1
|
Kuna A, Poblocki P, Baranowicz K, Grzybek M. Lesion on the right testicle of 21-year-old patient. One Health 2024; 19:100863. [PMID: 39253388 PMCID: PMC11382319 DOI: 10.1016/j.onehlt.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Human dirofilariasis is an emerging disease that is rising and driven by increasing travel of both humans and their companion animals and climate change. We report a case of Dirofilaria repens in the scrotum of a 21-year-old patient, who experienced right testicular pain. Ultrasonography revealed a tubular, worm-like lesion extracted successfully and confirmed as an immature D. repens through parasitological and molecular analyses. Post-surgery, the patient underwent anthelmintic treatment and was discharged. Increased awareness of this parasitosis among healthcare professionals is crucial, given the expected rise in dirofilariasis cases. Climate change in Poland, characterized not so much by record high temperatures but by a systematic increase in the number of warm days, affects many aspects of life. Due to the presence of disease vectors, the introduction and reintroduction of exotic and parasitic disease, previously rare or absent in temperate climate zones, is possible.
Collapse
Affiliation(s)
- Anna Kuna
- Department of Tropical and Parasitic Diseases, Faculty of Health Science, Medical University of Gdańsk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland
| | - Pawel Poblocki
- Department of General and Oncologic Urology, Nicolaus Copernicus Hospital in Toruń, Batorego 17-19, 87-100 Toruń, Poland
| | - Karolina Baranowicz
- Department of Tropical Parasitology, Faculty of Health Science, Medical University of Gdańsk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Faculty of Health Science, Medical University of Gdańsk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland
| |
Collapse
|
2
|
Melo T, Sousa CA, Delacour-Estrella S, Bravo-Barriga D, Seixas G. Characterization of the microbiome of Aedes albopictus populations in different habitats from Spain and São Tomé. Sci Rep 2024; 14:20545. [PMID: 39232089 PMCID: PMC11375178 DOI: 10.1038/s41598-024-71507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The mosquito microbiome significantly influences vector competence, including in Aedes albopictus, a globally invasive vector. Describing the microbiome and Wolbachia strains of Ae. albopictus from different regions can guide area-specific control strategies. Mosquito samples from Spain and São Tomé were analyzed using 16S rRNA gene sequencing and metagenomic sequencing. Wolbachia infection patterns were observed by sex and population. Female mosquitoes were blood-fed, a factor considered in analyzing their microbiota. Results revealed a dominance of dual Wolbachia infections, strains A and B, in the microbiome of both populations of Ae. albopictus, especially among females. Both populations shared a core microbiome, although 5 and 9 other genera were only present in Spain and São Tomé populations, respectively. Genera like Pelomonas and Nevskia were identified for the first time in Aedes mosquitoes. This study is the first to describe the Ae. albopictus bacteriome in Spain and São Tomé, offering insights for the development of targeted mosquito control strategies. Understanding the specific microbiome composition can help in designing more effective interventions, such as microbiome manipulation and Wolbachia-based approaches, to reduce vector competence and transmission potential of these mosquitoes.
Collapse
Affiliation(s)
- Tiago Melo
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Carla Alexandra Sousa
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Sarah Delacour-Estrella
- Animal Health Department, The AgriFood Institute of Aragon (IA2), School of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Departamento de Investigación y Desarrollo (I+D), Quimera. B.S. Calle Olivo, 14, 50016, La Puebla de Alfindén, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Universidad de Córdoba, Córdoba, Spain
| | - Gonçalo Seixas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal.
| |
Collapse
|
3
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
4
|
Soto A, Delang L. Culex modestus: the overlooked mosquito vector. Parasit Vectors 2023; 16:373. [PMID: 37858198 PMCID: PMC10588236 DOI: 10.1186/s13071-023-05997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Culex (Barraudius) modestus (Ficalbi 1889) are found in temperate regions across Europe, Asia, and Northern Africa. These mosquitoes thrive during the summer and prefer to breed in permanent vegetative habitats such as rice paddies and marshes. Culex modestus feed on a wide range of bird species but are highly attracted to humans, which makes them a potential 'bridge' vector for enzootic pathogens. There is compelling evidence that Culex modestus is an efficient vector for West Nile virus, potentially capable of causing epidemics in humans and other mammals. This species is also a likely vector for Usutu virus, avian malaria (Plasmodium spp.), and parasitic heartworms (Dirofilaria spp.). Culex modestus can be morphologically identified at the larval and adult stages, and a distinctive phenotype of this species is their ability to overwinter. Despite the widespread establishment of this mosquito species and their role as vectors for human pathogens, we lack sufficient knowledge on this species to implement and evaluate targeted vector control measures. Since Culex modestus can be considered a potential public health threat, there is a need for a better understanding of this mosquito species.
