1
|
Saravanan A, Kumar PS, Ramesh B, Srinivasan S. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. CHEMOSPHERE 2022; 298:134341. [PMID: 35307383 DOI: 10.1016/j.chemosphere.2022.134341] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The direct release of industrial effluent into the water and other anthropogenic activities causes water pollution. Heavy metal ions are the primary contaminant in the industrial effluents which are exceptionally toxic at low concentrations, terribly disturb the endurance equilibrium of activities in the eco-system and be remarkably hazardous to human health. Different conventional treatment methodologies were utilized for the removal of toxic pollutants from the contaminated water which has several drawbacks such as cost-ineffective and lower efficiency. Recently, genetically modified micro-organisms (GMMs) stand-out for the removal of toxic heavy metals are viewed as an economically plausible and environmentally safe technique. GMMs are microorganisms whose genetic material has been changed utilizing genetic engineering techniques that exhibit enhanced removal efficiency in comparison with the other treatment methodologies. The present review comments the GMMs such as bacteria, algae and fungi and their potential for the removal of toxic heavy metals. This review provides current aspects of different advanced molecular tools which have been used to manipulate micro-organisms through genetic expression for the breakdown of metal compounds in polluted areas. The strategies, major limitations and challenges for genetic engineering of micro-organisms have been reviewed. The current review investigates the approaches working on utilizing genetically modified micro-organisms and effective removal techniques.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
2
|
Raybould A. Problem formulation and phenotypic characterisation for the development of novel crops. Transgenic Res 2020; 28:135-145. [PMID: 31321696 DOI: 10.1007/s11248-019-00147-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypic characterisation provides important information about novel crops that helps their developers to make technical and commercial decisions. Phenotypic characterisation comprises two activities. Product characterisation checks that the novel crop has the qualities of a viable product-the intended traits have been introduced and work as expected, and no unintended changes have been made that will adversely affect the performance of the final product. Risk assessment evaluates whether the intended and unintended changes are likely to harm human health or the environment. Product characterisation follows the principles of problem formulation, namely that the characteristics required in the final product are defined and criteria to decide whether the novel crop will have these properties are set. The hypothesis that the novel crop meets the criteria are tested during product development. If the hypothesis is corroborated, development continues, and if the hypothesis is falsified, the product is redesigned or its development is halted. Risk assessment should follow the same principles. Criteria that indicate the crop poses unacceptable risk should be set, and the hypothesis that the crop does not possess those properties should be tested. However, risk assessment, particularly when considering unintended changes introduced by new plant breeding methods such as gene editing, often ignores these principles. Instead, phenotypic characterisation seeks to catalogue all unintended changes by profiling methods and then proceeds to work out whether any of the changes are important. This paper argues that profiling is an inefficient and ineffective method of phenotypic characterisation for risk assessment. It discusses reasons why profiling is favoured and corrects some misconceptions about problem formulation.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta Crop Protection AG, Rosentalstrasse 67, 4002, Basel, Switzerland.
| |
Collapse
|
3
|
Raybould A. Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About Product Use. GMOS 2020. [DOI: 10.1007/978-3-030-53183-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Raybould A, Holt K, Kimber I. Using problem formulation to clarify the meaning of weight of evidence and biological relevance in environmental risk assessments for genetically modified crops. GM CROPS & FOOD 2019; 10:63-76. [PMID: 31184249 PMCID: PMC6615591 DOI: 10.1080/21645698.2019.1621615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Weight of evidence and biological relevance are important concepts for risk assessment and decision-making over the use of GM crops; however, their meanings are not well defined. We use problem formulation to clarify the definition of these concepts and thereby identify data that are relevant for risk assessment. Problem formulation defines criteria for the acceptability of risk and devises rigorous tests of the hypothesis that the criteria are met. Corroboration or falsification of such hypotheses characterize risk and enable predictable and transparent decisions about whether certain risks from using a particular GM crop are acceptable. Decisions based on a weight of evidence approach use a synthesis of several lines of evidence, whereas a "definitive" approach to risk assessment enables some decisions to be based on the results of a single test. Data are biologically relevant for risk assessment only if they test a hypothesis that is useful for decision-making.
