1
|
Khalili Fakhrabadi A, Shahbazzadeh MJ, Jalali N, Eslami M. A hybrid inception-dilated-ResNet architecture for deep learning-based prediction of COVID-19 severity. Sci Rep 2025; 15:6490. [PMID: 39987169 PMCID: PMC11846838 DOI: 10.1038/s41598-025-91322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
Chest computed tomography (CT) scans are essential for accurately assessing the severity of the novel Coronavirus (COVID-19), facilitating appropriate therapeutic interventions and monitoring disease progression. However, determining COVID-19 severity requires a radiologist with significant expertise. This study introduces a pioneering utilization of deep learning (DL) for evaluate COVID-19 severity using lung CT images, presenting a novel and effective method for assessing the severity of pulmonary manifestations in COVID-19 patients. Inception-Residual networks (Inception-ResNet), advanced hybrid models known for their compactness and effectiveness, were used to extract relevant features from CT scans. Inception-ResNet incorporates the dilated mechanism into its ResNet component, enhancing its ability to accurately classify lung involvement stages. This study demonstrates that dilated residual networks (dResNet) outperform their non-dilated counterparts in image classification tasks, as their architectural designs allow the systems to acquire comprehensive global data by expanding their receptive fields. Our study utilized an initial dataset of 1548 human thoracic CT scans, meticulously annotated by two experienced specialists. Lung involvement was determined by calculating a percentage based on observations made at each scan. The hybrid methodology successfully distinguished the ten distinct severity levels associated with COVID-19, achieving a maximum accuracy of 96.40%. This system demonstrates its effectiveness as a diagnostic framework for assessing lung involvement in COVID-19-affected individuals, facilitating disease progression tracking.
Collapse
Affiliation(s)
- Ali Khalili Fakhrabadi
- Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Nazanin Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Neurology Department, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdiyeh Eslami
- Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
2
|
Slika B, Dornaika F, Merdji H, Hammoudi K. Lung pneumonia severity scoring in chest X-ray images using transformers. Med Biol Eng Comput 2024; 62:2389-2407. [PMID: 38589723 PMCID: PMC11289055 DOI: 10.1007/s11517-024-03066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/24/2024] [Indexed: 04/10/2024]
Abstract
To create robust and adaptable methods for lung pneumonia diagnosis and the assessment of its severity using chest X-rays (CXR), access to well-curated, extensive datasets is crucial. Many current severity quantification approaches require resource-intensive training for optimal results. Healthcare practitioners require efficient computational tools to swiftly identify COVID-19 cases and predict the severity of the condition. In this research, we introduce a novel image augmentation scheme as well as a neural network model founded on Vision Transformers (ViT) with a small number of trainable parameters for quantifying COVID-19 severity and other lung diseases. Our method, named Vision Transformer Regressor Infection Prediction (ViTReg-IP), leverages a ViT architecture and a regression head. To assess the model's adaptability, we evaluate its performance on diverse chest radiograph datasets from various open sources. We conduct a comparative analysis against several competing deep learning methods. Our results achieved a minimum Mean Absolute Error (MAE) of 0.569 and 0.512 and a maximum Pearson Correlation Coefficient (PC) of 0.923 and 0.855 for the geographic extent score and the lung opacity score, respectively, when the CXRs from the RALO dataset were used in training. The experimental results reveal that our model delivers exceptional performance in severity quantification while maintaining robust generalizability, all with relatively modest computational requirements. The source codes used in our work are publicly available at https://github.com/bouthainas/ViTReg-IP .
Collapse
Affiliation(s)
- Bouthaina Slika
- University of the Basque Country UPV/EHU, San Sebastian, Spain
- Lebanese International University, Beirut, Lebanon
- Beirut International University, Beirut, Lebanon
| | - Fadi Dornaika
- University of the Basque Country UPV/EHU, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Hamid Merdji
- INSERM, UMR 1260, Regenerative Nanomedicine (RNM), CRBS, University of Strasbourg, Strasbourg, France
- Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Karim Hammoudi
- Université de Haute-Alsace IRIMAS, Mulhouse, France
- University of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Ahmadinejad N, Ayyoubzadeh SM, Zeinalkhani F, Delazar S, Javanmard Z, Ahmadinejad Z, Mohajeri A, Esmaeili M. Discovering associations between radiological features and COVID-19 patients' deterioration. Health Sci Rep 2023; 6:e1257. [PMID: 37711676 PMCID: PMC10497911 DOI: 10.1002/hsr2.1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 09/16/2023] Open
Abstract
Background and Aims Data mining methods are effective and well-known tools for developing predictive models and extracting useful information from various data of patients. The present study aimed to predict the severity of patients with COVID-19 by applying the rule mining method using characteristics of medical images. Methods This retrospective study has analyzed the radiological data from 104 COVID-19 hospitalized patients diagnosed with COVID-19 in a hospital in Iran. A data set containing 75 binary features was generated. Apriori method is utilized for association rule mining on this data set. Only rules with confidence equal to one were generated. The performance of rules is calculated by support, coverage, and lift indexes. Results Ten rules were extracted with only X-ray-related features on cases referred to ICU. The Support and Coverage index of all of these rules was 0.087, and the Lift index of them was 1.58. Thirteen rules were extracted from only CT scan-related features on cases referred to ICU. The CXR_Pleural effusion feature has appeared in all the rules. The CXR_Left upper zone feature appears in 9 rules out of 10. The Support and Coverage index of all rules was 0.15, and the Lift index of all rules was 1.63. the CT_Adjacent pleura thickening feature has appeared in all rules, and the CT_Right middle lobe appeared in 9 rules out of 13. Conclusion This study could reveal the application and efficacy of CXR and CT scan imaging modalities in predicting ICU admission to a major COVID-19 infection via data mining methods. The findings of this study could help data scientists, radiologists, and clinicians in the future development and implementation of these methods in similar conditions and timely and appropriately save patients from adverse disease outcomes.
