1
|
Al-Thaibani A, Mostafa H, Alshamsi O, Moin A, Bansal N, Mudgil P, Maqsood S. Spray drying and ultrasonication processing of camel whey protein concentrate: Characterization and impact on bioactive properties. J Dairy Sci 2024:S0022-0302(24)00951-2. [PMID: 38908705 DOI: 10.3168/jds.2024-24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
The production of whey protein concentrates (WPCs) from camel milk whey represents an effective approach to valorize this processing by-product. These concentrates harbor active ingredients with significant bioactive properties. Camel WPCs were spray-dried (SD) at inlet temperature of 170, 185 and 200°C, or Ultrasonicated (US) for 5, 10 and 15 min, then freeze-dried to obtain fine powder. The impact of both treatments on protein degradation was studied by sodium dodecyl sulfate-PAGE and reverse-phase ultraperformance liquid chromatography (RP-UPLC) techniques. Significantly enhanced protein degradation was observed after US treatment when compared with SD. Both SD and US treatments slightly enhanced the WPCs samples' antioxidant activities. The US exposure for 15 min exhibited highest 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (12.12 mmol TE/g). Moreover, US treatment for 10 min exhibited the highest in vitro anti-diabetic properties (α-amylase and α-glucosidase inhibition), and dipeptidyl-peptidase-IV inhibitory activity among all samples. In addition, the ultrasonication for 10 min and SD at 170°C showed the lowest IC50 values for in vitro anti-hypercholesterolemic activities in terms of pancreatic lipase and cholesteryl esterase inhibition. Conclusively, these green techniques can be adapted in the preservation and processing of camel milk whey into active ingredients with high bioactive properties.
Collapse
Affiliation(s)
- Alanoud Al-Thaibani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Ohood Alshamsi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Abeera Moin
- Department of Food Science and Technology, University of Karachi, 75270, Pakistan
| | - Nidhi Bansal
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Center for Health, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
2
|
El-Aidie SAM, Khalifa GSA. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13319. [PMID: 38506186 DOI: 10.1111/1541-4337.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Industrial waste management is critical to maintaining environmental sustainability. The dairy industry (DI), as one of the major consumers of freshwater, generates substantial whey dairy effluent, which is notably rich in organic matter and thus a significant pollutant. The effluent represents environmental risks due to its high biological and chemical oxygen demands. Today, stringent government regulations, environmental laws, and heightened consumer health awareness are compelling industries to responsibly manage and reuse whey waste. Therefore, this study investigates sustainable solutions for efficiently utilizing DI waste. Employing a systematic review approach, the research reveals that innovative technologies enable the creation of renewable, high-quality, value-added food products from dairy byproducts. These innovations offer promising sustainable waste management strategies for the dairy sector, aligning with economic interests. The main objectives of the study deal with, (a) assessing the environmental impact of dairy sector waste, (b) exploring the multifaceted nutritional and health benefits inherent in cheese whey, and (c) investigating diverse biotechnological approaches to fashion value-added, eco-friendly dairy whey-based products for potential integration into various food products, and thus fostering economic sustainability. Finally, the implications of this work span theoretical considerations, practical applications, and outline future research pathways crucial for advancing the sustainable management of dairy waste.
Collapse
Affiliation(s)
- Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | | |
Collapse
|
3
|
Singh AK, Pal P, Pandey B, Goksen G, Sahoo UK, Lorenzo JM, Sarangi PK. Development of "Smart Foods" for health by nanoencapsulation: Novel technologies and challenges. Food Chem X 2023; 20:100910. [PMID: 38144773 PMCID: PMC10740092 DOI: 10.1016/j.fochx.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
Importance of nanotechnology may be seen by penetration of its application in diverse areas including the food sector. With investigations and advancements in nanotechnology, based on feedback from these diverse areas, ease, and efficacy are also increasing. The food sector may use nanotechnology to encapsulate smart foods for increased health, wellness, illness prevention, and effective targeted delivery. Such nanoencapsulated targeted delivery systems may further add to the economic and nutritional properties of smart foods like stability, solubility, effectiveness, safeguard against disintegration, permeability, and bioavailability of smart/bioactive substances. But in the way of application, the fabrication of nanomaterials/nanostructures has several challenges which range from figuring out the optimal technique for obtaining them to determining the most suitable form of nanostructure for a bioactive molecule of interest. This review precisely addresses concepts, recent advances in fabrication techniques as well as current challenges/glitches of nanoencapsulation with special reference to smart foods/bioactive components. Since dealing with food materials also raises the quest for safety and regulatory norms a brief overview of the safety and regulatory aspects of nanomaterials/nanoencapsulation is also presented.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | | | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| |