Collapse
Affiliation(s)
| | - Karen Holt
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, UK
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Raybould A, Macdonald P. Policy-Led Comparative Environmental Risk Assessment of Genetically Modified Crops: Testing for Increased Risk Rather Than Profiling Phenotypes Leads to Predictable and Transparent Decision-Making. Front Bioeng Biotechnol 2018; 6:43. [PMID: 29755975 PMCID: PMC5932390 DOI: 10.3389/fbioe.2018.00043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
We describe two contrasting methods of comparative environmental risk assessment for genetically modified (GM) crops. Both are science-based, in the sense that they use science to help make decisions, but they differ in the relationship between science and policy. Policy-led comparative risk assessment begins by defining what would be regarded as unacceptable changes when the use a particular GM crop replaces an accepted use of another crop. Hypotheses that these changes will not occur are tested using existing or new data, and corroboration or falsification of the hypotheses is used to inform decision-making. Science-led comparative risk assessment, on the other hand, tends to test null hypotheses of no difference between a GM crop and a comparator. The variables that are compared may have little or no relevance to any previously stated policy objective and hence decision-making tends to be ad hoc in response to possibly spurious statistical significance. We argue that policy-led comparative risk assessment is the far more effective method. With this in mind, we caution that phenotypic profiling of GM crops, particularly with omics methods, is potentially detrimental to risk assessment.
Collapse
Affiliation(s)
| | - Phil Macdonald
- Plant Health Science Services, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
6
|
Wach M, Hellmich RL, Layton R, Romeis J, Gadaleta PG. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms. Transgenic Res 2016; 25:499-505. [PMID: 26922585 PMCID: PMC4925689 DOI: 10.1007/s11248-016-9945-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/23/2016] [Indexed: 11/10/2022]
Abstract
Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies.
Collapse
Affiliation(s)
- Michael Wach
- Center for Environmental Risk Assessment, ILSI Research Foundation, Washington, DC, USA.
| | - Richard L Hellmich
- USDA-ARS, Corn Insects and Crop Genetics Research Unit and Department of Entomology, Iowa State University, Ames, IA, USA
| | | | - Jörg Romeis
- Agroscope Reckenholz-Tänikon Research Station ART, Zurich, Switzerland
| | - Patricia G Gadaleta
- Biotechnology Directorate, Ministry of Agriculture, Livestock and Fisheries, Buenos Aires, Argentina
| |
Collapse
|
7
|
Kohl C, Frampton G, Sweet J, Spök A, Haddaway NR, Wilhelm R, Unger S, Schiemann J. Can Systematic Reviews Inform GMO Risk Assessment and Risk Management? Front Bioeng Biotechnol 2015; 3:113. [PMID: 26322307 PMCID: PMC4533014 DOI: 10.3389/fbioe.2015.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 01/26/2023] Open
Abstract
Systematic reviews represent powerful tools to identify, collect, synthesize, and evaluate primary research data on specific research questions in a highly standardized and reproducible manner. They enable the defensible synthesis of outcomes by increasing precision and minimizing bias whilst ensuring transparency of the methods used. This makes them especially valuable to inform evidence-based risk analysis and decision making in various topics and research disciplines. Although seen as a "gold standard" for synthesizing primary research data, systematic reviews are not without limitations as they are often cost, labor and time intensive and the utility of synthesis outcomes depends upon the availability of sufficient and robust primary research data. In this paper, we (1) consider the added value systematic reviews could provide when synthesizing primary research data on genetically modified organisms (GMO) and (2) critically assess the adequacy and feasibility of systematic review for collating and analyzing data on potential impacts of GMOs in order to better inform specific steps within GMO risk assessment and risk management. The regulatory framework of the EU is used as an example, although the issues we discuss are likely to be more widely applicable.
