1
|
Kumar Behera J, Kumar S, Sharma R, Jain A, Kumar Garg N, Khopade A, Sawant KK, Singh R, Nirbhavane P. Novel Discoveries and Clinical Advancements for Treating Onychomycosis: A Mechanistic Insight. Adv Drug Deliv Rev 2024; 205:115174. [PMID: 38161056 DOI: 10.1016/j.addr.2023.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Onychomycosis continues to be the most challenging disease condition for pharmaceutical scientists to develop an effective drug delivery system. Treatment challenges lie in incomplete cure and high relapse rate. Present compilation provides cumulative information on pathophysiology, diagnostic techniques, and conventional treatment strategies to manage onychomycosis. Novel technologies developed for successful delivery of antifungal molecules are also discussed in brief. Multidirectional information offered by this article also unlocks the panoramic view of leading patented technologies and clinical trials. The obtained clinical landscape recommends the use of advanced technology driven approaches, as a promising way-out for treatment of onychomycosis. Collectively, present review warrants the application of novel technologies for the successful management of onychomycosis. This review will assist readers to envision a better understanding about the technologies available for combating onychomycosis. We also trust that these contributions address and certainly will encourage the design and development of nanocarriers-based delivery vehicles for effective management of onychomycosis.
Collapse
Affiliation(s)
- Jitesh Kumar Behera
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, 247341, Uttar Pradesh, India
| | - Samarth Kumar
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India; Department of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, M.P., India
| | - Ashay Jain
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India.
| | - Neeraj Kumar Garg
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals Sun Pharmaceutical Industries Ltd, Vadodara, 390020, Gujarat, India
| | - Krutika K Sawant
- Department of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Ranjit Singh
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Saharanpur, 247341, Uttar Pradesh, India
| | - Pradip Nirbhavane
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, 122413, India.
| |
Collapse
|
2
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
3
|
Saleha A, Shende SS, Ingle P, Rai M, Minkina TM, Gade A. Cell free extract-mediated biogenic synthesis of ZnONPs and their application with kanamycin as a bactericidal combination. World J Microbiol Biotechnol 2023; 39:334. [PMID: 37807015 DOI: 10.1007/s11274-023-03777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Antimicrobial resistance (AMR) is a main public health issue and a challenge for the scientific community all over the globe. Hence, there is a burning need to build new bactericides that resist the AMR. The ZnONPs were produced by cell free extract of mint (Mentha piperita L.) leaves. Antibiotics that are ineffective against resistant bacteria like Escherichia coli and Staphylococcus aureus were treated. The antibiotics were first screened, and then antibacterial activity was checked by disk diffusion, and MIC of Mp-ZnONPs individually and using Kanamycin (KAN) were determined against these pathogens by broth microdilution method. The synergism between Mp-ZnONPs and KAN was confirmed by checkerboard assay. The MIC showed robust antibacterial activity against the tested pathogens. The combination of KAN and Mp-ZnONPs reduces the MIC of KAN as it efficiently inhibits E. coli's growth, and KAN significantly enhances the antibacterial activity of Mp-ZnONPs. Taken together, Mp-ZnONPs have strong antimicrobial activity, and KAN significantly improves it against the tested pathogens, which would offer an effective, novel, and benign therapeutic methodology to regulate the incidence. The combination of Mp-ZnONPs and KAN would lead to the development of novel bactericides, that could be used in the formulation of pharmaceutical products.
Collapse
Affiliation(s)
- Asma Saleha
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India
| | - Sudhir S Shende
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India.
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Pramod Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Tatiana M Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Aniket Gade
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India.
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland.