Collapse
Affiliation(s)
- Nasrin Ahmadinejad
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
- Radiology Department, Cancer Institute, Imam Khomeini Hospital ComplexTehran University of Medical ScienceTehranIran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Fahimeh Zeinalkhani
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
- Radiology Department, Cancer Institute, Imam Khomeini Hospital ComplexTehran University of Medical ScienceTehranIran
| | - Sina Delazar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
| | - Zohreh Javanmard
- Department of Health Information Management, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | | | - Marzieh Esmaeili
- Department of Health Information Management, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Multi-head deep learning framework for pulmonary disease detection and severity scoring with modified progressive learning. Biomed Signal Process Control 2023; 85:104855. [PMID: 36987448 PMCID: PMC10036214 DOI: 10.1016/j.bspc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
Chest X-rays (CXR) are the most commonly used imaging methodology in radiology to diagnose pulmonary diseases with close to 2 billion CXRs taken every year. The recent upsurge of COVID-19 and its variants accompanied by pneumonia and tuberculosis can be fatal in some cases and lives could be saved through early detection and appropriate intervention for the advanced cases. Thus CXRs can be used for an automated severity grading of pulmonary diseases that can aid radiologists in making better and informed diagnoses. In this article, we propose a single framework for disease classification and severity scoring produced by segmenting the lungs into six regions. We present a modified progressive learning technique in which the amount of augmentations at each step is capped. Our base network in the framework is first trained using modified progressive learning and can then be tweaked for new data sets. Furthermore, the segmentation task makes use of an attention map generated within and by the network itself. This attention mechanism allows to achieve segmentation results that are on par with networks having an order of magnitude or more parameters. We also propose severity score grading for 4 thoracic diseases that can provide a single-digit score corresponding to the spread of opacity in different lung segments with the help of radiologists. The proposed framework is evaluated using the BRAX data set for segmentation and classification into six classes with severity grading for a subset of the classes. On the BRAX validation data set, we achieve F1 scores of 0.924 and 0.939 without and with fine-tuning, respectively. A mean matching score of 80.8% is obtained for severity score grading while an average area under receiver operating characteristic curve of 0.88 is achieved for classification.
Collapse
|
5
|
Su X, Sun Y, Liu H, Lang Q, Zhang Y, Zhang J, Wang C, Chen Y. An innovative ensemble model based on deep learning for predicting COVID-19 infection. Sci Rep 2023; 13:12322. [PMID: 37516796 PMCID: PMC10387055 DOI: 10.1038/s41598-023-39408-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Nowadays, global public health crises are occurring more frequently, and accurate prediction of these diseases can reduce the burden on the healthcare system. Taking COVID-19 as an example, accurate prediction of infection can assist experts in effectively allocating medical resources and diagnosing diseases. Currently, scholars worldwide use single model approaches or epidemiology models more often to predict the outbreak trend of COVID-19, resulting in poor prediction accuracy. Although a few studies have employed ensemble models, there is still room for improvement in their performance. In addition, there are only a few models that use the laboratory results of patients to predict COVID-19 infection. To address these issues, research efforts should focus on improving disease prediction performance and expanding the use of medical disease prediction models. In this paper, we propose an innovative deep learning model Whale Optimization Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM) and Artificial Neural Network (ANN) called WOCLSA which incorporates three models ANN, CNN and LSTM. The WOCLSA model utilizes the Whale Optimization Algorithm to optimize the neuron number, dropout and batch size parameters in the integrated model of ANN, CNN and LSTM, thereby finding the global optimal solution parameters. WOCLSA employs 18 patient indicators as predictors, and compares its results with three other ensemble deep learning models. All models were validated with train-test split approaches. We evaluate and compare our proposed model and other models using accuracy, F1 score, recall, AUC and precision metrics. Through many studies and tests, our results show that our prediction models can identify patients with COVID-19 infection at the AUC of 91%, 91%, and 93% respectively. Other prediction results achieve a respectable accuracy of 92.82%, 92.79%, and 91.66% respectively, f1-score of 93.41%, 92.79%, and 92.33% respectively, precision of 93.41%, 92.79%, and 92.33% respectively, recall of 93.41%, 92.79%, and 92.33% respectively. All of these exceed 91%, surpassing those of comparable models. The execution time of WOCLSA is also an advantage. Therefore, the WOCLSA ensemble model can be used to assist in verifying laboratory research results and predict and to judge various diseases in public health events.
Collapse
Affiliation(s)
- Xiaoying Su
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Yanfeng Sun
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Hongxi Liu
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Qiuling Lang
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Yichen Zhang
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| | - Jiquan Zhang
- School of Environment, Northeast Normal University, Changchun, 130024, China
| | - Chaoyong Wang
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China.
| | - Yanan Chen
- School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China
| |
Collapse
|
6
|
Vinod DN, Prabaharan SRS. Elucidation of infection asperity of CT scan images of COVID-19 positive cases: A Machine Learning perspective. SCIENTIFIC AFRICAN 2023; 20:e01681. [PMID: 37192886 PMCID: PMC10150416 DOI: 10.1016/j.sciaf.2023.e01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/19/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Owing to the profoundly irresistible nature of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, an enormous number of individuals halt in the line for Computed Tomography (CT) scan assessment, which overburdens the medical practitioners, radiologists, and adversely influences the patient's remedy, diagnosis, as well as restraint the epidemic. Medical facilities like intensive care systems and mechanical ventilators are restrained due to highly infectious diseases. It turns out to be very imperative to characterize the patients as per their asperity levels. This article exhibited a novel execution of a threshold-based image segmentation technique and random forest classifier for COVID-19 contamination asperity identification. With the help of the image segmentation model and machine learning classifier, we can identify and classify COVID-19 individuals into three asperity classes such as early, progressive, and advanced, with an accuracy of 95.5% using chest CT scan image database. Experimental outcomes on an adequately enormous number of CT scan images exhibit the adequacy of the machine learning mechanism developed and recommended to identify coronavirus severity.