Collapse
Affiliation(s)
- Christian Kohl
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg, Germany
| | - Geoff Frampton
- Southampton Health Technology Assessments Centre (SHTAC), Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Armin Spök
- Alpen-Adria Universität Klagenfurt-Wien Graz and IFZ-Inter-University Research Centre for Technology, Work and Culture, Graz, Austria
| | - Neal Robert Haddaway
- Mistra Council for Evidence-Based Environmental Management (EviEM), Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg, Germany
| | - Stefan Unger
- Data Processing Group, Julius Kühn-Institut, Quedlinburg, Germany
| | - Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg, Germany
| |
Collapse
|
8
|
Horak MJ, Rosenbaum EW, Kendrick DL, Sammons B, Phillips SL, Nickson TE, Dobert RC, Perez T. Plant characterization of Roundup Ready 2 Yield ® soybean, MON 89788, for use in ecological risk assessment. Transgenic Res 2015; 24:213-25. [PMID: 25248506 DOI: 10.1007/s11248-014-9839-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
During the development of a genetically modified (GM) crop product, extensive phenotypic and agronomic data are collected to characterize the plant in comparison to a conventional control with a similar genetic background. The data are evaluated for potential differences resulting from the genetic modification process or the GM trait, and the differences--if any--are subsequently considered in the context of contributing to the pest potential of the GM crop. Ultimately, these study results and those of other studies are used in an ecological risk assessment of the GM crop. In the studies reported here, seed germination, vegetative and reproductive growth, and pollen morphology of Roundup Ready 2 Yield(®) soybean, MON 89788, were compared to those of A3244, a conventional control soybean variety with the same genetic background. Any statistically significant differences were considered in the context of the genetic variation known to occur in soybean and were evaluated as indicators of an effect of the genetic modification process and assessed for impact on plant pest (weed) characteristics and adverse ecological impact (ecological risk). The results of these studies revealed no effects attributable to the genetic modification process or to the GM trait in the plant that would result in increased pest potential or adverse ecological impact of MON 89788 compared with A3244. These results and the associated risk assessments obtained from diverse geographic and environmental conditions in the United States and Argentina can be used by regulators in other countries to inform various assessments of ecological risk.
Collapse
Affiliation(s)
- Michael J Horak
- Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO, 63141, USA,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Li Y, Wang Y, Romeis J, Liu Q, Lin K, Chen X, Peng Y. Bt rice expressing Cry2Aa does not cause direct detrimental effects on larvae of Chrysoperla sinica. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1413-21. [PMID: 24057602 DOI: 10.1007/s10646-013-1127-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 05/16/2023]
Abstract
To assess the potential effects of Cry2Aa-expressing insect-resistant Bt rice on Chrysoperla sinica larvae, we conducted two tritrophic bioassays using a non-target (Laodelphax striatellus) and a target herbivore (Chilo suppressalis) as prey. None of the tested life-table parameters of C. sinica did differ when fed with L. striatellus nymphs reared on either Bt or control rice plants. Similarly, C. sinica larval survival and development were not affected when fed C. suppressalis larvae that were reared on Cry2Aa-contained artificial diet compared to those fed control diet. However, the 7-day larval weight was significantly decreased in the Bt treatment and none of the C. sinica larvae developed to the adult stage. To clarify whether the observed effects were due to the direct toxicity of Cry2Aa or prey-quality mediated, we conducted a dietary exposure assay in which the toxicity of Cry2Aa to C. sinica larvae was tested. Potassium arsenate (PA) was included as a positive control. None of the tested life-table parameters of C. sinica was adversely affected when fed Cry2Aa at 500 μg/ml sucrose solution. In contrast, C. sinica larvae were adversely affected by feeding on sucrose solution containing PA. In the feeding assays, exposure of C. sinica larvae to Cry2Aa was confirmed by ELISA. Our results demonstrate that C. sinica larvae are not sensitive to Cry2Aa at concentrations exceeding the levels that the larvae may encounter in Bt rice fields. Consequently the detrimental effects observed in the tritrophic studies using Bt rice-fed C. suppressalis as prey can be attributed to the decreased prey quality due to the sensitivity of C. suppressalis larvae to Cry2Aa.