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
4
|
Abd-Elsalam WH, Abouelatta SM. Contemporary Techniques and Potential Transungual Drug Delivery Nanosystems for The Treatment of Onychomycosis. AAPS PharmSciTech 2023; 24:150. [PMID: 37421509 DOI: 10.1208/s12249-023-02603-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/04/2023] [Indexed: 07/10/2023] Open
Abstract
The humanoid nail is considered an exceptional protective barrier that is formed mainly from keratin. Onychomycosis is the cause of 50% of nail infections that is generally caused by dermatophytes. Firstly, the infection was regarded as a cosmetic problem but because of the tenacious nature of onychomycosis and its relapses, these infections have attracted medical attention. The first line of therapy was the oral antifungal agents which were proven to be effective; nevertheless, they exhibited hepato-toxic side effects, alongside drug interactions. Following, the opportunity was shifted to the topical remedies, as onychomycosis is rather superficial, yet this route is hindered by the keratinized layers in the nail plate. A potential alternative to overcome the obstacle was applying different mechanical, physical, and chemical methods to boost the penetration of drugs through the nail plate. Unfortunately, these methods might be expensive, require an expert to be completed, or even be followed by pain or more serious side effects. Furthermore, topical formulations such as nail lacquers and patches do not provide enough sustaining effects. Recently, newer therapies such as nanovesicles, nanoparticles, and nanoemulsions have emerged for the treatment of onychomycosis that provided effective treatment with possibly no side effects. This review states the treatment strategies such as mechanical, physical, and chemical methods, and highlights various innovative dosage forms and nanosystems developed in the last 10 years with a focus on advanced findings regarding formulation systems. Furthermore, it demonstrates the natural bioactives and their formulation as nanosystems, and the most relevant clinical outcomes.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Samar M Abouelatta
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Candian University, 6 October, Cairo, Egypt
| |
Collapse
|
5
|
Paz-Trejo C, Flores-Márquez AR, Gómez-Arroyo S. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66473-66485. [PMID: 37115444 PMCID: PMC10203029 DOI: 10.1007/s11356-023-26848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Agriculture has been and still is one of the most influential primary operations in economic history worldwide. Its social, cultural, and political impact allows the progression and survival of humanity. Sustaining the supply of primary resources is crucial for the future. Therefore, the development of new technologies applied to agrochemicals is growing to obtain better food quality faster. Recently, nanotechnology has gained strength in this field in the last decade, mainly because of the presumed benefits that will carry with it compared with the current commercial presentations, like the decrease of risk in non-target organisms. The harm of pesticides is commonly associated with unwanted effects on human health, some with long-term genotoxic effects. Therefore, it would be relevant to set the existence of a risk or a benefit of the nanopesticides from a genotoxic point of view, comparing against those without this technology. Although some studies are concerned with its genotoxicity in live aquatic organisms, few focus on human in vitro models. Several studies conclude that some of them can induce oxidative stress, leading to DNA damage or cell death. However, there is still much to investigate to establish an accurate and complete assessment. In this review, we aim to give an overview of the genotoxic effect caused by nanopesticides in animal cells and a guide to the evolution of this topic, offering a base and critical review to facilitate future research.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México.
| |
Collapse
|
6
|
Huang T, Li X, Maier M, O'Brien-Simpson NM, Heath DE, O'Connor AJ. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater 2023; 158:56-79. [PMID: 36640952 DOI: 10.1016/j.actbio.2023.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Fungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections. A major challenge in the development of fungi-specific drugs is that both fungi and mammalian cells are eukaryotic and have significant overlap in their cellular machinery. This lack of fungi-specific drug targets makes human cells vulnerable to toxic side effects from many antifungal agents. Furthermore, antifungal drug resistance necessitates higher doses of the drugs, leading to significant human toxicity. There is an urgent need for new antifungal agents, specifically those that can limit the emergence of new resistant species. Non-drug nanomaterials have primarily been explored as antibacterial agents in recent years; however, they are also a promising source of new antifungal candidates. Thus, this article reviews current research on the use of inorganic nanoparticles as antifungal agents. We also highlight challenges facing antifungal nanoparticles and discuss possible future research opportunities in this field. STATEMENT OF SIGNIFICANCE: Fungal infections pose a growing threat to human health and livelihood. The rapid spread of resistance to current antifungal drugs has led to an urgent need to develop alternative antifungals. Nanoparticles have many properties that could make them useful antimycotic agents. To the authors' knowledge, there is no published review so far that has comprehensively summarized the current development status of antifungal inorganic nanomaterials, so we decided to fill this gap. In this review, we discussed the state-of-the-art research on antifungal inorganic nanoparticles including metal, metal oxide, transition-metal dichalcogenides, and inorganic non-metallic particle systems. Future directions for the design of inorganic nanoparticles with higher antifungal efficacy and lower toxicity are described as a guide for further development in this important area.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Maier
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Sangeet S, Pawar S, Nawani N, Junnarkar M, Gaikwad S. Computational approach to attenuate virulence of Pseudomonas aeruginosa through bioinspired silver nanoparticles. 3 Biotech 2022; 12:317. [PMID: 36276439 PMCID: PMC9547761 DOI: 10.1007/s13205-022-03367-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
In this study we aim to investigate the computational docking approach of biofabricated silver nanoparticles against P. aeruginosa virulent exoenzymes, such as ExoS and ExoY. Therefore, the synthesis and characterization of biofabricated silver nanoparticles using Piper betle leaves (Pb-AgNPs) were carried out. The surface topology and functional group attachment on the surface of Pb-AgNPs were analyzed using UV-visible spectroscopy, Scanning Electron Microscopy, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Diffraction. The FTIR analysis revealed that the synthesized silver nanoparticles were capped with P. betle phytochemicals importantly Eugenol and Hydroxychavicol. These are the major bioactive compounds present in P. betle leaves; therefore, computational docking of Eugenol-conjugated AgNPs (PbEu-AgNPs) and Hydroxychavicol-conjugated AgNPs (PbHy-AgNPs) against ExoS and ExoY was performed. The active residues of PbEu-AgNPs and PbHy-AgNPs interacted with the active site of ExoS and ExoY exoenzymes. Biofabricated AgNP-mediated inhibition of these virulent exoenzymes blocked the adverse effect of P. aeruginosa on the host cell. The computational analysis provides new approach into the design of biofabricated AgNPs as promising anti-infective nanomedicine agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03367-0.