Collapse
|
4
|
Ghazal AF, Zhang M, Guo Z. Microwave-induced rapid 4D change in color of 3D printed apple/potato starch gel with red cabbage juice-loaded WPI/GA mixture. Food Res Int 2023; 172:113138. [PMID: 37689902 DOI: 10.1016/j.foodres.2023.113138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to explore the feasibility of utilizing microparticle mixture (MCPs) comprised of whey protein isolate (WPI), gum Arabic (GA), and freeze-dried red cabbage juice (FDRCJ) as a smart material to realize a rapid color change of 3D printed apple/potato starch gel in response to microwave heating stimulation. The particle size, morphology and thermal stability of WPI/FDRCJ/GA microparticles were examined. Then, the rheology, texture properties and printability of Apple/potato starch gel affected by different concentrations of WPI/FDRCJ/GA microparticles (0, 15, 30, 45, 60% (w/w)) were studied. Results showed that the WPI/FDRCJ/GA microparticles were more thermally stable than pure materials, indicating that the heat-sensitive anthocyanin and other compounds present in FDRCJ were effectively protected by the wall materials (WPI/GA). Moreover, the addition of various microparticle concentrations decreased the samples' mechanical properties but had no significant influence on their loss modulus, viscosity, or printing accuracy. As the microwave heating time increased, the lightness (L*) and yellowness (b*) of microparticle-added samples decreased while the redness (a*) significantly increased (p < 0.05), resulting in a gradual color change from yellow/brown to red. These findings could be useful to produce novel colorful and appealing 4D healthy food products that stimulate consumer appetite.
Collapse
Affiliation(s)
- Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Technology Resources, Jiangnan University, 14122 Wuxi, China; Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Resources, Jiangnan University, 14122 Wuxi, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Zhimei Guo
- Wuxi Haihe Equipment Scientific & Technological Co., Wuxi, China
| |
Collapse
|
5
|
Faustino M, Pereira CF, Durão J, Oliveira AS, Pereira JO, Ferreira C, Pintado ME, Carvalho AP. Effect of drying technology in Saccharomyces cerevisiae mannans: Structural, physicochemical, and functional properties. Food Chem 2023; 412:135545. [PMID: 36708669 DOI: 10.1016/j.foodchem.2023.135545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Mannans are polysaccharides whose physicochemical and biological properties render them commercialization in several products. Since these properties are strongly dependent on production conditions, the present study aims to assess the impact of different drying technologies - freeze (FDM) and spray drying (SDM) - on the structural, physicochemical, and biological properties of mannans from Saccharomyces cerevisiae. Structural analysis was assessed by FT-IR, PXRD and SEM, whereas physicochemical properties were evaluated based on sugars, protein, ash and water contents, solubility, and molecular weight distribution. Thermal behaviour was analysed by DSC, and antioxidant activity by DPPH and ABTS assays. The parameters which revealed major differences, in terms of structural and physicochemical properties regarded morphology (SEM), physical appearance (colour), moisture (3.6 ± 0.1 % and 11.9 ± 0.6 % for FDM and SDM, respectively) and solubility (1 mg/mL for FDM and 25 mg/mL for SDM). Nevertheless, these differences were not translated into the antioxidant capacity.
Collapse
Affiliation(s)
- Margarida Faustino
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Joana Durão
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal.
| | - Ana Sofia Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Carlos Ferreira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
6
|
Rodríguez-Cortina A, Rodríguez-Cortina J, Hernández-Carrión M. Obtention of Sacha Inchi ( Plukenetia volubilis Linneo) Seed Oil Microcapsules as a Strategy for the Valorization of Amazonian Fruits: Physicochemical, Morphological, and Controlled Release Characterization. Foods 2022; 11:foods11243950. [PMID: 36553691 PMCID: PMC9777982 DOI: 10.3390/foods11243950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi seed oil (SIO) is a promising ingredient for the development of functional foods due to its large amount of high-value compounds; however, it is prone to oxidation. This work aimed to obtain SIO microcapsules using conventional and ultrasound probe homogenization and using spray- and freeze-drying technologies as effective approaches to improve the long-term stability of functional compounds. The application of ultrasound probe homogenization improved the rheological and emulsifying properties and decreased the droplet size and interfacial tension of emulsions. The microcapsules obtained by both drying technologies had low moisture (1.64-1.76) and water activity (0.03-0.11) values. Spray-dried microcapsules showed higher encapsulation efficiency (69.90-70.18%) compared to freeze-dried ones (60.02-60.16%). Thermogravimetric analysis indicated that heat protection was assured, enhancing the shelf-life. Results suggest that both drying technologies are considered effective tools to produce stable microcapsules. However, spray-drying technology is positioned as a more economical alternative to freeze-drying.