Collapse
Affiliation(s)
- Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,
| | | | | | | | | | | | | |
Collapse
|
11
|
Devos Y, Sanvido O, Tait J, Raybould A. Towards a more open debate about values in decision-making on agricultural biotechnology. Transgenic Res 2013; 23:933-43. [DOI: 10.1007/s11248-013-9754-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
|
12
|
Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. CHEMOSPHERE 2013; 90:901-9. [PMID: 23062830 DOI: 10.1016/j.chemosphere.2012.09.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/18/2012] [Accepted: 09/08/2012] [Indexed: 05/06/2023]
Abstract
UNLABELLED Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination and decomposition, or because they are of conservation interest. Some arthropods reduce crop yield and quality, and conventional chemical pesticides, biological control agents and genetically engineered (GE) crops are used to control them. A common concern addressed in the ecological risk assessment (ERA) that precedes regulatory approval of these pest control methods is their potential to adversely affect valued non-target arthropods (NTAs). A key concept of ERA is early-tier testing using worst-case exposure conditions in the laboratory and surrogate test species that are most likely to reveal an adverse effect. If no adverse effects are observed in those species at high exposures, confidence of negligible ecological risk from the use of the pest control method is increased. From experience with chemical pesticides and biological control agents, an approach is proposed for selecting test species for early-tier ERA of GE arthropod-resistant crops. Surrogate species should be selected that most closely meet three criteria: (i) Potential sensitivity: species should be the most likely to be sensitive to the arthropod-active compound based on the known spectrum of activity of the active ingredient, its mode of action, and the phylogenetic relatedness of the test and target species; (ii) RELEVANCE species should be representative of valued taxa or functional groups that are most likely to be exposed to the arthropod-active compound in the field; and (iii) Availability and reliability: suitable life-stages of the test species must be obtainable in sufficient quantity and quality, and validated test protocols must be available that allow consistent detection of adverse effects on ecologically relevant parameters. Our proposed approach ensures that the most suitable species are selected for testing and that the resulting data provide the most rigorous test of the risk hypothesis of no adverse effect in order to increase the quality and efficiency of ERAs for cultivation of GE crops.
Collapse
Affiliation(s)
- Jörg Romeis
- Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstr. 191, 8046 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Shin KS, Bae KS, Lee KH, Park DS, Kwon GS, Lee JB. Wickerhamomyces ochangensis sp. nov., an ascomycetous yeast isolated from the soil of a potato field. Int J Syst Evol Microbiol 2011; 61:2543-2546. [PMID: 21057051 DOI: 10.1099/ijs.0.026682-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel ascomycetous yeast, designated strain N7a-Y2T, was isolated from soil collected in a potato field in Ochang, Korea, and its taxonomic position was studied. A neighbour-joining tree based on the D1/D2 domain of large-subunit rRNA gene sequences revealed that the isolate was a member of the Wickerhamomyces clade and that it was closely related to Wickerhamomyces bisporus, Candida quercuum, Candida ulmi and Wickerhamomyces alni. Strain N7a-Y2T formed Saturn-shaped ascospores in unconjugated and persistent asci. D1/D2 domain 26S rRNA gene sequence divergences of 11.0–21.1 % between strain N7a-Y2T and other members of the Wickerhamomyces clade indicate that the strain represents a novel species of the genus Wickerhamomyces, for which the name Wickerhamomyces ochangensis sp. nov. is proposed. The type strain is N7a-Y2T ( = KCTC 17870T = CBS 11843T).
