regulators that control the expression of podocin and nephrin and thereby mediate podocyte differentiation.
Collapse
Affiliation(s)
- Ritu Tomar
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Sudha P Mudumana
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Narendra Pathak
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Iain A Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, Yamashita A, Ohno S. aPKCλ maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem 2014; 156:115-28. [PMID: 24700503 PMCID: PMC4112437 DOI: 10.1093/jb/mvu022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The slit diaphragm (SD), the specialized intercellular junction between renal glomerular epithelial cells (podocytes), provides a selective-filtration barrier in renal glomeruli. Dysfunction of the SD results in glomerular diseases that are characterized by disappearance of SD components, such as nephrin, from the cell surface. Although the importance of endocytosis and degradation of SD components for the maintenance of SD integrity has been suggested, the dynamic nature of the turnover of intact cell-surface SD components remained unclear. Using isolated rat glomeruli we show that the turnover rates of cell-surface SD components are relatively high; they almost completely disappear from the cell surface within minutes. The exocytosis, but not endocytosis, of heterologously expressed nephrin requires the kinase activity of the cell polarity regulator atypical protein kinase C (aPKC). Consistently, we demonstrate that podocyte-specific deletion of aPKCλ resulted in a decrease of cell-surface localization of SD components, causing massive proteinuria. In conclusion, the regulation of SD turnover by aPKC is crucial for the maintenance of SD integrity and defects in aPKC signalling can lead to proteinuria. These findings not only reveal the pivotal importance of the dynamic turnover of cell-surface SD components but also suggest a novel pathophysiological basis in glomerular disease.
Collapse
Affiliation(s)
- Daisuke Satoh
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yutaka Harita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, JapanDepartment of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Chikara Daimon
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomonori Harada
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, JapanDepartment of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
30
|
Schurek EM, Völker LA, Tax J, Lamkemeyer T, Rinschen MM, Ungrue D, Kratz JE, Sirianant L, Kunzelmann K, Chalfie M, Schermer B, Benzing T, Höhne M. A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin. J Biol Chem 2014; 289:11262-11271. [PMID: 24596097 DOI: 10.1074/jbc.m113.521773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.
Collapse
Affiliation(s)
- Eva-Maria Schurek
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linus A Völker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Judit Tax
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Denise Ungrue
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - John E Kratz
- Department of Biological Sciences, Columbia University, New York, New York 10027-6902, and
| | - Lalida Sirianant
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York 10027-6902, and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, 50931 Cologne, Germany,; Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, 50931 Cologne, Germany,; Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany,.
| | - Martin Höhne
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany,; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat Genet 2014; 46:299-304. [PMID: 24509478 DOI: 10.1038/ng.2898] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/17/2014] [Indexed: 02/07/2023]
Abstract
Monogenic disorders result from defects in a single gene. According to Mendel's laws, these disorders are inherited in either a recessive or dominant fashion. Autosomal-recessive disorders require a disease-causing variant on both alleles, and according to our current understanding, their pathogenicities are not influenced by each other. Here we present an autosomal-recessive disorder, nephrotic syndrome type 2 (MIM 600995), in which the pathogenicity of an NPHS2 allele encoding p.Arg229Gln depends on the trans-associated mutation. We show that, contrary to expectations, this allele leads to a disease phenotype only when it is associated specifically with certain 3' NPHS2 mutations because of an altered heterodimerization and mislocalization of the encoded p.Arg229Gln podocin. The disease-associated 3' mutations exert a dominant-negative effect on p.Arg229Gln podocin but behave as recessive alleles when associated with wild-type podocin. Therefore, the transmission rates for couples carrying the disease-associated mutations and p.Arg229Gln may be substantially different from those expected in autosomal-recessive disorders.