Collapse
Affiliation(s)
- Aureliano Rodríguez-Cortina
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Jader Rodríguez-Cortina
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria—Agrosavia, Mosquera 250047, Colombia
| | - María Hernández-Carrión
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-1339-49-49 (ext. 1802)
| |
Collapse
|
7
|
Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 2022; 40:1115-1140. [DOI: 10.1007/s11095-022-03442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
|
8
|
Corrêa APF, Veras FF, Lago CC, Noreña CPZ, Brandelli A. Microencapsulation upholds biological activities of sheep whey hydrolysates and protects against in vitro gastrointestinal digestion. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Shobuz M, Sabur K, Khan MR, Julkifal I, Uttam Kumar S, Hasan GMMA, Ahmed M. Viability and stability of microencapsulated probiotic bacteria by freeze‐drying under in vitro gastrointestinal conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahmud Shobuz
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - khan Sabur
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Islam Julkifal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Sarker Uttam Kumar
- Department of Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - G. M. M. Anwarul Hasan
- Institute of Food Science &Technology (IFST) Bangladesh Council of Scientific &Industrial Research (BCSIR), Dr Qudrat‐I‐ Khuda Road, Dhaka‐1205 Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| |
Collapse
|
10
|
Guo Q, Li S, Du G, Chen H, Yan X, Chang S, Yue T, Yuan Y. Formulation and characterization of microcapsules encapsulating carvacrol using complex coacervation crosslinked with tannic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
12
|
Singh H, Kumar Y, Meghwal M. Encapsulated oil powder: Processing, properties, and applications. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himani Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| | - Yogesh Kumar
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) University of Padova Padua Italy
| | - Murlidhar Meghwal
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| |
Collapse
|
13
|
Investigation of Storage Stability, Baking Stability, and Characteristics of Freeze-Dried Cranberrybush (Viburnum opulus L.) Fruit Microcapsules. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Syama M, Arora S, Gupta C, Singh A. Loading of vitamin D2 in native and modified sodium caseinate: Delineation of physico-chemical and in-vitro bioaccessibility attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Saha P, Bajaj R, Mann B, Sharma R, Mandal S. Isolation and characterisation of micellar casein from buffalo milk using microfiltration technique with modified buffer composition. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Priti Saha
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001India
| | - Rajesh Bajaj
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001India
| | - Bimlesh Mann
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001India
| | - Rajan Sharma
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal Haryana 132001India
| | - Surajit Mandal
- Department of Dairy Microbiology Faculty of Dairy Technology West Bengal University of Animal & Fishery Sciences Mohanpur West Bengal 741246 India
| |
Collapse
|
16
|
Di Giorgio L, Salgado PR, Mauri AN. Fish oil encapsulated in soy protein particles by lyophilization. Effect of drying process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:206-213. [PMID: 34061354 DOI: 10.1002/jsfa.11347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fish oil is an important source of healthy ω-3 fatty acids to be used in functional foods. However, its autoxidation susceptibility, aroma and solubility make it difficult to use. Its encapsulation could reduce these disadvantages. This manuscript focuses on the drying stage of the encapsulation process. Its objective was to study the encapsulation of fish oil with soy proteins by emulsification and lyophilization and compare microparticles characteristics with those processed identically but spray dried. RESULTS Microparticles with different protein/oil ratios were prepared by emulsification and lyophilization. Soy proteins encapsulated fish oil in matrix-type microcapsules masking its typical odor and oily appearance. Microparticles dried by lyophilization showed a better solid recovery but lower encapsulation efficiency than those spray dried. Increasing protein/oil mass ratio of initial formulations seemed to favor initial lipid oxidation, but these differences were not appreciated when analyzing the oxidative stability over time (measured by Rancimat test). Porous structure and large surface area of lyophilized samples would favor oxygen easy penetration and exposition to free radicals, increasing lipid oxidation over time, while spray dried microparticles showed a good oxidative stability over time, like that of free oil. CONCLUSION Drying processes were determinants in the morphology of microcapsules, the efficiency of encapsulation and protection exerted on the oil. Although emulsifying and drying processes caused certain initial oil oxidation, soy proteins managed to mask fish oil flavors and spray dried systems showed a good perspective of oxidative stability of fish oil over time, better than that of lyophilized microparticles. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luciana Di Giorgio
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET CCT La Plata - UNLP), 47 y 116 sn, La Plata, Buenos Aires, 1900, Argentina
| | - Pablo Rodrigo Salgado
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET CCT La Plata - UNLP), 47 y 116 sn, La Plata, Buenos Aires, 1900, Argentina
| | - Adriana Noemi Mauri
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET CCT La Plata - UNLP), 47 y 116 sn, La Plata, Buenos Aires, 1900, Argentina
| |
Collapse
|
17
|