Collapse
Affiliation(s)
- Kee-Sun Shin
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kyung-Sook Bae
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kang Hyun Lee
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Doo-Sang Park
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Gi-Seok Kwon
- School of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Jung-Bok Lee
- Department of Optometry, Kundong University, Andong 760-833, Republic of Korea
| |
Collapse
|
14
|
Yu HL, Li YH, Wu KM. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:520-38. [PMID: 21564541 DOI: 10.1111/j.1744-7909.2011.01047.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.
Collapse
Affiliation(s)
- Hui-Lin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | |
Collapse
|
15
|
Morris EJ. A semi-quantitative approach to GMO risk-benefit analysis. Transgenic Res 2011; 20:1055-71. [DOI: 10.1007/s11248-010-9480-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 01/04/2023]
|
16
|
|
17
|
Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 2010; 20:1-22. [PMID: 20938806 PMCID: PMC3018611 DOI: 10.1007/s11248-010-9446-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022]
Abstract
This paper provides recommendations on experimental design for early-tier laboratory studies used in risk assessments to evaluate potential adverse impacts of arthropod-resistant genetically engineered (GE) plants on non-target arthropods (NTAs). While we rely heavily on the currently used proteins from Bacillus thuringiensis (Bt) in this discussion, the concepts apply to other arthropod-active proteins. A risk may exist if the newly acquired trait of the GE plant has adverse effects on NTAs when they are exposed to the arthropod-active protein. Typically, the risk assessment follows a tiered approach that starts with laboratory studies under worst-case exposure conditions; such studies have a high ability to detect adverse effects on non-target species. Clear guidance on how such data are produced in laboratory studies assists the product developers and risk assessors. The studies should be reproducible and test clearly defined risk hypotheses. These properties contribute to the robustness of, and confidence in, environmental risk assessments for GE plants. Data from NTA studies, collected during the analysis phase of an environmental risk assessment, are critical to the outcome of the assessment and ultimately the decision taken by regulatory authorities on the release of a GE plant. Confidence in the results of early-tier laboratory studies is a precondition for the acceptance of data across regulatory jurisdictions and should encourage agencies to share useful information and thus avoid redundant testing.
Collapse
|
18
|
Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B. Transgene x environment interactions in genetically modified wheat. PLoS One 2010; 5:e11405. [PMID: 20635001 PMCID: PMC2902502 DOI: 10.1371/journal.pone.0011405] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/03/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. METHODS AND FINDINGS We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.
Collapse
Affiliation(s)
- Simon L. Zeller
- Institute of Evolutionary Ecology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail: (SLZ); (BK)
| | - Olena Kalinina
- Institute of Evolutionary Ecology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Susanne Brunner
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (SLZ); (BK)
| | - Bernhard Schmid
- Institute of Evolutionary Ecology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
|
20
|
Perry JN, Ter Braak CJF, Dixon PM, Duan JJ, Hails RS, Huesken A, Lavielle M, Marvier M, Scardi M, Schmidt K, Tothmeresz B, Schaarschmidt F, van der Voet H. Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms. ACTA ACUST UNITED AC 2009; 8:65-78. [PMID: 19833074 DOI: 10.1051/ebr/2009009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous European guidance for environmental risk assessment of genetically modified plants emphasized the concepts of statistical power but provided no explicit requirements for the provision of statistical power analyses. Similarly, whilst the need for good experimental designs was stressed, no minimum guidelines were set for replication or sample sizes. Furthermore, although substantial equivalence was stressed as central to risk assessment, no means of quantification of this concept was given. This paper suggests several ways in which existing guidance might be revised to address these problems. One approach explored is the ;bioequivalence' test, which has the advantage that the error of most concern to the consumer may be set relatively easily. Also, since the burden of proof is placed on the experimenter, the test promotes high-quality, well-replicated experiments with sufficient statistical power. Other recommendations cover the specification of effect sizes, the choice of appropriate comparators, the use of positive controls, meta-analyses, multivariate analysis and diversity indices. Specific guidance is suggested for experimental designs of field trials and their statistical analyses. A checklist for experimental design is proposed to accompany all environmental risk assessments.