Collapse
Affiliation(s)
- Satyam Sangeet
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
- Present Address: Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246 India
| | - Sarika Pawar
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| | - Neelu Nawani
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| | - Manisha Junnarkar
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| | - Swapnil Gaikwad
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra India
| |
Collapse
|
8
|
Alsmadi MM, Al-Nemrawi NK, Obaidat R, Abu Alkahsi AE, Korshed KM, Lahlouh IK. Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine (Lond) 2022; 17:1281-1303. [PMID: 36254841 DOI: 10.2217/nnm-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Research on ZnO nanoparticles (NPs) has broad medical applications. However, the green synthesis of ZnO NPs involves a wide range of properties requiring optimization. ZnO NPs show toxicity at lower doses. This toxicity is a function of NP properties and pharmacokinetics. Moreover, NP toxicity and pharmacokinetics are affected by the species type and age of the animals tested. Physiologically based pharmacokinetic (PBPK) modeling offers a mechanistic platform to scrutinize the colligative effect of the interplay between these factors, which reduces the need for in vivo studies. This review provides a guide to choosing green synthesis conditions that result in minimal toxicity using a mechanistic tool, namely PBPK modeling.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Anwar E Abu Alkahsi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Khetam M Korshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ishraq K Lahlouh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
9
|
Pir M, Budak F, Metiner K. In vitro antifungal activity of heterocyclic organoboron compounds against Trichophyton mentagrophytes and Microsporum canis obtained from clinical isolates. Braz J Microbiol 2022; 53:1297-1303. [PMID: 35697970 DOI: 10.1007/s42770-022-00777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the in vitro activity of thirty-eight heterocyclic organoboron compounds (1a-o, 2a-j, 3a-m) against clinically isolated dermatophytes Trichophyton mentagrophytes and Microsporum canis. Minimum inhibitory concentrations (MICs) of compounds (1a-o, 2a-j, 3a-m) were determined according to published protocol Clinical and Laboratory Standards Institute (CLSI) M38-A2 broth microdilution method. The minimum fungicidal concentrations (MFCs) for both T. mentagrophytes and M. canis were found by subculturing each fungal suspension on potato dextrose agar. According to the results, heterocyclic organoboron compounds (1a-o, 2a-j, 3a-m) were found to be more effective against dermatophyte M. canis (MIC = 3.12-25 µg/ml) than T. mentagrophytes (MIC = 12.5-100 µg/ml). Our findings showed that 7-membered heterocyclic organoboron compounds (3a-m) (MIC = 12.5-50 µg/ml) have stronger in vitro antifungal activity against T. mentagrophytes than 5-membered heterocyclic organoboron compounds (1a-o, 2a-j) (MIC = 25-100 µg/ml). The MFC values for all compounds ranged from 6.25 to 200 µg/ml. The limited number of systemic antifungal agents used in the treatment of dermatophyte infections and the presence of side effects have led to the search for new treatment resources in recent years. Therefore, investigation of the effect of heterocyclic organoboron compounds against dermatophytes will be promising for the discovery of new antifungal compounds that have gained great importance today.
Collapse
Affiliation(s)
- Meryem Pir
- Chemistry and Chemical Processing Technology, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Fatma Budak
- Department of Microbiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Kemal Metiner
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
10
|
Methods for Green Synthesis of Metallic Nanoparticles Using Plant Extracts and their Biological Applications - A Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-8bf786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanotechnology, a fast-developing branch of science, is gaining extensive popularity among researchers simply because of the multitude of applications it can offer. In recent years, biological synthesis has been widely used instead of physical and chemical synthesis methods, which often produce toxic products. These synthesis methods are now being commonly adapted to discover new applications of nanoparticles synthesized using plant extracts. In this review, we elucidate the various ways by which nanoparticles can be biologically synthesized. We further discuss the applications of these nanoparticles.