Monisha C, Loganathan M. Impact of drying methods on the physicochemical properties and nutritional composition of defatted black soldier fly (
Hermetia illucens
) pre‐pupae flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chandran Monisha
- Department of Academics and HRD National Institute of Food Processing Technology, Entrepreneurship and Management ‐ Thanjavur NIFTEM‐T Thanjavur India
| | - Manickam Loganathan
- Department of Academics and HRD National Institute of Food Processing Technology, Entrepreneurship and Management ‐ Thanjavur NIFTEM‐T Thanjavur India
| |
Collapse
|
18
|
Rostamnezhad M, Jafari H, Moradikhah F, Bahrainian S, Faghihi H, Khalvati R, Bafkary R, Vatanara A. Spray Freeze-Drying for inhalation application: Process and Formulation Variables. Pharm Dev Technol 2021; 27:251-267. [PMID: 34935582 DOI: 10.1080/10837450.2021.2021941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
High porous particles with specific aerodynamic properties were processed by the spray freeze-drying (SFD) method. Comprehensive knowledge about all aspects of the SFD method is required for particle engineering of various pharmaceutical products with good flow properties. In this review, different types of the SFD method, the most frequently employed excipients, properties of particles prepared by this method, and most recent approaches concerning SFD are summarized. Generally, this technique can prepare spherical-shaped particles with a highly porous interior structure, responsible for the very low density of powders. Increasing the solubility of spray freeze-dried formulations achieves the desired efficacy. Also, due to the high efficiency of SFD, by determining the different features of this method and optimizing the process by model-based studies, desirable results for various inhaled products can be achieved and significant progress can be made in the field of pulmonary drug delivery.
Collapse
Affiliation(s)
- Mostafa Rostamnezhad
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Jafari
- Department of Food and Drug Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Faghihi
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Khalvati
- Food and Drug Administration, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Reza Bafkary
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Charles APR, Jin TZ, Mu R, Wu Y. Electrohydrodynamic processing of natural polymers for active food packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:6027-6056. [PMID: 34435448 DOI: 10.1111/1541-4337.12827] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The active packaging materials fabricated using natural polymers is increasing in recent years. Electrohydrodynamic processing has drawn attention in active food packaging due to its potential in fabricating materials with advanced structural and functional properties. These materials have the significant capability in enhancing food's quality, safety, and shelf-life. Through electrospinning and electrospray, fibers and particles are encapsulated with bioactive compounds for active packaging applications. Understanding the principle behind electrohydrodynamics provides fundamentals in modulating the material's physicochemical properties based on the operating parameters. This review provides a deep understanding of electrospray and electrospinning, along with their advantages and recent innovations, from food packaging perspectives. The natural polymers suitable for developing active packaging films and coatings through electrohydrodynamics are intensely focused. The critical properties of the packaging system are discussed with characterization techniques. Furthermore, the limitations and prospects for natural polymers and electrohydrodynamic processing in active packaging are summarized.
Collapse
Affiliation(s)
- Anto Pradeep Raja Charles
- Food and Animal Sciences Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Richard Mu
- Interdisciplinary Graduate Engineering Research Institute, Tennessee State University, Nashville, Tennessee, USA
| | - Ying Wu
- Food and Animal Sciences Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Al-Maqtari QA, Mohammed JK, Mahdi AA, Al-Ansi W, Zhang M, Al-Adeeb A, Wei M, Phyo HM, Yao W. Physicochemical properties, microstructure, and storage stability of Pulicaria jaubertii extract microencapsulated with different protein biopolymers and gum arabic as wall materials. Int J Biol Macromol 2021; 187:939-954. [PMID: 34343588 DOI: 10.1016/j.ijbiomac.2021.07.180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/16/2023]
Abstract
This study aimed to evaluate the possibility of using gum arabic (GA) with different protein materials namely whey protein isolate (WP), sodium caseinate (SC), and soybean protein (SP) as wall materials to encapsulate Pulicaria jaubertii extract (PJ) using freeze-drying. Four formulations of microencapsulation of Pulicaria jaubertii extract (MPJE) were produced, including WPGA-MPJE, SCGA-MPJE, SPGA-MPJE, and GA-MPJE. The formulations were stored at 4 °C and 25 °C for 28 days to assess the storage stability. The results indicated that mixtures of proteins with GA improved the physicochemical properties and bioactive content of the MPJE compared to GA-MPJE. The SCGA-MPJE formula showed optimal values of particle size (450.13 nm), polydispersity index (0.33), zeta potential (74.63 mV), encapsulation efficiency (91.07%), total phenolic content (25.51 g GAE g-1 capsules), and antioxidants compounds, as well as presented a lower release of bioactive composites with high oxidative stability during storage at 4 °C and 25 °C. The microstructure of MPJE formulations showed a flat surface without any visible cracking on surfaces. The microcapsules prepared from protein mixtures with GA, especially the SCGA-MPJE formula, are the most efficient in encapsulating the plant extract derived from the PJ, which could be useful for application in various industrial fields.