Collapse
|
32
|
Laurin LP, Lu M, Mottl AK, Blyth ER, Poulton CJ, Weck KE. Podocyte-associated gene mutation screening in a heterogeneous cohort of patients with sporadic focal segmental glomerulosclerosis. Nephrol Dial Transplant 2014; 29:2062-9. [DOI: 10.1093/ndt/gft532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
33
|
Bouchireb K, Boyer O, Gribouval O, Nevo F, Huynh-Cong E, Morinière V, Campait R, Ars E, Brackman D, Dantal J, Eckart P, Gigante M, Lipska BS, Liutkus A, Megarbane A, Mohsin N, Ozaltin F, Saleem MA, Schaefer F, Soulami K, Torra R, Garcelon N, Mollet G, Dahan K, Antignac C. NPHS2Mutations in Steroid-Resistant Nephrotic Syndrome: A Mutation Update and the Associated Phenotypic Spectrum. Hum Mutat 2013; 35:178-86. [DOI: 10.1002/humu.22485] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Karim Bouchireb
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie Pédiatrique; Centre de Référence des Maladies Rénales Héréditaires (MARHEA), Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Olivia Boyer
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie Pédiatrique; Centre de Référence des Maladies Rénales Héréditaires (MARHEA), Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Olivier Gribouval
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Fabien Nevo
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Evelyne Huynh-Cong
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Vincent Morinière
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
| | - Raphaëlle Campait
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
| | - Elisabet Ars
- Molecular Biology Laboratory; Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III; Barcelona Spain
| | - Damien Brackman
- Department of Pediatrics; Haukeland University Hospital; Bergen Norway
| | - Jacques Dantal
- Service de Néphrologie et Immunologie Clinique; ITERT, CHU Hôtel Dieu; Nantes France
| | | | - Maddalena Gigante
- Department of Medical and Surgical Sciences; University of Foggia; Foggia Italy
| | - Beata S. Lipska
- Department of Biology and Genetics; Medical University of Gdansk; Gdansk 80-211 Poland
| | - Aurélia Liutkus
- Service de Néphrologie et Rhumatologie Pédiatriques; Centre de référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant; Bron France
| | - André Megarbane
- Unité de Génétique Médicale, Faculté de Médecine; Université Saint Joseph; Beirut Lebanon
| | - Nabil Mohsin
- Department of Nephrology; Royal Hospital; Muscat Oman
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology; Hacettepe University Faculty of Medicine; Ankara Turkey
| | - Moin A. Saleem
- Department of Paediatric Nephrology; Bristol Royal Hospital for Children, Academic Renal Unit, School of Clinical Sciences, University of Bristol; Bristol UK
| | - Franz Schaefer
- PodoNet Consortium; Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine; Heidelberg Germany
| | - Kenza Soulami
- CHU Ibn Rochd; Service de Néphrologie Dialyse Transplantation; Casablanca Morocco
| | - Roser Torra
- Nephrology Department; Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III; Barcelona Spain
| | - Nicolas Garcelon
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
- Inserm U872; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
| | - Géraldine Mollet
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Karin Dahan
- Centre de Génétique Humaine; Université Catholique de Louvain; Bruxelles Belgique
| | - Corinne Antignac
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| |
Collapse
|
34
|
Völker LA, Schurek EM, Rinschen MM, Tax J, Schutte BA, Lamkemeyer T, Ungrue D, Schermer B, Benzing T, Höhne M. Characterization of a short isoform of the kidney protein podocin in human kidney. BMC Nephrol 2013; 14:102. [PMID: 23648087 PMCID: PMC3658879 DOI: 10.1186/1471-2369-14-102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 05/02/2013] [Indexed: 12/12/2022] Open
Abstract
Background Steroid resistant nephrotic syndrome is a severe hereditary disease often caused by mutations in the NPHS2 gene. This gene encodes the lipid binding protein podocin which localizes to the slit diaphragm of podocytes and is essential for the maintenance of an intact glomerular filtration barrier. Podocin is a hairpin-like membrane-associated protein that multimerizes to recruit lipids of the plasma membrane. Recent evidence suggested that podocin may exist in a canonical, well-studied large isoform and an ill-defined short isoform. Conclusive proof of the presence of this new podocin protein in the human system is still lacking. Methods We used database analyses to identify organisms for which an alternative splice variant has been annotated. Mass spectrometry was employed to prove the presence of the shorter isoform of podocin in human kidney lysates. Immunofluorescence, sucrose density gradient fractionation and PNGase-F assays were used to characterize this short isoform of human podocin. Results Mass spectrometry revealed the existence of the short isoform of human podocin on protein level. We cloned the coding sequence from a human kidney cDNA library and showed that the expressed short variant was retained in the endoplasmic reticulum while still associating with detergent-resistant membrane fractions in sucrose gradient density centrifugation. The protein is partially N-glycosylated which implies the presence of a transmembranous form of the short isoform. Conclusions A second isoform of human podocin is expressed in the kidney. This isoform lacks part of the PHB domain. It can be detected on protein level. Distinct subcellular localization suggests a physiological role for this isoform which may be different from the well-studied canonical variant. Possibly, the short isoform influences lipid and protein composition of the slit diaphragm complex by sequestration of lipid and protein interactors into the endoplasmic reticulum.