Collapse
|
11
|
Dhatwalia J, Kumari A, Chauhan A, Mansi K, Thakur S, Saini RV, Guleria I, Lal S, Kumar A, Batoo KM, Choi BH, Manicum ALE, Kumar R. Rubus ellipticus Sm. Fruit Extract Mediated Zinc Oxide Nanoparticles: A Green Approach for Dye Degradation and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3470. [PMID: 35629498 PMCID: PMC9147757 DOI: 10.3390/ma15103470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023]
Abstract
Rubus ellipticus fruits aqueous extract derived ZnO-nanoparticles (NPs) were synthesized through a green synthesis method. The structural, optical, and morphological properties of ZnO-NPs were investigated using XRD, FTIR, UV-vis spectrophotometer, XPS, FESEM, and TEM. The Rietveld refinement confirmed the phase purity of ZnO-NPs with hexagonal wurtzite crystalline structure and p-63-mc space group with an average crystallite size of 20 nm. XPS revealed the presence of an oxygen chemisorbed species on the surface of ZnO-NPs. In addition, the nanoparticles exhibited significant in vitro antioxidant activity due to the attachment of the hydroxyl group of the phenols on the surface of the nanoparticles. Among all microbial strains, nanoparticles' maximum antibacterial and antifungal activity in terms of MIC was observed against Bacillus subtilis (31.2 µg/mL) and Rosellinia necatrix (15.62 µg/mL), respectively. The anticancer activity revealed 52.41% of A549 cells death (IC50: 158.1 ± 1.14 µg/mL) at 200 μg/mL concentration of nanoparticles, whereas photocatalytic activity showed about 17.5% degradation of the methylene blue within 60 min, with a final dye degradation efficiency of 72.7%. All these results suggest the medicinal potential of the synthesized ZnO-NPs and therefore can be recommended for use in wastewater treatment and medicinal purposes by pharmacological industries.
Collapse
Affiliation(s)
- Jyoti Dhatwalia
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Amita Kumari
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Ankush Chauhan
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kanchipuram 603103, Tamil Nadu, India;
| | - Kumari Mansi
- Advanced School of Chemical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India;
| | - Shabnam Thakur
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Reena V. Saini
- Central Research Laboratory MMIMSR, Department of Biotechnology MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India;
| | - Ishita Guleria
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Sohan Lal
- School of Biological and Environmental Sciences, Faculty of Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173212, Himachal Pradesh, India; (J.D.); (S.T.); (I.G.); (S.L.)
| | - Ashwani Kumar
- Patanjali Research Institute, Haridwar 249405, Uttarakhand, India;
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, College of Science, King Saud University, Building No. 04, Riyadh 11451, Saudi Arabia;
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Incheon 22212, Korea;
| | - Amanda-Lee E. Manicum
- Department of Chemistry, Faculty of Science, Arcadia Campus, Tshwane University of Technology, Pretoria 0183, South Africa;
| | - Rajesh Kumar
- Department of Physics, Faculty of Physical Sciences, Sardar Vallabhbhai Patel Cluster University, Mandi 175001, Himachal Pradesh, India
| |
Collapse
|
12
|
Lyalina TS, Lunkov AP, Varlamov VP. Obtaining of Metal Nanoparticles Using Reducing Agents and Chitosan. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Prasong W, Matthapan L, Lertrujiwanit K, Supcharoenkul S, Ongsri P, Kiratiwongwan R, Leeyaphan C, Bunyaratavej S. In Vitro Antifungal Activity of Plain Socks and Zinc Oxide Nanoparticle-Coated Socks. J Am Podiatr Med Assoc 2022; 112:20-134. [PMID: 36459108 DOI: 10.7547/20-134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Fungal foot infection is a common superficial fungal infection and is recognized as an important public health problem. Related to the wearing of occlusive footwear, foot infection is usually caused by dermatophytes and nondermatophyte molds. Previous in vitro studies have demonstrated that zinc oxide nanoparticles (ZnO-NPs) have antimicrobial activity against fungi. This study, therefore, evaluated the ability of socks coated with ZnO-NPs to inhibit fungal growth in an in vitro model mimicking real-life situations. METHODS Scale from patients with fungal foot infections was equally divided into three groups: control, plain socks, and ZnO-NP socks. The specimens in the control group were routinely fungal cultured, whereas in the plain sock and ZnO-NP sock groups, scale was incubated with plain socks and ZnO-NP socks, respectively, for 24 hours. After incubation, each piece of sock was cultured. The fungal culture results of the three groups were progressively evaluated for 4 weeks. RESULTS From 31 specimens, the positive fungal culture results of the control, plain sock, and ZnO-NP sock groups were 100%, 64.5%, and 54.8%, respectively. Specimens incubated with plain socks (P = .001) or with ZnO-NP socks (P < .001) had a significant reduction in the number of positive fungal cultures compared with the control. CONCLUSIONS Plain socks and ZnO-NP socks significantly inhibited fungal growth relative to the control. The wearing of either plain socks or ZnO-NP socks can prevent fungal foot infection because these socks act as a barrier to the insoles of shoes.