Collapse
Affiliation(s)
- Qais Ali Al-Maqtari
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Department of Biology, Faculty of Science, Sana'a University, Sana'a, Yemen; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Jalaleldeen Khaleel Mohammed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Amer Ali Mahdi
- Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Mi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Abdulqader Al-Adeeb
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Minping Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hsu Mon Phyo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
21
|
Makouie S, Alizadeh M, Maleki O, Khosrowshahi A. Investigation of physicochemical properties and oxidative stability of encapsulated
Nigella sativa
seed oil. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sina Makouie
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| | - Mohammad Alizadeh
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| | - Omid Maleki
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| | - Asghar Khosrowshahi
- Food Science and Technology Department Agriculture Faculty Urmia University Urmia Iran
| |
Collapse
|
22
|
Khoshnoudi-Nia S, Forghani Z, Jafari SM. A systematic review and meta-analysis of fish oil encapsulation within different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:2061-2082. [PMID: 33207958 DOI: 10.1080/10408398.2020.1848793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fish oil is one of the most important sources of omega 3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid which are the most important PUFAs with several health benefits. However, PUFAs are prone to oxidation and have a poor water solubility which limits the use of fish oils into food formulations. Encapsulation techniques can be applied to overcome these challenges. There is a large number of published micro/nanoencapsulation papers, where each of them contains a limited number of wall materials, feed formulation, encapsulation technique, and storage conditions. Therefore, without systematic evaluation of the data extracted from available studies, the design of functional foods containing fish oil would not be very successful. The objective of this systematic review is a meta-analysis of published researches on the nano/microencapsulation of fish oil. A comprehensive literature search was performed between 1 October and 31 December 2019 with encapsulation, fish oil, and oxidative stability keywords. Overall, 39 qualified articles were selected for the statistical analysis. Based on the technique used for encapsulation, the fish oil-loaded carriers were classified into four main groups: (a) spray-dried particles; (b) freeze-dried particles; (c) electrospun fibers and electrosprayed capsules; and (d) other carriers prepared by supercritical antisolvent, gelation, liposomes, spray-freeze drying, and transglutaminase catalyzed cross-linking. The three most frequent methods applied for fish oil encapsulation were spray drying (42.86%), freeze drying (21.43%), and electrohydrodynamic (19.04%) methods, respectively. Averagely, the best encapsulation efficiency was obtained for electrohydrodynamic processes. Also, the combination of polysaccharide-protein based wall materials provided the best performance in terms of fish oil encapsulation efficiency.
Collapse
Affiliation(s)
- Sara Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Forghani
- Department Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
23
|
Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02480-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk. Processes (Basel) 2020. [DOI: 10.3390/pr8060709] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmaceutical manufacturing is evolving from traditional batch processes to continuous ones. The new global competition focused on throughput and quality of drug products is certainly the driving force behind this transition which, thus, represents the new challenge of pharmaceutical manufacturing and hence of lyophilization as a downstream operation. In this direction, the present review deals with the most recent technologies, based on spray freeze-drying, that can achieve this objective. It provides a comprehensive overview of the physics behind this process and of the most recent equipment design.