Collapse
Affiliation(s)
- Linus A Völker
- Department 2 of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Strasse 62, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A novel domain regulating degradation of the glomerular slit diaphragm protein podocin in cell culture systems. PLoS One 2013; 8:e57078. [PMID: 23437316 PMCID: PMC3577791 DOI: 10.1371/journal.pone.0057078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations in the gene NPHS2 are the most common cause of hereditary steroid-resistant nephrotic syndrome. Its gene product, the stomatin family member protein podocin represents a core component of the slit diaphragm, a unique structure that bridges the space between adjacent podocyte foot processes in the kidney glomerulus. Dislocation and misexpression of slit diaphragm components have been described in the pathogenesis of acquired and hereditary nephrotic syndrome. However, little is known about mechanisms regulating cellular trafficking and turnover of podocin. Here, we discover a three amino acids-comprising motif regulating intracellular localization of podocin in cell culture systems. Mutations of this motif led to markedly reduced degradation of podocin. These findings give novel insight into the molecular biology of the slit diaphragm protein podocin, enabling future research to establish the biological relevance of podocin turnover and localization.
Collapse
|
36
|
Swiatecka-Urban A. Membrane trafficking in podocyte health and disease. Pediatr Nephrol 2013; 28:1723-37. [PMID: 22932996 PMCID: PMC3578983 DOI: 10.1007/s00467-012-2281-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Podocytes are highly specialized epithelial cells localized in the kidney glomerulus. The distinct cell signaling events and unique cytoskeletal architecture tailor podocytes to withstand changes in hydrostatic pressure during glomerular filtration. Alteration of glomerular filtration leads to kidney disease and frequently manifests with proteinuria. It has been increasingly recognized that cell signaling and cytoskeletal dynamics are coupled more tightly to membrane trafficking than previously thought. Membrane trafficking coordinates the cross-talk between protein networks and signaling cascades in a spatially and temporally organized fashion and may be viewed as a communication highway between the cell exterior and interior. Membrane trafficking involves transport of cargo from the plasma membrane to the cell interior (i.e., endocytosis) followed by cargo trafficking to lysosomes for degradation or to the plasma membrane for recycling. Yet, recent studies indicate that the conventional classification does not fully reflect the complex and versatile nature of membrane trafficking. While the increasing complexity of elaborate protein scaffolds and signaling cascades is being recognized in podocytes, the role of membrane trafficking is less well understood. This review will focus on the role of membrane trafficking in podocyte health and disease.
Collapse
|
37
|
Lu H, Chen LL, Jiang XY, Mo Y, Ling YH, Sun LZ. Temporal and spatial expression of podocyte-associated molecules are accompanied by proteinuria in IgA nephropathy rat model. Physiol Res 2012; 62:35-45. [PMID: 23173680 DOI: 10.33549/physiolres.932380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used a rat model to assess the role of nephrin, podocin, and desmin in the pathogenesis of IgA nephropathy (IgAN). A rat IgAN model was established by administration of BSA, CCl(4), and lipopolysaccharide (LPS) and compared with healthy control rats. Urinary protein, urine red blood cells, and biochemical parameters were measured for 12 weeks. Renal morphology and ultrastructure were examined by light and electron microscopy. Immunofluorescence was used to assess IgA deposition in the glomeruli and to measure expression of nephrin, podocin, and desmin. Real-time quantitative PCR was used to measure expression of nephrin, podocin, and desmin mRNAs. IgAN rats developed proteinuria at week-6 and this worsened over time. Pathological changes were evident under light microscopy at week-8 and under electron microscopy at week-4. Immunofluorescence analysis showed deposition of IgA in the kidneys of IgAN rats, but not control rats. IgAN rats had increased expression of glomerular podocin, nephrin, and desmin mRNAs and proteins at week-4. The expression of nephrin, podocin and desmin proteins and the expression of podocin and desmin mRNAs preceded the increase in urinary protein. Taken together, our study of a rat model of IgAN indicates that changes in the expression and distribution of nephrin, podocin, and desmin precede and may cause foot process fusion and proteinuria.