Collapse
Affiliation(s)
- Dasari Naga Vinod
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamilnadu 600062, India
| | - S R S Prabaharan
- Sathyabama Centre for Advanced Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamilnadu 600119, India
| |
Collapse
|
7
|
Thakur K, Kaur M, Kumar Y. A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-21. [PMID: 37359745 PMCID: PMC10249943 DOI: 10.1007/s11831-023-09952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Artificial intelligence is the most powerful and promising tool for the present analytic technologies. It can provide real-time insights into disease spread and predict new pandemic epicenters by processing massive amount of data. The main aim of the paper is to detect and classify multiple infectious diseases using deep learning models. The work is conducted by using 29,252 images of COVID-19, Middle East Respiratory Syndrome Coronavirus, Pneumonia, normal, Severe Acute Respiratory Syndrome, tuberculosis, viral pneumonia, and lung opacity which has been collected from various disease datasets. These datasets are used to train the deep learning models such as EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, NASNetLarge, DenseNet169, ResNet152V2, and InceptionResNetV2. The images have been initially graphically represented using exploratory data analysis to study the pixel intensity and find anomalies by extracting the color channels in an RGB histogram. Later, the dataset has been pre-processed to remove noisy signals using image augmentation and contrast enhancement techniques. Further, feature extraction techniques such as morphological values of contour features and Otsu thresholding have been applied to extract the feature. The models have been evaluated on the basis of various parameters, and it has been discovered that during the testing phase, the InceptionResNetV2 model generated the highest accuracy of 88%, best loss value of 0.399, and root mean square error of 0.63.
Collapse
Affiliation(s)
- Kavita Thakur
- Desh Bhagat University, Mandi Gobindgarh, Punjab India
| | - Manjot Kaur
- Desh Bhagat University, Mandi Gobindgarh, Punjab India
| | - Yogesh Kumar
- Department of CSE, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| |
Collapse
|
8
|
Bhattacharjee V, Priya A, Kumari N, Anwar S. DeepCOVNet Model for COVID-19 Detection Using Chest X-Ray Images. WIRELESS PERSONAL COMMUNICATIONS 2023; 130:1399-1416. [PMID: 37168437 PMCID: PMC10088652 DOI: 10.1007/s11277-023-10336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 05/13/2023]
Abstract
COVID-19 is an epidemic disease that has threatened all the people at worldwide scale and eventually became a pandemic It is a crucial task to differentiate COVID-19-affected patients from healthy patient populations. The need for technology enabled solutions is pertinent and this paper proposes a deep learning model for detection of COVID-19 using Chest X-Ray (CXR) images. In this research work, we provide insights on how to build robust deep learning based models for COVID-19 CXR image classification from Normal and Pneumonia affected CXR images. We contribute a methodical escort on preparation of data to produce a robust deep learning model. The paper prepared datasets by refactoring, using images from several datasets for ameliorate training of deep model. These recently published datasets enable us to build our own model and compare by using pre-trained models. The proposed experiments show the ability to work effectively to classify COVID-19 patients utilizing CXR. The empirical work, which uses a 3 convolutional layer based Deep Neural Network called "DeepCOVNet" to classify CXR images into 3 classes: COVID-19, Normal and Pneumonia cases, yielded an accuracy of 96.77% and a F1-score of 0.96 on two different combination of datasets.
Collapse
Affiliation(s)
| | - Ankita Priya
- Birla Institute of Technology Mesra, Ranchi, 835215 India
| | - Nandini Kumari
- Birla Institute of Technology Mesra, Ranchi, 835215 India
- Department of Data Science & Computer Application, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Shamama Anwar
- Birla Institute of Technology Mesra, Ranchi, 835215 India
| |
Collapse
|
9
|
Arias-Garzón D, Tabares-Soto R, Bernal-Salcedo J, Ruz GA. Biases associated with database structure for COVID-19 detection in X-ray images. Sci Rep 2023; 13:3477. [PMID: 36859430 PMCID: PMC9975856 DOI: 10.1038/s41598-023-30174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Several artificial intelligence algorithms have been developed for COVID-19-related topics. One that has been common is the COVID-19 diagnosis using chest X-rays, where the eagerness to obtain early results has triggered the construction of a series of datasets where bias management has not been thorough from the point of view of patient information, capture conditions, class imbalance, and careless mixtures of multiple datasets. This paper analyses 19 datasets of COVID-19 chest X-ray images, identifying potential biases. Moreover, computational experiments were conducted using one of the most popular datasets in this domain, which obtains a 96.19% of classification accuracy on the complete dataset. Nevertheless, when evaluated with the ethical tool Aequitas, it fails on all the metrics. Ethical tools enhanced with some distribution and image quality considerations are the keys to developing or choosing a dataset with fewer bias issues. We aim to provide broad research on dataset problems, tools, and suggestions for future dataset developments and COVID-19 applications using chest X-ray images.