Collapse
Affiliation(s)
- Joe N Perry
- Oaklands Barn, Lug's Lane, Broome, Norfolk, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Benedict M, D'Abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, James A, James S, Knols B, Lavery J, O'Neill S, Scott T, Takken W, Toure Y. Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a scientific working group. Vector Borne Zoonotic Dis 2008; 8:127-66. [PMID: 18452399 DOI: 10.1089/vbz.2007.0273] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 2008; 26:203-8. [DOI: 10.1038/nbt1381] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Devos Y, Reheul D, De Waele D, Van Speybroeck L. The interplay between societal concerns and the regulatory frame on GM crops in the European Union. ACTA ACUST UNITED AC 2007; 5:127-49. [PMID: 17445510 DOI: 10.1051/ebr:2007002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recapitulating how genetic modification technology and its agro-food products aroused strong societal opposition in the European Union, this paper demonstrates how this opposition contributed to shape the European regulatory frame on GM crops. More specifically, it describes how this opposition contributed to a de facto moratorium on the commercialization of new GM crop events in the end of the nineties. From this period onwards, the regulatory frame has been continuously revised in order to slow down further erosion of public and market confidence. Various scientific and technical reforms were made to meet societal concerns relating to the safety of GM crops. In this context, the precautionary principle, environmental post-market monitoring and traceability were adopted as ways to cope with scientific uncertainties. Labeling, traceability, co-existence and public information were installed in an attempt to meet the general public request for more information about GM agro-food products, and the specific demand to respect the consumers' and farmers' freedom of choice. Despite these efforts, today, the explicit role of public participation and/or ethical consultation during authorization procedures is at best minimal. Moreover, no legal room was created to progress to an integral sustainability evaluation during market procedures. It remains to be seen whether the recent policy shift towards greater transparency about value judgments, plural viewpoints and scientific uncertainties will be one step forward in integrating ethical concerns more explicitly in risk analysis. As such, the regulatory frame stands open for further interpretation, reflecting in various degrees a continued interplay with societal concerns relating to GM agro-food products. In this regard, both societal concerns and diversely interpreted regulatory criteria can be inferred as signaling a request - and even a quest - to render more explicit the broader-than-scientific dimension of the actual risk analysis.
Collapse
Affiliation(s)
- Yann Devos
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
24
|
Raybould A. Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. ACTA ACUST UNITED AC 2007; 5:119-25. [PMID: 17445509 DOI: 10.1051/ebr:2007004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Environmental risk assessments can provide high confidence of minimal risk by testing theories, "risk hypotheses", that predict the likelihood of unacceptable harmful events. The creation of risk hypotheses and a plan to test them is called problem formulation. Effective problem formulation seeks to maximize the possibility of detecting effects that indicate potential risk; if such effects are not detected, minimal risk is indicated with high confidence. Two important implications are that artificial test conditions can increase confidence, whereas prescriptive data requirements can reduce confidence (increase uncertainty) if they constrain problem formulation. Poor problem formulation can increase environmental risk because it leads to the collection of superfluous data that may delay or prevent the introduction of environmentally beneficial products.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| |
Collapse
|
25
|
|
26
|
Abstract
By the end of the 1980s, a broad consensus had developed that there were potential environmental risks of transgenic plants requiring assessment and that this assessment must be done on a case-by-case basis, taking into account the transgene, recipient organism, intended environment of release, and the frequency and scale of the intended introduction. Since 1990, there have been gradual but substantial changes in the environmental risk assessment process. In this review, we focus on changes in the assessment of risks associated with non-target species and biodiversity, gene flow, and the evolution of resistance. Non-target risk assessment now focuses on risks of transgenic plants to the intended local environment of release. Measurements of gene flow indicate that it occurs at higher rates than believed in the early 1990s, mathematical theory is beginning to clarify expectations of risks associated with gene flow, and management methods are being developed to reduce gene flow and possibly mitigate its effects. Insect pest resistance risks are now managed using a high-dose/refuge or a refuge-only strategy, and the present research focuses on monitoring for resistance and encouraging compliance to requirements. We synthesize previous models for tiering risk assessment and propose a general model for tiering. Future transgenic crops are likely to pose greater challenges for risk assessment, and meeting these challenges will be crucial in developing a scientifically coherent risk assessment framework. Scientific understanding of the factors affecting environmental risk is still nascent, and environmental scientists need to help improve environmental risk assessment.