Collapse
Affiliation(s)
- H Lu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
38
|
Wu D, Wen W, Qi CL, Zhao RX, Lü JH, Zhong CY, Chen YY. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:712-718. [PMID: 22483555 DOI: 10.1016/j.phymed.2012.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/03/2012] [Accepted: 03/04/2012] [Indexed: 05/31/2023]
Abstract
Berberine (BBR) is one of the main constituents in Rhizoma coptidis and it has widely been used for the treatment of diabetic nephropathy. The aims of the study were to investigate the effects and mechanism of action of berberine on renal damage in diabetic rats. Diabetes and hyperglycaemia were induced in rats by a high-fat diet and intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Rats were randomly divided into 5 groups, such as i) control rats, ii) untreated diabetic rats iii) 250 mg/kg metformin-treated, iv and v) 100 and 200 mg/kg berberine-treated diabetic rats and treated separately for 8 weeks. The fasting blood glucose, insulin, total cholesterol, triglyceride, glycosylated hemoglobin were measured in rats. Kidneys were isolated at the end of the treatment for histology, Western blot analysis and estimation of malonaldehyde (MDA), superoxide dismutase (SOD) and renal advanced glycation endproducts (AGEs). The results revealed that berberine significantly decreased fasting blood glucose, insulin levels, total cholesterol, triglyceride levels, urinary protein excretion, serum creatinine (Scr) and blood urea nitrogen (BUN) in diabetic rats. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with berberine. In addition, the protein expressions of nephrin and podocin were significantly increased. It seems likely that in rats berberine exerts an ameliorative effect on renal damage in diabetes induced by high-fat diet and streptozotocin. The possible mechanisms for the renoprotective effects of berberine may be related to inhibition of glycosylation and improvement of antioxidation that in turn upregulate the expressions of renal nephrin and podocin.
Collapse
Affiliation(s)
- Duo Wu
- Department of Pharmacology, Pharmacy College, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Alandete-Saez M, Ron M, Leiboff S, McCormick S. Arabidopsis thaliana GEX1 has dual functions in gametophyte development and early embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:620-32. [PMID: 21831199 DOI: 10.1111/j.1365-313x.2011.04713.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GEX1 is a plasma membrane protein that is conserved among plant species, and has previously been shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immediately after fertilization and in the pollen vegetative cell. We functionally characterize GEX1 in Arabidopsis thaliana, and show that it is a versatile protein that performs functions during male and female gametophyte development, and during early embryogenesis. gex1-1/+ plants, which synthesize a truncated GEX1 mRNA encoding a protein lacking the predicted cytoplasmic domain, but still targeted to the plasma membrane, had embryos that arrested before the pre-globular stage. gex1-3/+ plants, carrying a null GEX1 allele, had defects during male and female gametophyte development, and during early embryogenesis. Using an antisense GEX1 transgenic line we demonstrate that the predicted GEX1 extracellular domain is sufficient and necessary for GEX1 function during the development of both gametophytes. The predicted cytoplasmic domain is necessary for correct early embryogenesis and mediates homodimer formation at the plasma membrane. We propose that dimerization of GEX1 in the zygote might be an upstream step in a signaling cascade regulating early embryogenesis.