Collapse
Affiliation(s)
- Daniel Arias-Garzón
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Colombia
| | - Reinel Tabares-Soto
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Colombia
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
- Departamento de Sistemas e Informática, Universidad de Caldas, Manizales, 170001, Colombia
| | - Joshua Bernal-Salcedo
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Colombia
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), 8331150, Santiago, Chile.
- Data Observatory Foundation, 7941169, Santiago, Chile.
| |
Collapse
|
10
|
Deb SD, Jha RK, Kumar R, Tripathi PS, Talera Y, Kumar M. CoVSeverity-Net: an efficient deep learning model for COVID-19 severity estimation from Chest X-Ray images. RESEARCH ON BIOMEDICAL ENGINEERING 2023. [PMCID: PMC9901380 DOI: 10.1007/s42600-022-00254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Purpose COVID-19 is not going anywhere and is slowly becoming a part of our life. The World Health Organization declared it a pandemic in 2020, and it has affected all of us in many ways. Several deep learning techniques have been developed to detect COVID-19 from Chest X-Ray images. COVID-19 infection severity scoring can aid in establishing the optimum course of treatment and care for a positive patient, as all COVID-19 positive patients do not require special medical attention. Still, very few works are reported to estimate the severity of the disease from the Chest X-Ray images. The unavailability of the large-scale dataset might be a reason. Methods We aim to propose CoVSeverity-Net, a deep learning-based architecture for predicting the severity of COVID-19 from Chest X-ray images. CoVSeverity-Net is trained on a public COVID-19 dataset, curated by experienced radiologists for severity estimation. For that, a large publicly available dataset is collected and divided into three levels of severity, namely Mild, Moderate, and Severe. Results An accuracy of 85.71% is reported. Conducting 5-fold cross-validation, we have obtained an accuracy of 87.82 ± 6.25%. Similarly, conducting 10-fold cross-validation we obtained accuracy of 91.26 ± 3.42. The results were better when compared with other state-of-the-art architectures. Conclusion We strongly believe that this study has a high chance of reducing the workload of overworked front-line radiologists, speeding up patient diagnosis and treatment, and easing pandemic control. Future work would be to train a novel deep learning-based architecture on a larger dataset for severity estimation.
Collapse
Affiliation(s)
- Sagar Deep Deb
- Department of Electrical Engineering, Indian Institute of Technology Patna, Patna, 801103 India
| | - Rajib Kumar Jha
- Department of Electrical Engineering, Indian Institute of Technology Patna, Patna, 801103 India
| | - Rajnish Kumar
- Department of Paediatrics, Netaji Subhas Medical College & Hospital, Patna, 801106 India
| | - Prem S. Tripathi
- Department of Radiodiagnosis, Mahatma Gandhi Memorial Government Medical College, Indore, 452001 India
| | - Yash Talera
- Department of Radiodiagnosis, Mahatma Gandhi Memorial Government Medical College, Indore, 452001 India
| | - Manish Kumar
- Patna Medical College and Hospital, Bihar, 800001 India
| |
Collapse
|
11
|
Albataineh Z, Aldrweesh F, Alzubaidi MA. COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm. CLUSTER COMPUTING 2023:1-16. [PMID: 36712413 PMCID: PMC9871425 DOI: 10.1007/s10586-023-03972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
As a pandemic, the primary evaluation tool for coronavirus (COVID-19) still has serious flaws. To improve the existing situation, all facilities and tools available in this field should be used to combat the pandemic. Reverse transcription polymerase chain reaction is used to evaluate whether or not a person has this virus, but it cannot establish the severity of the illness. In this paper, we propose a simple, reliable, and automatic system to diagnose the severity of COVID-19 from the CT scans into three stages: mild, moderate, and severe, based on the simple segmentation method and three types of features extracted from the CT images, which are ratio of infection, statistical texture features (mean, standard deviation, skewness, and kurtosis), GLCM and GLRLM texture features. Four machine learning techniques (decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), and Naïve Bayes) are used to classify scans. 1801 scans are divided into four stages based on the CT findings in the scans and the description file found with the datasets. Our proposed model divides into four steps: preprocessing, feature extraction, classification, and performance evaluation. Four machine learning algorithms are used in the classification step: SVM, KNN, DT, and Naive Bayes. By SVM method, the proposed model achieves 99.12%, 98.24%, 98.73%, and 99.9% accuracy for COVID-19 infection segmentation at the normal, mild, moderate, and severe stages, respectively. The area under the curve of the model is 0.99. Finally, our proposed model achieves better performance than state-of-art models. This will help the doctors know the stage of the infection and thus shorten the time and give the appropriate dose of treatment for this stage.