Collapse
Affiliation(s)
- Waranyoo Prasong
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lalita Matthapan
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonpan Lertrujiwanit
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Salisa Supcharoenkul
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Punyawee Ongsri
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungsima Kiratiwongwan
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Charussri Leeyaphan
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumanas Bunyaratavej
- *Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Brescini L, Fioriti S, Morroni G, Barchiesi F. Antifungal Combinations in Dermatophytes. J Fungi (Basel) 2021; 7:jof7090727. [PMID: 34575765 PMCID: PMC8469868 DOI: 10.3390/jof7090727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Dermatophytes are the most common cause of fungal infections worldwide, affecting millions of people annually. The emergence of resistance among dermatophytes along with the availability of antifungal susceptibility procedures suitable for testing antifungal agents against this group of fungi make the combinatorial approach particularly interesting to be investigated. Therefore, we reviewed the scientific literature concerning the antifungal combinations against dermatophytes. A literature search on the subject performed in PubMed yielded 68 publications: 37 articles referring to in vitro studies and 31 articles referring to case reports or clinical studies. In vitro studies involved over 400 clinical isolates of dermatophytes (69% Trichophyton spp., 29% Microsporum spp., and 2% Epidermophyton floccosum). Combinations included two antifungal agents or an antifungal agent plus another chemical compound including plant extracts or essential oils, calcineurin inhibitors, peptides, disinfectant agents, and others. In general, drug combinations yielded variable results spanning from synergism to indifference. Antagonism was rarely seen. In over 700 patients with documented dermatophyte infections, an antifungal combination approach could be evaluated. The most frequent combination included a systemic antifungal agent administered orally (i.e., terbinafine, griseofulvin, or azole-mainly itraconazole) plus a topical medication (i.e., azole, terbinafine, ciclopirox, amorolfine) for several weeks. Clinical results indicate that association of antifungal agents is effective, and it might be useful to accelerate the clinical and microbiological healing of a superficial infection. Antifungal combinations in dermatophytes have gained considerable scientific interest over the years and, in consideration of the interesting results available so far, it is desirable to continue the research in this field.
Collapse
Affiliation(s)
- Lucia Brescini
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
| | - Simona Fioriti
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
| | - Gianluca Morroni
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
| | - Francesco Barchiesi
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
- Correspondence: ; Tel.: +39-721-36-5505
| |
Collapse
|
15
|
Ongsri P, Leeyaphan C, Limphoka P, Kiratiwongwan R, Bunyaratavej S. Effectiveness and safety of zinc oxide nanoparticle-coated socks compared to uncoated socks for the prevention of pitted keratolysis: a double-blinded, randomized, controlled trial study. Int J Dermatol 2021; 60:864-867. [PMID: 33665813 DOI: 10.1111/ijd.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/18/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pitted keratolysis (PK) and bromodosis have negative impacts on the quality of life especially for military personnel. The antibacterial efficacy and safety of zinc oxide nanoparticles (ZnO-NPs) make them a suitable additive for textiles. We aim to establish the ability of ZnO-NP-coated socks to prevent PK and bromodosis in a real-life setting. MATERIALS AND METHODS A double-blinded, randomized, controlled trial was conducted in January 2019. Naval cadets assigned to a 14-day field training course were randomly allocated to either a ZnO-NP-coated or an uncoated-sock group. They completed questionnaires evaluating behavioral risk factors and self-assessed foot odor levels using a visual analogue scale (VAS); intervention-blinded dermatologists also performed foot examinations. They reassessed their odor levels and had their feet re-examined upon completion of the training course. RESULTS The 148 cadets enrolled for the study were allocated to two groups of 74 each. The ZnO-NP-coated sock participants demonstrated significantly less PK development than uncoated socks (P = 0.05). There was a reduction of the foot odor levels in both groups, as measured by the VAS, without statistical difference. However, the uncoated sock group experienced more foot odor with a significantly greater negative effect on their daily lives (P = 0.04) than the ZnO-NP-coated sock group. CONCLUSIONS ZnO-NP-coated socks proved their efficacy in inhibiting the development of PK for military personnel.