Collapse
Affiliation(s)
- Monica Alandete-Saez
- Plant Gene Expression Center and Department of Plant and Microbial Biology, USDA/ARS-UC-Berkeley, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
40
|
Stuermer CAO. Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish. Biochim Biophys Acta Mol Basis Dis 2010; 1812:415-22. [PMID: 21147218 DOI: 10.1016/j.bbadis.2010.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 01/08/2023]
Abstract
The two proteins reggie-1 and reggie-2 (flotillins) were identified in axon-regenerating neurons in the central nervous system and shown to be essential for neurite growth and regeneration in fish and mammals. Reggies/flotillins are microdomain scaffolding proteins sharing biochemical properties with lipid raft molecules, form clusters at the cytoplasmic face of the plasma membrane and interact with signaling molecules in a cell type specific manner. In this review, reggie microdomains, lipid rafts, related scaffolding proteins and caveolin-which, however, are responsible for their own microdomains and functions-are introduced. Moreover, the function of the reggies in axon growth is demonstrated: neurons fail to extend axons after reggie knockdown. Furthermore, our current concept of the molecular mechanism underlying reggie function is presented: the association of glycosyl-phophatidyl inositol (GPJ)-anchored surface proteins with reggie microdomains elicits signals which activate src tyrosine and mitogen-activated protein kinases, as well as small guanosine 5'-triphosphate-hydrolyzing enzymes. This leads to the mobilization of intracellular vesicles and to the recruitment of bulk membrane and specific cargo proteins, such as cadherin, to specific sites of the plasma membrane such as the growth cone of elongating axons. Thus, reggies regulate the targeted delivery of cargo-a process which is required for process extension and growth. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
|
41
|
Benoit G, Machuca E, Heidet L, Antignac C. Hereditary kidney diseases: highlighting the importance of classical Mendelian phenotypes. Ann N Y Acad Sci 2010; 1214:83-98. [PMID: 20969579 DOI: 10.1111/j.1749-6632.2010.05817.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A Mendelian inheritance underlies a nonnegligible proportion of hereditary kidney diseases, suggesting that the encoded proteins are essential for maintenance of the renal function. The identification of genes involved in congenital anomalies of the kidney and in familial forms of nephrotic syndrome significantly increased our understanding of the renal development and kidney filtration barrier physiology. This review will focus on the classical phenotype and clinical heterogeneity observed in the monogenic forms of these disorders. In addition, the role of susceptibility genes in kidney diseases with a complex inheritance will also be discussed.
Collapse
|
42
|
Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 2010; 25:1621-32. [PMID: 20333530 PMCID: PMC2908444 DOI: 10.1007/s00467-010-1495-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
Several genes have been implicated in genetic forms of nephrotic syndrome occurring in children. It is now known that the phenotypes associated with mutations in these genes display significant variability, rendering genetic testing and counselling a more complex task. This review will focus on the recent clinical findings associated with those genes known to be involved in isolated steroid-resistant nephrotic syndrome in children and, thereby, propose an approach for appropriate mutational screening. The recurrence of proteinuria after transplantation in patients with hereditary forms of nephrotic syndrome will also be discussed.
Collapse
Affiliation(s)
- Geneviève Benoit
- Inserm, U983, Hôpital Necker-Enfants Malades, Paris, France ,CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Eduardo Machuca
- Inserm, U983, Hôpital Necker-Enfants Malades, Paris, France ,Pontificia Universidad Católica de Chile, Escuela de Medicina, Santiago, Chile
| | - Corinne Antignac
- Inserm, U983, Hôpital Necker-Enfants Malades, Paris, France ,Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France ,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France ,Inserm, U983, 6e étage, Tour Lavoisier, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| |
Collapse
|
43
|
Büscher AK, Kranz B, Büscher R, Hildebrandt F, Dworniczak B, Pennekamp P, Kuwertz-Bröking E, Wingen AM, John U, Kemper M, Monnens L, Hoyer PF, Weber S, Konrad M. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2010; 5:2075-84. [PMID: 20798252 DOI: 10.2215/cjn.01190210] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Mutations in podocyte genes are associated with steroid-resistant nephrotic syndrome (SRNS), mostly affecting younger age groups. To date, it is unclear whether these patients benefit from intensified immunosuppression with cyclosporine A (CsA). The aim of this study was to evaluate the influence of podocyte gene defects in congenital nephrotic syndrome (CNS) and pediatric SRNS on the efficacy of CsA therapy and preservation of renal function. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS Genotyping was performed in 91 CNS/SRNS patients, irrespective of age at manifestation or response to CsA. RESULTS Mutations were identified in 52% of families (11 NPHS1, 17 NPHS2, 11 WT1, 1 LAMB2, 3 TRPC6). Sixty-eight percent of patients with nongenetic SRNS responded to CsA, most of them achieved complete remission. In contrast, none of the patients with genetic CNS/SRNS experienced a complete remission and only two (17%) achieved a partial response, both affected by a WT1 mutation. Preservation of renal function was significantly better in children with nongenetic disease after a mean follow-up time of 8.6 years (ESRD in 29% versus 71%). CONCLUSIONS The mutation detection rate in our population was high (52%). Most patients with genetic CNS/SRNS did not benefit from CsA with significantly lower response rates compared with nongenetic patients and showed rapid progression to end-stage renal failure. These data strongly support the idea not to expose CNS/SRNS patients with inherited defects related to podocyte function to intensified immunosuppression with CsA.