Collapse
Affiliation(s)
- Zaid Albataineh
- Department of Electronic Engineering, Yarmouk University, Irbid, 21163 Jordan
| | - Fatima Aldrweesh
- Department of Computer Engineering, Yarmouk University, Irbid, 21163 Jordan
| | | |
Collapse
|
12
|
Khan A, Akram MU, Nazir S. Automated grading of chest x-ray images for viral pneumonia with convolutional neural networks ensemble and region of interest localization. PLoS One 2023; 18:e0280352. [PMID: 36649367 PMCID: PMC9844910 DOI: 10.1371/journal.pone.0280352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Following its initial identification on December 31, 2019, COVID-19 quickly spread around the world as a pandemic claiming more than six million lives. An early diagnosis with appropriate intervention can help prevent deaths and serious illness as the distinguishing symptoms that set COVID-19 apart from pneumonia and influenza frequently don't show up until after the patient has already suffered significant damage. A chest X-ray (CXR), one of many imaging modalities that are useful for detection and one of the most used, offers a non-invasive method of detection. The CXR image analysis can also reveal additional disorders, such as pneumonia, which show up as anomalies in the lungs. Thus these CXRs can be used for automated grading aiding the doctors in making a better diagnosis. In order to classify a CXR image into the Negative for Pneumonia, Typical, Indeterminate, and Atypical, we used the publicly available CXR image competition dataset SIIM-FISABIO-RSNA COVID-19 from Kaggle. The suggested architecture employed an ensemble of EfficientNetv2-L for classification, which was trained via transfer learning from the initialised weights of ImageNet21K on various subsets of data (Code for the proposed methodology is available at: https://github.com/asadkhan1221/siim-covid19.git). To identify and localise opacities, an ensemble of YOLO was combined using Weighted Boxes Fusion (WBF). Significant generalisability gains were made possible by the suggested technique's addition of classification auxiliary heads to the CNN backbone. The suggested method improved further by utilising test time augmentation for both classifiers and localizers. The results for Mean Average Precision score show that the proposed deep learning model achieves 0.617 and 0.609 on public and private sets respectively and these are comparable to other techniques for the Kaggle dataset.
Collapse
Affiliation(s)
- Asad Khan
- Computer and Software Engineering Department, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Usman Akram
- Computer and Software Engineering Department, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sajid Nazir
- Department of Computing, Glasgow Caledonian University, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Next Generation Infectious Diseases Monitoring Gages via Incremental Federated Learning: Current Trends and Future Possibilities. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:1102715. [PMID: 36909972 PMCID: PMC9995206 DOI: 10.1155/2023/1102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 03/05/2023]
Abstract
Infectious diseases are always alarming for the survival of human life and are a key concern in the public health domain. Therefore, early diagnosis of these infectious diseases is a high demand for modern-era healthcare systems. Novel general infectious diseases such as coronavirus are infectious diseases that cause millions of human deaths across the globe in 2020. Therefore, early, robust recognition of general infectious diseases is the desirable requirement of modern intelligent healthcare systems. This systematic study is designed under Kitchenham guidelines and sets different RQs (research questions) for robust recognition of general infectious diseases. From 2018 to 2021, four electronic databases, IEEE, ACM, Springer, and ScienceDirect, are used for the extraction of research work. These extracted studies delivered different schemes for the accurate recognition of general infectious diseases through different machine learning techniques with the inclusion of deep learning and federated learning models. A framework is also introduced to share the process of detection of infectious diseases by using machine learning models. After the filtration process, 21 studies are extracted and mapped to defined RQs. In the future, early diagnosis of infectious diseases will be possible through wearable health monitoring cages. Moreover, these gages will help to reduce the time and death rate by detection of severe diseases at starting stage.
Collapse
|
14
|
COVID-19 detection and classification for machine learning methods using human genomic data. MEASUREMENT: SENSORS 2022; 24:100537. [PMCID: PMC9595328 DOI: 10.1016/j.measen.2022.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Coronavirus is a disease connected to coronavirus. World Health Organization has declared COVID-19 a pandemic. It has an impact on 212 nations and territories worldwide. Examining and identifying patterns in X-Ray pictures of the lungs is still necessary. Early diagnosis may help to lessen a person's virus exposure and prevent it. Manual diagnosis is a time- and labor-intensive process. Since the COVID-19 virus has the potential to infect individuals all around the world, its finding is extremely concerning. The purpose of this study is to apply machine learning to identify and classify coronaviruses. The COVID-19 is anticipated to be discriminated and categorized in CT-Lung screening and computer-aided diagnosis (CAD). Several machine learning methods, including Decision Tree, Support Vector Machine, K-means clustering, and Radial Basis Function, were utilised in conjunction with clinical samples from patients who had contracted corona. While some medical professionals think an RT-PCR test is the most reliable and economical way to detect Covid-19 patients, others think a lung CT scan is more precise and less expensive. Serum samples, respiratory secretions, and whole blood samples are examples of clinical specimens. As a result of the earlier clinical evaluations, these tissues are used to assess 15 different parameters. As part of the proposed four-phase CAD system, the CT lungs screening collection is followed by a pre-processing step that enhances the appearance of ground-glass opacities (GGOs) nodules, which are initially extremely fuzzy and poorly contrasting due to the absence of contrast. These zones will be found and segmented using a modified K-means technique. Support vector machines (SVM) and radial basis functions (RBF) will be used as the input and target data for machine learning classifiers with a 50x50 pixel resolution to categorise the contaminated zones found during the detection phase (RBF). The 15 input items gathered from clinical specimens may be entered into a graphical user interface (GUI) tool that has been created to help doctors receive accurate findings.