Collapse
Affiliation(s)
- D A Andow
- Department of Entomology, University of Minnesota, 219 Hodson Hall, St Paul, MN 55108, USA.
| | | |
Collapse
|
27
|
Hill R, Sendashonga C. Conservation biology, genetically modified organisms, and the biosafety protocol. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2006; 20:1620-5. [PMID: 17181797 DOI: 10.1111/j.1523-1739.2006.00534.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Concerns have been raised regarding the potential adverse effects on biological diversity of the use of living modified organisms (LMOs, which are commonly known by similar terms such as genetically modified organisms). At the international level these concerns are addressed in part by an agreement known as the Cartagena Protocol on Biosafety and include potential toxic effects of insect-resistant crops on nontarget organisms and potential ecological effects of gene flow from modified crops, fish, microorganisms, or insects to wild species or counterparts. We reviewed the protocol's main provisions, including those dealing with risk assessment and risk management, decision making on imports, documentation accompanying shipments, and liability resulting from damages caused by LMOs. A medium-term program of work has been adopted by the parties, which includes the potential contribution of conservation biologists to delivering capacity building, developing risk assessment guidance, evaluating mechanisms of potential ecological damages from LMOs, and other issues. Conservation biologists and other experts have opportunities to influence the negotiations and implementation of the protocol by providing inputs at meetings, offering expertise to governments and organizations, and participating in or developing relevant projects and initiatives. Involvement of conservation biologists in the implementation and further development of the protocol would contribute to its effectiveness.
Collapse
Affiliation(s)
- Ryan Hill
- Secretariat of the Convention Biological Diversity, 413 St. Jacques Street, Suite 800, Montreal, Quebec H2Y1N9 Canada.
| | | |
Collapse
|
28
|
Raybould A, Cooper I. Tiered tests to assess the environmental risk of fitness changes in hybrids between transgenic crops and wild relatives: the example of virus resistant Brassica napus. ACTA ACUST UNITED AC 2006; 4:127-40. [PMID: 16634220 DOI: 10.1051/ebr:2005018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last 20 years, there has been much research aimed at improving environmental risk assessment of transgenic crops. Despite large amounts of data, decisions to allow or prohibit the release of transgenic crops remain confused and controversial. We argue that part of the reason for confusion is the lack of clear definitions of components of the environment that should be protected, and, as a consequence, there is no way to judge the relevance of data collected under the auspices of 'environmental risk assessment'. Although this criticism applies to most aspects of environmental risk assessment of transgenic crops, it is most pertinent to effects that might result from an increase in plant fitness, often referred to as increased weediness. Environmental risk assessment of weediness is regarded as complicated: an increase in the fitness of a transgenic plant compared with non-transgenic counterparts will be the result of an interaction between the altered plant phenotype and an enormous number of environmental variables. This has led to the idea that risk assessment of weediness needs to "understand" these interactions, with the implication that exhaustive data are required. Here we argue that environmental risk assessment of the weediness of transgenic plants need not be complicated. Analysis of the conditions that must be met for increased weediness to occur suggests a series of studies that starts with simple tests in the laboratory under "worst case" assumptions, and becomes increasingly complex and realistic should the simpler studies not indicate negligible risk with sufficient certainty. We illustrate how the approach might work for assessing the risks of increased weediness using the example of possible introgression of a gene for Turnip mosaic virus (TuMV) resistance from oilseed rape to certain wild Brassica species.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | | |
Collapse
|
29
|
|
30
|