Collapse
Affiliation(s)
- Anja K Büscher
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet 2009; 18:R185-94. [PMID: 19808795 DOI: 10.1093/hmg/ddp328] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Urinary losses of macromolecules in nephrotic syndrome (NS) reflect a dysfunction of the highly permselective glomerular filtration barrier. Genetic studies of hereditary forms of NS have led to the identification of proteins playing a crucial role in slit-diaphragm signalling, regulation of actin cytoskeleton dynamics, maintenance of podocyte integrity and cell-matrix interactions. This review will focus on recent molecular and clinical findings in the field of genetics of NS, thereby providing a better understanding of the complex glomerular filtration barrier physiology.
Collapse
|
45
|
Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis--a review. Eur J Pediatr 2009; 168:1291-304. [PMID: 19562370 PMCID: PMC2745545 DOI: 10.1007/s00431-009-1017-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/12/2009] [Indexed: 01/15/2023]
Abstract
This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin beta2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction.
Collapse
|
46
|
Abstract
Endoplasmic reticulum (ER) stress refers to physiological or pathological states that result in accumulation of misfolded proteins in the ER. To handle misfolded proteins, the ER has in place quality control mechanisms, including the unfolded protein response and ER-associated degradation (ERAD). ER stress in renal pathophysiology is a relatively new area of research. Mice heterozygous for a mutation in the ER chaperone, BiP, develop glomerulosclerosis and tubulointerstitial disease. Induction of ER stress in glomerular cells has been described in experimental models of membranous nephropathy and membranoproliferative glomerulonephritis, and exogenous induction of ER stress ('preconditioning') reduced proteinuria. In human kidney biopsies, markers of ER stress in glomeruli have been identified in various noninflammatory and inflammatory glomerulopathies. A tubulointerstitial ER stress response, in some cases associated with tubular cell apoptosis, may occur in glomerular diseases associated with proteinuria, including puromycin aminonucleoside nephrosis, protein overload, and experimental and human diabetic nephropathy. Certain missense mutations in nephrin and podocin, as well as underglycosylation of nephrin, result in misfolding and retention in the ER, and eventually ERAD. Understanding the various aspects of ER stress will provide an opportunity for development of novel therapeutic strategies for proteinuric diseases.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Mollet G, Ratelade J, Boyer O, Muda AO, Morisset L, Lavin TA, Kitzis D, Dallman MJ, Bugeon L, Hubner N, Gubler MC, Antignac C, Esquivel EL. Podocin inactivation in mature kidneys causes focal segmental glomerulosclerosis and nephrotic syndrome. J Am Soc Nephrol 2009; 20:2181-9. [PMID: 19713307 DOI: 10.1681/asn.2009040379] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Podocin is a critical component of the glomerular slit diaphragm, and genetic mutations lead to both familial and sporadic forms of steroid-resistant nephrotic syndrome. In mice, constitutive absence of podocin leads to rapidly progressive renal disease characterized by mesangiolysis and/or mesangial sclerosis and nephrotic syndrome. Using established Cre-loxP technology, we inactivated podocin in the adult mouse kidney in a podocyte-specific manner. Progressive loss of podocin in the glomerulus recapitulated albuminuria, hypercholesterolemia, hypertension, and renal failure seen in nephrotic syndrome in humans. Lesions of FSGS appeared after 4 wk, with subsequent development of diffuse glomerulosclerosis and tubulointerstitial damage. Interestingly, conditional inactivation of podocin at birth resulted in a gradient of glomerular lesions, including mesangial proliferation, demonstrating a developmental stage dependence of renal histologic patterns of injury. The development of significant albuminuria in this model occurred only after early and focal foot process effacement had progressed to diffuse involvement, with complete absence of podocin immunolabeling at the slit diaphragm. Finally, we identified novel potential mediators and perturbed molecular pathways, including cellular proliferation, in the course of progression of renal disease leading to glomerulosclerosis, using global gene expression profiling.