Collapse
|
15
|
Chandra TB, Singh BK, Jain D. Disease Localization and Severity Assessment in Chest X-Ray Images using Multi-Stage Superpixels Classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106947. [PMID: 35749885 PMCID: PMC9403875 DOI: 10.1016/j.cmpb.2022.106947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Chest X-ray (CXR) is a non-invasive imaging modality used in the prognosis and management of chronic lung disorders like tuberculosis (TB), pneumonia, coronavirus disease (COVID-19), etc. The radiomic features associated with different disease manifestations assist in detection, localization, and grading the severity of infected lung regions. The majority of the existing computer-aided diagnosis (CAD) system used these features for the classification task, and only a few works have been dedicated to disease-localization and severity scoring. Moreover, the existing deep learning approaches use class activation map and Saliency map, which generate a rough localization. This study aims to generate a compact disease boundary, infection map, and grade the infection severity using proposed multistage superpixel classification-based disease localization and severity assessment framework. METHODS The proposed method uses a simple linear iterative clustering (SLIC) technique to subdivide the lung field into small superpixels. Initially, the different radiomic texture and proposed shape features are extracted and combined to train different benchmark classifiers in a multistage framework. Subsequently, the predicted class labels are used to generate an infection map, mark disease boundary, and grade the infection severity. The performance is evaluated using a publicly available Montgomery dataset and validated using Friedman average ranking and Holm and Nemenyi post-hoc procedures. RESULTS The proposed multistage classification approach achieved accuracy (ACC)= 95.52%, F-Measure (FM)= 95.48%, area under the curve (AUC)= 0.955 for Stage-I and ACC=85.35%, FM=85.20%, AUC=0.853 for Stage-II using calibration dataset and ACC = 93.41%, FM = 95.32%, AUC = 0.936 for Stage-I and ACC = 84.02%, FM = 71.01%, AUC = 0.795 for Stage-II using validation dataset. Also, the model has demonstrated the average Jaccard Index (JI) of 0.82 and Pearson's correlation coefficient (r) of 0.9589. CONCLUSIONS The obtained classification results using calibration and validation dataset confirms the promising performance of the proposed framework. Also, the average JI shows promising potential to localize the disease, and better agreement between radiologist score and predicted severity score (r) confirms the robustness of the method. Finally, the statistical test justified the significance of the obtained results.
Collapse
Affiliation(s)
- Tej Bahadur Chandra
- Department of Computer Applications, National Institute of Technology Raipur, Chhattisgarh, India.
| | - Bikesh Kumar Singh
- Department of Biomedical Engineering, National Institute of Technology Raipur, Chhattisgarh, India
| | - Deepak Jain
- Department of Radiodiagnosis, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| |
Collapse
|
16
|
Shahin OR, Alshammari HH, Taloba AI, El-Aziz RMA. Machine Learning Approach for Autonomous Detection and Classification of COVID-19 Virus. COMPUTERS & ELECTRICAL ENGINEERING : AN INTERNATIONAL JOURNAL 2022; 101:108055. [PMID: 35505976 PMCID: PMC9050589 DOI: 10.1016/j.compeleceng.2022.108055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
As people all over the world are vulnerable to be affected by the COVID-19 virus, the automatic detection of such a virus is an important concern. The paper aims to detect and classify corona virus using machine learning. To spot and identify corona virus in CT-Lung screening and Computer-Aided diagnosis (CAD) system is projected to distinguish and classifies the COVID-19. By utilizing the clinical specimens obtained from the corona-infected patients with the help of some machine learning techniques like Decision Tree, Support Vector Machine, K-means clustering, and Radial Basis Function. While some specialists believe that the RT-PCR test is the best option for diagnosing Covid-19 patients, others believe that CT scans of the lungs can be more accurate in diagnosing corona virus infection, as well as being less expensive than the PCR test. The clinical specimens include serum specimens, respiratory secretions, and whole blood specimens. Overall, 15 factors are measured from these specimens as the result of the previous clinical examinations. The proposed CAD system consists of four phases starting with the CT lungs screening collection, followed by a pre-processing stage to enhance the appearance of the ground glass opacities (GGOs) nodules as they originally lock hazy with fainting contrast. A modified K-means algorithm will be used to detect and segment these regions. Finally, the use of detected, infected areas that obtained in the detection phase with a scale of 50×50 and perform segmentation of the solid false positives that seem to be GGOs as inputs and targets for the machine learning classifiers, here a support vector machine (SVM) and Radial basis function (RBF) has been utilized. Moreover, a GUI application is developed which avoids the confusion of the doctors for getting the exact results by giving the 15 input factors obtained from the clinical specimens.
Collapse
Affiliation(s)
- Osama R Shahin
- Department of Computer Science, College of Science and Arts in Gurayat, Jouf University, SaudiArabia
| | - Hamoud H Alshammari
- Information Systems Department, College of Computer and information sciences, Sakaka, Jouf University, Saudi Arabia
| | - Ahmed I Taloba
- Department of Computer Science, College of Science and Arts in Gurayat, Jouf University, SaudiArabia
| | - Rasha M Abd El-Aziz
- Department of Computer Science, College of Science and Arts in Gurayat, Jouf University, SaudiArabia
| |
Collapse
|
17
|
COVID-19 Chest X-ray Classification and Severity Assessment Using Convolutional and Transformer Neural Networks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus pandemic started in Wuhan, China in December 2019, and put millions of people in a difficult situation. This fatal virus spread to over 227 countries and the number of infected patients increased to over 400 million cases, causing over 6 million deaths worldwide. Due to the serious consequence of this virus, it is necessary to develop a detection method that can respond quickly to prevent the spreading of COVID-19. Using chest X-ray images to detect COVID-19 is one of the promising techniques; however, with a large number of COVID-19 infected cases every day, the number of radiologists available to diagnose the chest X-ray images is not sufficient. We must have a computer aid system that helps doctors instantly and automatically determine COVID-19 cases. Recently, with the emergence of deep learning methods applied for medical and biomedical uses, using convolutional neural net and transformer applications for chest X-ray images can be a supplement for COVID-19 testing. In this paper, we attempt to classify three types of chest X-ray, which are normal, pneumonia, and COVID-19 using deep learning methods on a customized dataset. We also carry out an experiment on the COVID-19 severity assessment task using a tailored dataset. Five deep learning models were obtained to conduct our experiments: DenseNet121, ResNet50, InceptionNet, Swin Transformer, and Hybrid EfficientNet-DOLG neural networks. The results indicated that chest X-ray and deep learning could be reliable methods for supporting doctors in COVID-19 identification and severity assessment tasks.