Collapse
Affiliation(s)
- Punyawee Ongsri
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Charussri Leeyaphan
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pichaya Limphoka
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungsima Kiratiwongwan
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumanas Bunyaratavej
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Jadhao AD, Shende S, Ingle P, Gade A, Hajare SW, Ingole RS. Biogenic Synthesis of Zinc Oxide Nanoparticles by Bryophyllum pinnatum and its Acute Oral Toxicity Evaluation in Wistar Rats. IEEE Trans Nanobioscience 2020; 19:633-639. [PMID: 32746333 DOI: 10.1109/tnb.2020.3014023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evaluation of toxic effects of nanoparticles (NPs) has become an important aspect of Nanotechnology research in the 21st century. The present investigation deals with the green synthesis of biogenic zinc oxide nanoparticles (ZnO-NPs) using Bryophyllum pinnatum leaves, their characterization and evaluation of acute oral toxicity in Wistar rats. The characterization of synthesized ZnO-NPs revealed maximum absorbance at 307 nm on UV-Vis spectrophotometric analysis, NTA showed mean size of particles and mode of the particles distribution as 128.2 nm and 12.6 nm, respectively. Zeta potential was found to be -0.369 mV. The absorbance shown by FTIR at 3469, 1644, 1355 and 887 cm-1 indicates the involvement of biomolecules that are accountable for capping and stabilization of ZnO-NPs. The XRD assessment further demonstrated the crystalline nature of the ZnO-NP. The TEM analysis of the synthesized ZnO-NPs revealed the presence of spherical NPs with the mean size of 3.7 nm. The acute oral toxicity evaluation in rat showed an approximate median lethal dose to be more than 2000 mg/kg body weight. It is thus concluded that biogenic ZnO-NPs showed absence of acute oral toxicity symptoms at the doses employed in the present study.
Collapse
|
17
|
Garg A, Sharma GS, Goyal AK, Ghosh G, Si SC, Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon 2020; 6:e04663. [PMID: 32904164 PMCID: PMC7452444 DOI: 10.1016/j.heliyon.2020.e04663] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/22/2019] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Fungal skin infections are the most common global issue for skin health. Fungal infections are often treated by topical or systemic anti-fungal therapy. Topical fungal therapy is usually preferred because of their targeted therapy and fewer side effects. Advanced topical carriers because of their distinct structural and functional features, overcome biopharmaceutical challenges associated with conventional drug delivery systems like poor retention and low bioavailability. Literature evidence indicated topical nanocarriers loaded with anti-fungal agents display superior therapeutic response with minimum toxicity. Nanocarriers often used for topical anti-fungal medication includes Solid-Lipid nanoparticles, Microemulsions, Liposomes, Niosomes, Microsponge, Nanogel, Nanoemulsion, Micelles etc. This review summarizes recent advances in novel strategies employed in topical carriers to improve the therapeutic performance of anti-fungal drugs.
Collapse
Affiliation(s)
- Abhinava Garg
- Department of Pharmaceutics, I.S.F.College of Pharmacy, Moga, Punjab, India
| | - Ganti S. Sharma
- Department of Pharmaceutics, I.S.F.College of Pharmacy, Moga, Punjab, India
| | - Amit K. Goyal
- School of Chemical Sciences and. Pharmacy, Central University of Rajasthan, India
| | - Goutam Ghosh
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudam Chandra Si
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
18
|
Hamad KM, Mahmoud NN, Al-Dabash S, Al-Samad LA, Abdallah M, Al-Bakri AG. Fluconazole conjugated-gold nanorods as an antifungal nanomedicine with low cytotoxicity against human dermal fibroblasts. RSC Adv 2020; 10:25889-25897. [PMID: 35518580 PMCID: PMC9055348 DOI: 10.1039/d0ra00297f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Herein, a nanotechnology-based approach was adopted to develop a facile and effective nanoplatform for the treatment of superficial fungal infections. Gold nanorods (GNR) functionalized with thiolated poly ethylene glycol (PEG-SH) or thiolated PEGylated cholesterol (Chol-PEG-SH) moieties were conjugated with Fluconazole and loaded into poloxamer 407 hydrogel. The obtained nanocomplexes; PEG-Fluc-GNR and Chol-Fluc-GNR were characterized by optical spectroscopy, hydrodynamic size and effective surface charge. The anti-fungal activity of the nanocomplexes was investigated by estimating the minimum inhibitory concentration (MIC) and the percentage reduction of fungal viable count against Candida (C.) albicans. PEG-Fluc-GNR and Chol-Fluc-GNR resulted in 