Collapse
|
48
|
Fan Q, Zhang H, Ding J, Liu S, Miao J, Xing Y, Yu Z, Guan N. R168H and V165X mutant podocin might induce different degrees of podocyte injury via different molecular mechanisms. Genes Cells 2009; 14:1079-90. [PMID: 19674119 DOI: 10.1111/j.1365-2443.2009.01336.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A lot of mutations of podocin, a key protein of podocyte slit diaphragm (SD), have been found both in hereditary and sporadic focal segmental glomeruloscleorosis (FSGS). Nevertheless, the mechanisms of podocyte injury induced by mutant podocins are still unclear. A compound heterozygous podocin mutation was identified in our FSGS patient, leading to a truncated (podocin (V165X)) and a missense mutant protein (podocin (R168H)), respectively. Here, it was explored whether and how both mutant podocins induce podocyte injury in the in vitro cultured podocyte cell line. Our results showed that podocin (R168H) induced more significant podocyte apoptosis and expression changes in more podocyte molecules than podocin (V165X). Podocyte injury caused by the normal localized podocin(V165X) was effectively inhibited by TRPC6 knockdown. The abnormal retention of podocin(R168H) in endoplasmic reticulum (ER) resulted in the mis-localizations of other critical SD molecules nephrin, CD2AP and TRPC6, and significantly up-regulated ER stress markers Bip/grp78, p-PERK and caspase-12. These results implicated that podocin (R168H) and podocin (V165X) induced different degrees of podocyte injury, which might be resulted from different molecular mechanisms. Our findings provided some possible clues for further exploring the pharmacological targets to the proteinuria induced by different mutant podocins.
Collapse
Affiliation(s)
- Qingfeng Fan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sönmez F, Mir S, Berdeli A, Aydoğdu SA, Altincik A. Podocin mutations in a patient with congenital nephrotic syndrome and cardiac malformation. Pediatr Int 2008; 50:828-30. [PMID: 19067903 DOI: 10.1111/j.1442-200x.2008.02744.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ferah Sönmez
- Division of Pediatric Nephrology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey.
| | | | | | | | | |
Collapse
|
50
|
Tonna SJ, Needham A, Polu K, Uscinski A, Appel GB, Falk RJ, Katz A, Al-Waheeb S, Kaplan BS, Jerums G, Savige J, Harmon J, Zhang K, Curhan GC, Pollak MR. NPHS2 variation in focal and segmental glomerulosclerosis. BMC Nephrol 2008; 9:13. [PMID: 18823551 PMCID: PMC2569023 DOI: 10.1186/1471-2369-9-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background Focal and segmental glomerulosclerosis (FSGS) is the most common histologic pattern of renal injury seen in adults with idiopathic proteinuria. Homozygous or compound heterozygous mutations in the podocin gene NPHS2 are found in 10–30% of pediatric cases of steroid resistant nephrosis and/or FSGS. Methods We studied the spectrum of genetic variation in 371 individuals with predominantly late onset FSGS (mean age of onset 25 years) by analysis of DNA samples. Results We identified 15 non-synonymous alleles that changed the amino acid sequence in 63 of the subjects screened (17%). Eight of these (p.R138Q, p.V180M, p.R229Q, p.E237Q, p.A242V, p.A284V, p.L327F and the frameshift 855–856 delAA) are alleles previously reported to cause FSGS in either the homozygous or compound heterozygous states, while the remaining 7 (p.R10T, p.V127W, p.Q215X, p.T232I, p.L270F, p.L312V and the frameshift 397delA) are novel alleles that have not been demonstrated previously. Twelve individuals of the 371 (3.2%) screened had two likely disease-causing NPHS2 alleles, present in either a homozygous or compound heterozygous state. We genotyped the two most common of the non-synonymous NPHS2 alleles (p.A242V and p.R229Q) identified by resequencing in participants from the Nurses' Health Study and also genotyped p.R229Q in 3 diabetic cohorts. We found that the presence of either of these variants does not significantly alter the risk of albuminuria in the Nurses' Health participants, nor does p.R229Q associate with "diabetic nephropathy". Conclusion NPHS2 mutations are a rare cause of FSGS in adults. The most common non-synonymous NPHS2 variants, p.R229Q and p.A242V, do not appear to alter the risk of proteinuria in the general population nor does p.R229Q associate with measures of kidney dysfunction in diabetic individuals. Our results help clarify the frequency of FSGS-causing NPHS2 mutations in adults and broaden our understanding of the spectrum of NPHS2 mutations that lead to human disease.
Collapse
Affiliation(s)
- Stephen J Tonna
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|