Collapse
|
18
|
Karthik R, Menaka R, Hariharan M, Won D. CT-based severity assessment for COVID-19 using weakly supervised non-local CNN. Appl Soft Comput 2022; 121:108765. [PMID: 35370523 PMCID: PMC8962065 DOI: 10.1016/j.asoc.2022.108765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Evaluating patient criticality is the foremost step in administering appropriate COVID-19 treatment protocols. Learning an Artificial Intelligence (AI) model from clinical data for automatic risk-stratification enables accelerated response to patients displaying critical indicators. Chest CT manifestations including ground-glass opacities and consolidations are a reliable indicator for prognostic studies and show variability with patient condition. To this end, we propose a novel attention framework to estimate COVID-19 severity as a regression score from a weakly annotated CT scan dataset. It takes a non-locality approach that correlates features across different parts and spatial scales of the 3D scan. An explicit guidance mechanism from limited infection labeling drives attention refinement and feature modulation. The resulting encoded representation is further enriched through cross-channel attention. The attention model also infuses global contextual awareness into the deep voxel features by querying the base CT scan to mine relevant features. Consequently, it learns to effectively localize its focus region and chisel out the infection precisely. Experimental validation on the MosMed dataset shows that the proposed architecture has significant potential in augmenting existing methods as it achieved a 0.84 R-squared score and 0.133 mean absolute difference.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems & School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems & School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- Cisco Systems India Pvt Ltd, Bangalore, India
| | - Daehan Won
- System Sciences and Industrial Engineering, Binghamton University, NY, USA
| |
Collapse
|
19
|
Shamrat FMJM, Azam S, Karim A, Islam R, Tasnim Z, Ghosh P, De Boer F. LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images. J Pers Med 2022; 12:jpm12050680. [PMID: 35629103 PMCID: PMC9143659 DOI: 10.3390/jpm12050680] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.
Collapse
Affiliation(s)
- F. M. Javed Mehedi Shamrat
- Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh; (F.M.J.M.S.); (Z.T.)
| | - Sami Azam
- College of Engineering, IT and Environment, Charles Darwin University, Casuarina, NT 0909, Australia; (A.K.); (F.D.B.)
- Correspondence:
| | - Asif Karim
- College of Engineering, IT and Environment, Charles Darwin University, Casuarina, NT 0909, Australia; (A.K.); (F.D.B.)
| | - Rakibul Islam
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Zarrin Tasnim
- Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh; (F.M.J.M.S.); (Z.T.)
| | - Pronab Ghosh
- Department of Computer Science (CS), Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada;
| | - Friso De Boer
- College of Engineering, IT and Environment, Charles Darwin University, Casuarina, NT 0909, Australia; (A.K.); (F.D.B.)
| |
Collapse
|
20
|
Irmak E. COVID-19 disease diagnosis from paper-based ECG trace image data using a novel convolutional neural network model. Phys Eng Sci Med 2022; 45:167-179. [PMID: 35020175 PMCID: PMC8753334 DOI: 10.1007/s13246-022-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/06/2022] [Indexed: 10/29/2022]
Abstract
Clinical reports show that COVID-19 disease has impacts on the cardiovascular system in addition to the respiratory system. Available COVID-19 diagnostic methods have been shown to have limitations. In addition to current diagnostic methods such as low-sensitivity standard RT-PCR tests and expensive medical imaging devices, the development of alternative methods for the diagnosis of COVID-19 disease would be beneficial for control of the COVID-19 pandemic. Further, it is important to quickly and accurately detect abnormalities caused by COVID-19 on the cardiovascular system via ECG. In this study, the diagnosis of COVID-19 disease is proposed using a novel deep Convolutional Neural Network model by using only ECG trace images created from ECG signals of COVID-19 infected patients based on the abnormalities caused by the COVID-19 virus on the cardiovascular system. An overall classification accuracy of 98.57%, 93.20%, 96.74% and AUC value of 0.9966, 0.9771, 0.9905 is achieved for COVID-19 vs. Normal, COVID-19 vs. Abnormal Heartbeats, COVID-19 vs. Myocardial Infarction binary classification tasks, respectively. In addition, an overall classification accuracy of 86.55% and 83.05% is achieved for COVID-19 vs. Abnormal Heartbeats vs. Myocardial Infarction and Normal vs. COVID-19 vs. Abnormal Heartbeats vs. Myocardial Infarction multi-classification tasks. This study is believed to have great potential to speed up the diagnosis and treatment of COVID-19 patients, saving clinicians time and facilitating the control of the pandemic.
Collapse
Affiliation(s)
- Emrah Irmak
- Electrical-Electronics Engineering Department, Alanya Alaaddin Keykubat University, 07425, Alanya, Antalya, Turkey.
| |
Collapse
|
21
|
Ben Atitallah S, Driss M, Boulila W, Ben Ghézala H. Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2022; 32:55-73. [PMID: 34898852 PMCID: PMC8653328 DOI: 10.1002/ima.22654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023]
Abstract
By the start of 2020, the novel coronavirus (COVID-19) had been declared a worldwide pandemic, and because of its infectiousness and severity, several strands of research have focused on combatting its ongoing spread. One potential solution to detecting COVID-19 rapidly and effectively is by analyzing chest X-ray images using Deep Learning (DL) models. Convolutional Neural Networks (CNNs) have been presented as particularly efficient techniques for early diagnosis, but most still include limitations. In this study, we propose a novel randomly initialized CNN (RND-CNN) architecture for the recognition of COVID-19. This network consists of a set of differently-sized hidden layers all created from scratch. The performance of this RND-CNN is evaluated using two public datasets: the COVIDx and the enhanced COVID-19 datasets. Each of these datasets consists of medical images (X-rays) in one of three different classes: chests with COVID-19, with pneumonia, or in a normal state. The proposed RND-CNN model yields encouraging results for its accuracy in detecting COVID-19 results, achieving 94% accuracy for the COVIDx dataset and 99% accuracy on the enhanced COVID-19 dataset.