Collapse
|
25
|
Xiao L, Li Y, Tian J, Zhou J, Xu Q, Feng L, Rui X, Fan X, Zhang Q, Chen X, Dong M, Li W. Influences of drying methods on the structural, physicochemical and antioxidant properties of exopolysaccharide from Lactobacillus helveticus MB2-1. Int J Biol Macromol 2020; 157:220-231. [PMID: 32344080 DOI: 10.1016/j.ijbiomac.2020.04.196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023]
Abstract
In this study, in order to evaluate influences of different drying methods on the structural characteristics, physicochemical properties and antioxidant activities of exopolysaccharides (EPS) from Lactobacillus helveticus MB2-1, three drying methods, including spray-drying (SD), freeze-drying (FD) and spray freeze-drying (SFD), were applied to dry EPS. Results showed that different drying procedures had no significant influence on the primary structure and constituent monosaccharides of EPSs. However, the surface morphology of the three dried EPSs varied greatly in size and shape due to different drying processes. Among three dried EPSs, the particle size distribution of spray freeze-dried EPS (SF-EPS) was relatively narrower and uniform. Additionally, SF-EPS behaved better apparent viscosity and emulsifying property than spray-dried EPS (S-EPS) and freeze-dried EPS (F-EPS). SF-EPS exhibited stronger antioxidant activities when compared with S-EPS and F-EPS, according to the results of scavenging activities on different radicals and chelating activity on ferrous ion. Overall, SFD was the appropriate method for industrial production of EPS from Lactobacillus helveticus MB2-1 with better physicochemical properties and antioxidant activities.
Collapse
Affiliation(s)
- Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yingying Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Juanjuan Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jianzhong Zhou
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Qian Xu
- College of Life Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Li Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
26
|
Sun H, Hua X, Zhang M, Wang Y, Chen Y, Zhang J, Wang C, Wang Y. Whey Protein Concentrate, Pullulan, and Trehalose as Thermal Protective Agents for Increasing Viability of Lactobacillus plantarum Starter by Spray Drying. Food Sci Anim Resour 2020; 40:118-131. [PMID: 31970336 PMCID: PMC6957444 DOI: 10.5851/kosfa.2019.e94] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023] Open
Abstract
It is necessary to add protective agents for protecting the probiotic viability in the preparation process of probiotics starter. In this study, we used whey protein concentrate (WPC), pullulan, trehalose, and sodium glutamate as the protective agent and optimized the proportion of protective agent and spray-drying parameters to achieve the best protective effect on Lactobacillus plantarum. Moreover, the viable counts of L. plantarum in starter stored at different temperatures (-20°C, 4°C, and 25°C) for 360 days were determined. According to response surface method (RSM), the optimal proportion of protective agent was 24.6 g/L WPC, 18.8 g/L pullulan, 16.7 g/L trehalose and 39.3 g/L sodium glutamate. The optimum spray-drying parameters were the ratio of bacteria to protective agents 3:1 (v: v), the feed flow rate 240 mL/h, and the inlet air temperature 115°C through orthogonal test. Based on the above results, the viable counts of L. plantarum was 12.22±0.27 Log CFU/g and the survival rate arrived at 85.12%. The viable counts of L. plantarum stored at -20°C was more than 1010 CFU/g after 200 days.
Collapse
Affiliation(s)
- Haiyue Sun
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Xiaoman Hua
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Minghao Zhang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yu Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yiying Chen
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Chao Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
- National Processing Laboratory for Soybean
Industry and Technology, Changchun,
China
- National Engineering Laboratory for Wheat
and Corn Deep Processing, Changchun,
China
| |
Collapse
|
27
|
Asgari S, Pourjavadi A, Licht TR, Boisen A, Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv Drug Deliv Rev 2020; 161-162:1-21. [PMID: 32702378 DOI: 10.1016/j.addr.2020.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are live microorganisms (usually bacteria), which are defined by their ability to confer health benefits to the host, if administered adequately. Probiotics are not only used as health supplements but have also been applied in various attempts to prevent and treat gastrointestinal (GI) and non-gastrointestinal diseases such as diarrhea, colon cancer, obesity, diabetes, and inflammation. One of the challenges in the use of probiotics is putative loss of viability by the time of administration. It can be due to procedures that the probiotic products go through during fabrication, storage, or administration. Biocompatible and biodegradable polymers with specific moieties or pH/enzyme sensitivity have shown great potential as carriers of the bacteria for 1) better viability, 2) longer storage times, 3) preservation from the aggressive environment in the stomach and 4) topographically targeted delivery of probiotics. In this review, we focus on polymeric carriers and the procedures applied for encapsulation of the probiotics into them. At the end, some novel methods for specific probiotic delivery, possibilities to improve the targeted delivery of probiotics and some challenges are discussed.
Collapse
|
28
|
Polley P, Gupta S, Singh R, Pradhan A, Basu SM, V. R, Yadava SK, Giri J. Protein–Sugar-Glass Nanoparticle Platform for the Development of Sustained-Release Protein Depots by Overcoming Protein Delivery Challenges. Mol Pharm 2019; 17:284-300. [DOI: 10.1021/acs.molpharmaceut.9b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poulomi Polley
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Shivam Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ruby Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Remya V.