Romeis J, Meissle M, Bigler F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 2006; 24:63-71. [PMID: 16404399 DOI: 10.1038/nbt1180] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The area devoted to growing transgenic plants expressing insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) is increasing worldwide. A major concern with the adoption of Bt crops is their potential impact on nontarget organisms including biological control organisms. Regulatory frameworks should advocate a step-wise (tiered) approach to assess possible nontarget effects of Bt crops. Laboratory and glasshouse studies have revealed effects on natural enemies only when Bt-susceptible, sublethally damaged herbivores were used as prey or host, with no indication of direct toxic effects. Field studies have confirmed that the abundance and activity of parasitoids and predators are similar in Bt and non-Bt crops. In contrast, applications of conventional insecticides have usually resulted in negative impacts on biological control organisms. Because Bt-transgenic varieties can lead to substantial reductions in insecticide use in some crops, they can contribute to integrated pest management systems with a strong biological control component.
Collapse
Affiliation(s)
- Jörg Romeis
- Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Reckenholzstr. 191, 8046 Zurich, Switzerland.
| | | | | |
Collapse
|
31
|
Sanvido O, Widmer F, Winzeler M, Bigler F. A conceptual framework for the design of environmental post-market monitoring of genetically modified plants. ACTA ACUST UNITED AC 2006; 4:13-27. [PMID: 16209133 DOI: 10.1051/ebr:2005008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Genetically modified plants (GMPs) may soon be cultivated commercially in several member countries of the European Union (EU). According to EU Directive 2001/18/EC, post-market monitoring (PMM) for commercial GMP cultivation must be implemented, in order to detect and prevent adverse effects on human health and the environment. However, no general PMM strategies for GMP cultivation have been established so far. We present a conceptual framework for the design of environmental PMM for GMP cultivation based on current EU legislation and common risk analysis procedures. We have established a comprehensive structure of the GMP approval process, consisting of pre-market risk assessment (PMRA) as well as PMM. Both programs can be distinguished conceptually due to principles inherent to risk analysis procedures. The design of PMM programs should take into account the knowledge gained during approval for commercialization of a specific GMP and the decisions made in the environmental risk assessments (ERAs). PMM is composed of case-specific monitoring (CSM) and general surveillance. CSM focuses on anticipated effects of a specific GMP. Selection of case-specific indicators for detection of ecological exposure and effects, as well as definition of effect sizes, are important for CSM. General surveillance is designed to detect unanticipated effects on general safeguard subjects, such as natural resources, which must not be adversely affected by human activities like GMP cultivation. We have identified clear conceptual differences between CSM and general surveillance, and propose to adopt separate frameworks when developing either of the two programs. Common to both programs is the need to put a value on possible ecological effects of GMP cultivation. The structure of PMM presented here will be of assistance to industry, researchers, and regulators, when assessing GMPs during commercialization.
Collapse
Affiliation(s)
- Olivier Sanvido
- Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, CH-8046 Zurich, Switzerland.
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Ian Cooper
- Natural Environment Research Council Centre for Ecology and Hydrology Mansfield Road, Oxford, Oxfordshire OX1 3SR, United Kingdom
| | | |
Collapse
|
33
|
Hill RA. Conceptualizing risk assessment methodology for genetically modified organisms. ACTA ACUST UNITED AC 2005; 4:67-70. [PMID: 16402662 DOI: 10.1051/ebr:2005012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
34
|
|
35
|
Andow DA. Editorial: Negative and positive data, statistical power, and confidence intervals. ACTA ACUST UNITED AC 2003; 2:75-80. [PMID: 15612273 DOI: 10.1051/ebr:2003008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|