Collapse
Affiliation(s)
| | - Maha Driss
- RIADI LaboratoryUniversity of ManoubaTunisia
- Security Engineering LabPrince Sultan UniversitySaudi Arabia
| | - Wadii Boulila
- RIADI LaboratoryUniversity of ManoubaTunisia
- Robotics and Internet‐of‐Things LabPrince Sultan UniversitySaudi Arabia
| | | |
Collapse
|
22
|
Zhang J, Yan Y, Ni H, Ni Z. Lung detection and severity prediction of pneumonia patients based on COVID-19 DET-PRE network. Expert Rev Med Devices 2022; 19:97-106. [PMID: 34894969 DOI: 10.1080/17434440.2022.2014319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The sudden outbreak of COVID-19 pneumonia has brought a heavy disaster to individuals globally. Facing this new virus, the clinicians have no automatic tools to assess the severity of pneumonia patients. METHODS In the current work, a COVID-19 DET-PRE network with two pipelines was proposed. Firstly, the lungs in X-rays were detected and segmented through the improved YOLOv3 Dense network to remove redundant features. Then, the VGG16 classifier was pre-trained on the source domain, and the severity of the disease was predicted on the target domain by means of transfer learning. RESULTS The experiment results demonstrated that the COVID-19 DET-PRE network can effectively detect the lungs from X-rays and accurately predict the severity of the disease. The mean average precisions (mAPs) of lung detection in patients with mild and severe illness were 0.976 and 0.983 respectively. Moreover, the accuracy of severity prediction of COVID-19 pneumonia can reach 86.1%. CONCLUSIONS The proposed neural network has high accuracy, which is suitable for the clinical diagnosis of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Jiaqiao Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Yan Yan
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Hongjun Ni
- School of Mechanical Engineering, Nantong University, Nantong, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Udriștoiu AL, Ghenea AE, Udriștoiu Ș, Neaga M, Zlatian OM, Vasile CM, Popescu M, Țieranu EN, Salan AI, Turcu AA, Nicolosu D, Calina D, Cioboata R. COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis. Life (Basel) 2021; 11:1281. [PMID: 34833156 PMCID: PMC8617902 DOI: 10.3390/life11111281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units, clinicians, and radiologists, so the development of methods to forecast the diagnosis' severity became a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based multimodal approach to forecast the future diagnosis' severity of patients with laboratory-confirmed cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate, and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score) was developed to automatically classify the chest X-ray images and integrate them into AI-Score. (3) Results: The AI-Score predicted the COVID-19 diagnosis' severity on the testing/control dataset (95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study demonstrated that the deep learning methods based on the integration of clinical and biological data with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.
Collapse
Affiliation(s)
- Anca Loredana Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania; (A.L.U.); (Ș.U.); (M.N.)
| | - Alice Elena Ghenea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania; (A.L.U.); (Ș.U.); (M.N.)
| | - Manuela Neaga
- Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania; (A.L.U.); (Ș.U.); (M.N.)
| | - Ovidiu Mircea Zlatian
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Corina Maria Vasile
- PhD School Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Eugen Nicolae Țieranu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania;
| | - Alex-Ioan Salan
- Department of Oral and Maxillofacial Surgery, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Adina Andreea Turcu
- Infectious Disease Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania;
| | - Dragos Nicolosu
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania;
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania
| | - Ramona Cioboata
- Department of Pneumology, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania;
| |
Collapse
|
24
|
Irmak E. Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS OF ELECTRICAL ENGINEERING 2021; 45. [PMCID: PMC8061452 DOI: 10.1007/s40998-021-00426-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Brain tumor diagnosis and classification still rely on histopathological analysis of biopsy specimens today. The current method is invasive, time-consuming and prone to manual errors. These disadvantages show how essential it is to perform a fully automated method for multi-classification of brain tumors based on deep learning. This paper aims to make multi-classification of brain tumors for the early diagnosis purposes using convolutional neural network (CNN). Three different CNN models are proposed for three different classification tasks. Brain tumor detection is achieved with 99.33% accuracy using the first CNN model. The second CNN model can classify the brain tumor into five brain tumor types as normal, glioma, meningioma, pituitary and metastatic with an accuracy of 92.66%. The third CNN model can classify the brain tumors into three grades as Grade II, Grade III and Grade IV with an accuracy of 98.14%. All the important hyper-parameters of CNN models are automatically designated using the grid search optimization algorithm. To the best of author’s knowledge, this is the first study for multi-classification of brain tumor MRI images using CNN whose almost all hyper-parameters are tuned by the grid search optimizer. The proposed CNN models are compared with other popular state-of-the-art CNN models such as AlexNet, Inceptionv3, ResNet-50, VGG-16 and GoogleNet. Satisfactory classification results are obtained using large and publicly available clinical datasets. The proposed CNN models can be employed to assist physicians and radiologists in validating their initial screening for brain tumor multi-classification purposes.
Collapse
Affiliation(s)
- Emrah Irmak
- Electrical-Electronics Engineering Department, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey
| |
Collapse
|