5-fold and 14-fold reduction in MIC of GNR, and in 9-fold and 12-fold reduction in MIC of Fluconazole, respectively. The average log-reduction of the viable fungal cells upon treatment with the nanocomplexes was 5 log cycles, and it ranged from 1.3–3.7 log cycles when loaded into poloxamer 407 hydrogel. Transmission electron microscope imaging of the treated C. albicans revealed an enhanced uptake of the nanoparticles into the fungus's cell wall within the first 120 min of exposure. The nanocomplexes demonstrated low cytotoxicity towards human dermal fibroblasts which represent the human skin dermal cells. Conjugating Fluconazole with GNR is a promising approach for the effective treatment of superficial fungal infections. A nanotechnology-based approach was adopted to develop a facile and effective nanoplatform for the treatment of superficial fungal infections.![]()
Collapse
Affiliation(s)
| | - Nouf N. Mahmoud
- Faculty of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Sabaa Al-Dabash
- Faculty of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Luma A. Al-Samad
- Faculty of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Maha Abdallah
- School of Pharmacy
- The University of Jordan
- Amman 11942
- Jordan
| | | |
Collapse
|
19
|
Athawale V, Paralikar P, Ingle AP, Rai M. Biogenically engineered nanoparticles inhibit Fusarium oxysporum causing soft-rot of ginger. IET Nanobiotechnol 2018; 12:1084-1089. [PMID: 30964018 PMCID: PMC8676519 DOI: 10.1049/iet-nbt.2018.5086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
Abstract
Soft-rot of ginger (Zingiber officinale) is the most important disease usually caused by Fusarium oxysporum (F. oxysporum) leading to significant yield loss. In this study, chitosan, copper and sulphur nanoparticles synthesised from leaf extract of selected plants were screened against two isolates of F. oxysporum recovered from the infected rhizome of ginger and soil samples. Moreover, among these, sulphur nanoparticles showed maximum inhibition of F. oxysporum isolated from soil samples (ZOI = 12.33 mm) followed by copper (ZOI = >12 mm) and chitosan nanoparticles (ZOI = >9 mm). Similarly, in the case of F. oxysporum isolated from infected ginger, sulphur nanoparticles showed maximum inhibition (ZOI = 13.33) as compared to copper (ZOI = >11 mm) and chitosan nanoparticles (ZOI = >9 mm). Considering the high efficacy, sulphur nanoparticles were further evaluated in combination with commercial fungicides, viz., bavistin, ridomil gold, sunflex and streptocycline. The combination of sulphur nanoparticles with bavistin demonstrated maximum inhibition (ZOI = 45.16 mm, MIC -20 µg/ml), whereas the minimum inhibition was shown by its combination with ridomil gold (ZOI = 10.5 mm, MIC -40 µg/ml). Therefore, it can be concluded that the combination of sulphur nanoparticles with bavistin can be used for effective and eco-friendly management of F. oxysporum causing soft-rot of ginger.
Collapse
Affiliation(s)
- Vaibhavi Athawale
- Department of Biotechnology, Nanobiotechnology Laboratory, SGB Amravati University, Amravati, Maharashtra, India
| | - Priti Paralikar
- Department of Biotechnology, Nanobiotechnology Laboratory, SGB Amravati University, Amravati, Maharashtra, India
| | - Avinash P Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Brazil
| | - Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, SGB Amravati University, Amravati, Maharashtra, India.
| |
Collapse
|
20
|
Sun Q, Li J, Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11209-11220. [PMID: 30299956 DOI: 10.1021/acs.jafc.8b03210] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain types of nanoparticles, especially zinc oxide nanoparticles (ZnONPs), are widely reported to be capable of the inhibition of harmful bacteria, yeasts, and filamentous fungi. The unique physicochemical and biological properties of ZnONPs also make them attractive to the food industry for use as a promising antifungal agent. This Review thoroughly introduces the preparation methods and antifungal properties of ZnONPs and analyzes their possible antifungal mechanisms. The applicability of ZnONPs in food packaging and nutritional supplements and as an antimicrobial additive is also documented. Moreover, evaluations for biological safety of ZnONPs are objectively reviewed in this paper. The discussions addressed in this Review not only have theoretical significance but also are conducive to the development of food safety, nutrition, and human health. The summarized knowledge and future perspectives outlined here are expected to promote and guide new research toward developing and optimizing the application of ZnONPs as a novel class of antifungal agents to help improve food quality as well as food safety in the near future.