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Sunil Kumar Yadava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| |
Collapse
|
29
|
Selvakumar S, Janakiraman AB, Michael ML, Jeyan Arthur M, Chinnaswamy A. Formulation and characterization of β‐carotene loaded solid lipid nanoparticles. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sivakamasundari Selvakumar
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | | | - Maria Leena Michael
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | - Moses Jeyan Arthur
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | | |
Collapse
|
30
|
Horincar G, Aprodu I, Barbu V, Râpeanu G, Bahrim GE, Stănciuc N. Interactions of flavonoids from yellow onion skins with whey proteins: Mechanisms of binding and microencapsulation with different combinations of polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:158-167. [PMID: 30831393 DOI: 10.1016/j.saa.2019.02.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/07/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
The interaction of flavonoids extracted from yellow onion skins with whey proteins isolate was studied using fluorescence spectroscopy and simulation methods from the perspectives of microencapsulation. The fluorescence spectroscopy revealed a static quenching mechanism and the involvement of van der Waals and H bonding in complexes formation. The in silico methods suggested that the heat treatment of the major whey proteins affected the binding pockets and therefore the affinity for the main flavonoids. The interaction surface decreased and the interaction energy increased, suggesting lower binding strength. Further, the yellow onion skins extract was successfully encapsulated in whey proteins isolate and different combinations of polymers, including chitosan, maltodextrin and pectin by freeze drying. The resulted powder showed a total flavonoid content of 5.84 ± 0.23 mg quercetin equivalents/g DW in whey protein-chitosan combination and 104.97 ± 5.02 mg quercetin equivalents/g DW in whey protein-maltodextrin-pectin combinations, with antioxidant activity of 175.93 ± 1.50 mM mM Trolox/g DW and 269.20 ± 3.59 mM Trolox/g DW, respectively. The confocal microscopy indicated that the flavonoids aggregated inside the matrix formed between the whey proteins and various polymers and irregular and compact clusters. Therefore, a comprehensive approach involving the extraction of flavonoids from underutilized food by-products, such as yellow onion skins, evaluation of binding mechanisms with whey proteins, whereas tailoring their functional benefit through microencapsulation in order to obtain active ingredients are reported.
Collapse
Affiliation(s)
- Georgiana Horincar
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Romania.
| |
Collapse
|
31
|
Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Isleroglu H, Turker I. Thermal inactivation kinetics of microencapsulated microbial transglutaminase by ultrasonic spray-freeze drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Vardanega R, Muzio AF, Silva EK, Prata AS, Meireles MAA. Obtaining functional powder tea from Brazilian ginseng roots: Effects of freeze and spray drying processes on chemical and nutritional quality, morphological and redispersion properties. Food Res Int 2019; 116:932-941. [DOI: 10.1016/j.foodres.2018.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
|
34
|
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem 2019; 272:494-506. [PMID: 30309574 DOI: 10.1016/j.foodchem.2018.07.205] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
35
|
Hosseini H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A. Encapsulation of EPA and DHA concentrate from Kilka fish oil by milk proteins and evaluation of its oxidative stability. Journal of Food Science and Technology 2018; 56:59-70. [PMID: 30728547 DOI: 10.1007/s13197-018-3455-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2018] [Accepted: 10/02/2018] [Indexed: 11/28/2022]
Abstract
Glyceride product from lipase-catalyzed hydrolysis of fish oil (large-scale) is a rich source of n-3 PUFA (49.62%); but it is prone to oxidation. Our aim was to encapsulate this product by a mixture of whey powder and sodium caseinate (4:1) as a new wall material. The emulsification was done using ultrasonication in different powers (180-380 W) and times (1-3 min) and, then, the emulsions were freeze-dried to obtain the powders. Based on encapsulation efficiency, sonication (88-94%) could inhibit the presence of oil at the surface of powder particles in comparison with the samples prepared without sonication (control, 68%). The highest oxidation rate and the lowest L-value were found for the unencapsulated glyceride product stored in air atmosphere followed by the control powder, the powders from sonication treatment and the unencapsulated glyceride product under N2, respectively. In the case of oxidative stability of the samples, the sonication time was more significant than sonication power. According to our results, a sonication treatment of 380 W for 3 min was recommended to prepare parent emulsions during fish oil encapsulation.
Collapse
Affiliation(s)
- Hamed Hosseini
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Ghorbani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Sadeghi Mahoonak
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
36
|
Isleroglu H, Turker I, Tokatli M, Koc B. Ultrasonic spray-freeze drying of partially purified microbial transglutaminase. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Gupta C, Arora S, Syama M, Sharma A. Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes. Food Res Int 2018; 106:964-973. [DOI: 10.1016/j.foodres.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022]
|
38
|
Abstract
The preparation methods and applications of flavor and fragrance capsules based on polymeric, inorganic and polymeric–inorganic wall materials are summarized.