Collapse
Affiliation(s)
- Qi Sun
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Jianmei Li
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Tao Le
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| |
Collapse
|
21
|
Ramrakhiani L, Ghosh S. Metallic nanoparticle synthesised by biological route: safer candidate for diverse applications. IET Nanobiotechnol 2018; 12:392-404. [PMID: 29768220 PMCID: PMC8676404 DOI: 10.1049/iet-nbt.2017.0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2023] Open
Abstract
Biological synthesis of nanoparticles (NPs) involves greater prospect; however, a detailed review is required for ecofriendly, faster and stable NP formulation in large scale for different commercial applications. The present article highlighted recent updates on biological route of single and bimetallic NP synthesis wherein the chemical reducing agents are eliminated and biological entities are utilised to convert metal ions to NPs. Application of the biological reducing agents ranging from bacteria to fungi and even natural plant extracts have emerged as eco-friendly and cost-effective routes for the synthesis of metal nanomaterials. Potential applications of such NPs, a wide range of analytical techniques used for characterisation and factors influencing the synthesis of NPs are focused. Further, elucidation of the mechanisms associated with the NP formation using microorganisms, as well as plant-based materials are analysed which would be helpful for wide range of readers in the field of NP research for future selection and commercial implementation.
Collapse
Affiliation(s)
- Lata Ramrakhiani
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sourja Ghosh
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
22
|
Colletotrichum sp.- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Pandit R, Gaikwad S, Rai M. Biogenic fabrication of CuNPs, Cu bioconjugates and in vitro assessment of antimicrobial and antioxidant activity. IET Nanobiotechnol 2017; 11:568-575. [PMID: 28745291 PMCID: PMC8675963 DOI: 10.1049/iet-nbt.2016.0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022] Open
Abstract
In the present study, the authors synthesised copper nanoparticles (CuNPs) by using extract of Zingiber officinale (ginger) and later the NPs were bioconjugated with nisin, which shows antimicrobial activity against food spoilage microorganisms. CuNPs and its bioconjugate were characterised by ultraviolet-vis spectroscopy, NP tracking analysis, Zetasizer, transmission electron microscopy analysis, X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy. Zeta potential of CuNPs and its bioconjugate were found to be very stable. They evaluated in vitro efficacy of CuNPs and its bioconjugate against selected food spoilage bacteria: namely, Staphylococcus aureus, Pseudomonas fluorescens, Listeria monocytogenes and fungi including Fusarium moniliforme and Aspergillus niger. Antimicrobial activity of CuNPs was found to be maximum against F. moniliforme (18 mm) and the least activity was noted against L. monocytogenes (13 mm). Antioxidant activity of CuNPs and ginger extract was performed by various methods such as total antioxidant capacity reducing power assay, 1-1-diphenyl-2-picryl-hydrazyl free radical scavenging assay and hydrogen peroxide assay. Antioxidant activity of CuNPs was higher as compared with ginger extract. Hence, CuNPs and its bioconjugate can be used against food spoilage microorganisms.
Collapse
Affiliation(s)
- Raksha Pandit
- Department of Biotechnology, SGB Amravati University, Amravati 444 602, Maharashtra, India
| | - Swapnil Gaikwad
- Microbial Diversity Research Center, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune 411 033, Maharashtra, India
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati 444 602, Maharashtra, India.
| |
Collapse
|
24
|
Shende S, Rathod D, Gade A, Rai M. Biogenic copper nanoparticles promote the growth of pigeon pea ( Cajanus cajan L.). IET Nanobiotechnol 2017; 11:773-781. [PMCID: PMC8676305 DOI: 10.1049/iet-nbt.2016.0179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 07/25/2023] Open
Abstract
Environmental pollution and toxicity have been increasing due to the overuse of chemical fertilisers, which has encouraged nanotechnologists to develop eco‐friendly nano‐biofertilisers. The authors demonstrated the effect of biogenic copper nanoparticles (CuNPs) on the growth of pigeon pea (Cajanus cajan L.). The UV–visible analysis showed absorbance at 615 nm. Nanoparticle tracking and analysis revealed particle concentration of 2.18 × 108 particles/ml, with an average size of 33 nm. Zeta potential was found to be −16.7 mV, which showed stability. X‐ray diffraction pattern depicted the face centred cubic structure of CuNPs; Fourier transform infrared spectroscopy demonstrated the capping due to acidic groups, and transmission electron micrograph showed nanoparticles with size 20–30 nm. The effect of CuNPs (20 ppm) on plant growth was studied, for the absorption of CuNPs by plants on photosynthesis, which was evaluated by measuring chlorophyll a fluorescence using Handy‐Plant Efficiency Analyser. CuNPs treatment showed a remarkable increase in height, root length, fresh and dry weights and performance index of seedlings. The overall growth of plants treated with CuNPs after 4 weeks was recorded. The results revealed that inoculation of CuNPs contribute growth and development of pigeon pea due to growth promoting activity of CuNPs.
Collapse
Affiliation(s)
- Sudhir Shende
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| | - Dnyaneshwar Rathod
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| | - Aniket Gade
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| | - Mahendra Rai
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravatiMaharashtraIndia
| |
Collapse
|