Collapse
Affiliation(s)
- Lei He
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jing Hu
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Weijun Deng
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|
39
|
|
40
|
Hosseinnia M, Khaledabad MA, Almasi H. Optimization of Ziziphora clinopodiodes essential oil microencapsulation by whey protein isolate and pectin: A comparative study. Int J Biol Macromol 2017; 101:958-966. [DOI: 10.1016/j.ijbiomac.2017.03.190] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022]
|
41
|
Veverka M, Dubaj T, Jorík V, Veverková E, Šimon P. Stabilization of conjugated linoleic acid via complexation with arabinogalactan and β‐glucan. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Tibor Dubaj
- Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
| | - Vladimír Jorík
- Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
| | - Eva Veverková
- Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
| | - Peter Šimon
- Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
| |
Collapse
|
42
|
S. P, Anandharamakrishnan C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Rao PS, Bajaj RK, Mann B, Arora S, Tomar SK. Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin-gum arabic blend. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:3834-3843. [PMID: 28017999 PMCID: PMC5147710 DOI: 10.1007/s13197-016-2376-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/12/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Abstract
Antioxidant peptide enriched casein hydrolysate (AO-CH) are receiving increasing attention due to their potential as functional ingredient. Encapsulation of AO-CH using maltodextrin-gum arabic (MD/GA) as wall material could represent an attractive approach to overcome the problems related to their direct application. Encapsulation parameter were optimized using different ratio of core to coat and proportion of coating material (10:0, 8:2, 6:4) under varying pH (2-8) for encapsulation efficiency (EE).The preparation P3 resulted in maximum EE (87%) using core to coat ratio 1:20, at pH 6.0 with 8:2 MD/GA ratio. The encapsulated preparation showed reduced bitterness (p < 0.05) compared to the casein hydrolysate together with maximum retention of antioxidant activity (93%). Further, the narrow range of particle size, indicates their better stability and represents a promising food additive for incorporation in food.
Collapse
Affiliation(s)
- Priyanka Singh Rao
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Rajesh Kumar Bajaj
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Bimlesh Mann
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Sumit Arora
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana 132001 India
| | - S. K. Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
44
|
Silva EK, Zabot GL, Cazarin CBB, Maróstica MR, Meireles MAA. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity. Carbohydr Polym 2016; 144:149-58. [PMID: 27083804 DOI: 10.1016/j.carbpol.2016.02.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses.
Collapse
Affiliation(s)
- Eric Keven Silva
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Giovani L Zabot
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Cinthia B B Cazarin
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Mário R Maróstica
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - M Angela A Meireles
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|
45
|
Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Silva EK, Zabot GL, A. Meireles MA. Ultrasound-assisted encapsulation of annatto seed oil: Retention and release of a bioactive compound with functional activities. Food Res Int 2015; 78:159-168. [DOI: 10.1016/j.foodres.2015.10.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
|
47
|
|
48
|
Microspheres as carriers for lipase inhibitory substances to reduce dietary triglyceride absorption in mice. J Food Drug Anal 2015; 24:129-135. [PMID: 28911395 PMCID: PMC9345438 DOI: 10.1016/j.jfda.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/28/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022] Open
Abstract
The present study intends to use microspheres as a delivery system of chlorogenic acid (CGA) to investigate the influences of CGA microspheres on dietary fat absorption and fecal triglyceride excretion in a mice model. Microspheres have an average particle size of about 53.3 μm. Results indicated that the microspheres were capable of gradually releasing the preloaded CGA into the surrounding medium. Their bioadhesive property might help prolong the gastrointestinal transit time in mice, and render a better mixing and contact between CGA and triglyceride. Consumption of CGA microspheres resulted in a significantly higher level of fecal triglyceride (119-144%) as compared with the corresponding control groups. A microsphere would be a desirable vehicle for CGA to improve its efficacy along the intestine.
Collapse
|
49
|
Eratte D, Wang B, Dowling K, Barrow CJ, Adhikari BP. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Funct 2015; 5:2743-50. [PMID: 25008146 DOI: 10.1039/c4fo00296b] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)-gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI-GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.
Collapse
Affiliation(s)
- Divya Eratte
- School of Health Science, Federation University Australia, Mount Helen, VIC 3353, Australia
| | | | | | | | | |
Collapse
|
50
|
Padma Ishwarya S, Anandharamakrishnan C. Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2014.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|