Collapse
Affiliation(s)
- Alina Soto
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Kamkong P, Jitsamai W, Thongmeesee K, Ratthawongjirakul P, Taweethavonsawat P. Genetic diversity and characterization of Wolbachia endosymbiont in canine filariasis. Acta Trop 2023; 246:107000. [PMID: 37567493 DOI: 10.1016/j.actatropica.2023.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Canine filariasis is caused by nematodes from the family Onchocercidae, which is transmitted by arthropod vectors. The disease is commonly found in Southeast Asia and exists worldwide. Some filarial nematodes are associated with intracellular bacteria of the genus Wolbachia, which plays an important role in embryogenesis, molting, and the long-term survival of adult worms. This study aims to characterize Wolbachia sp. and determine the association between Wolbachia and canine filarial nematode species in Thailand. A total of 46 dog blood samples that were naturally infected with filarial nematodes were obtained to identify filarial nematode species by Giemsa stained under a light microscope and confirmed using the molecular technique. In order to characterize Wolbachia sp., the nested PCR assay targeting the 16S rRNA gene showed that all samples of Dirofilaria immitis and fifteen samples of Candidatus Dirofilaria hongkongensis were grouped into Wolbachia supergroup C. In addition, all samples of Brugia spp. and five samples of Candidatus Dirofilaria hongkongensis were classified into Wolbachia supergroup D. The genetic diversity analysis conducted using the 16S rRNA gene revealed a similar result when analyzed through phylogenetic tree analysis. This is the first genetic diversity study of Wolbachia of Candidatus Dirofilaria hongkongensis in infected dogs in Thailand.
Collapse
Affiliation(s)
- Patchana Kamkong
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Graduate Program of Molecular Sciences in Medical Microbiology and Immunology, Chulalongkorn University, Bangkok 10330, Thailand; Biomarkers in Animal Parasitology Research Group, Thailand
| | - Wanarit Jitsamai
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Kritsada Thongmeesee
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panan Ratthawongjirakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyanan Taweethavonsawat
- Biomarkers in Animal Parasitology Research Group, Thailand; Department of Pathology, Faculty of Veterinary Science, Parasitology Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Aung ST, Bawm S, Chel HM, Htun LL, Wai SS, Eshita Y, Katakura K, Nakao R. The first molecular confirmation of Culex pipiens complex as potential natural vectors of Dirofilaria immitis in Myanmar. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:542-549. [PMID: 37017293 DOI: 10.1111/mve.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Dirofilariosis, known as one of the most widespread vector-borne zoonotic diseases, is caused by several different species of the nematodes of the genus Dirofilaria, which can be transmitted by Culex, Anopheles and Aedes mosquito vectors. In order to identify key vector mosquitoes of filarial parasites in Myanmar, mosquitoes were collected during three different seasons (summer, rainy and winter) in three townships in Nay Pyi Taw area, Myanmar. DNA extraction and polymerase chain reaction (PCR) analyses were conducted for 185 mosquito pools, with each pool containing 1-10 mosquitoes. Dirofilaria immitis was detected in 20 pools of Culex pipiens complex mosquitoes. The minimum infection rate of mosquitoes was found to be 16.33. The small subunit ribosomal RNA (12S rDNA) gene targeted PCR revealed that the sequences obtained were completely identical to the sequences of D. immitis derived from dogs in China, Brazil and France. The sequences obtained from mitochondrial cytochrome oxidase subunit I (COI) gene PCR exhibited 100% identity with the sequences of D. immitis derived from dogs in Bangladesh, Iran, Japan and Thailand, as well as humans in Iran and Thailand, and mosquitoes in Germany and Hungary. The findings of this study demonstrated that the mosquito species of Cx. pipiens complex are potential mosquito vectors for dirofilariosis in Myanmar.
Collapse
Affiliation(s)
- Si Thu Aung
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
- Swan Arh Veterinary Clinic, Yan Aung, Pyinmana, Nay Pyi Taw, 15012, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
- Department of Livestock and Aquaculture Research, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Hla Myet Chel
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Soe Soe Wai
- Department of Veterinary Public Health, University of Veterinary Science, Yezin, Nay Pyi Taw, 15013, Myanmar
| | - Yuki Eshita
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Ken Katakura
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
7
|
Soto A, De Coninck L, Devlies AS, Van De Wiele C, Rosales Rosas AL, Wang L, Matthijnssens J, Delang L. Belgian Culex pipiens pipiens are competent vectors for West Nile virus while Culex modestus are competent vectors for Usutu virus. PLoS Negl Trop Dis 2023; 17:e0011649. [PMID: 37729233 PMCID: PMC10545110 DOI: 10.1371/journal.pntd.0011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.
Collapse
Affiliation(s)
- Alina Soto
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lander De Coninck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Devlies
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Celine Van De Wiele
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lanjiao Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Yurchenko AA, Naumenko AN, Artemov GN, Karagodin DA, Hodge JM, Velichevskaya AI, Kokhanenko AA, Bondarenko SM, Abai MR, Kamali M, Gordeev MI, Moskaev AV, Caputo B, Aghayan SA, Baricheva EM, Stegniy VN, Sharakhova MV, Sharakhov IV. Phylogenomics revealed migration routes and adaptive radiation timing of Holarctic malaria mosquito species of the Maculipennis Group. BMC Biol 2023; 21:63. [PMID: 37032389 PMCID: PMC10084679 DOI: 10.1186/s12915-023-01538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Phylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics. RESULTS To reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group. CONCLUSIONS Our phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Kurchatov Genomics Center, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
- Current Address: INSERM U981, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Anastasia N Naumenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gleb N Artemov
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Dmitry A Karagodin
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - James M Hodge
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alena I Velichevskaya
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Alina A Kokhanenko
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kamali
- Department of Medical Entomology and Parasitology, Tarbiat Modares University, Tehran, Iran
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, State University of Education, Mytishchi, Russia
| | - Anton V Moskaev
- Department of General Biology and Ecology, State University of Education, Mytishchi, Russia
| | - Beniamino Caputo
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Università Sapienza, Rome, Italy
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Vladimir N Stegniy
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Maria V Sharakhova
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia.
| | - Igor V Sharakhov
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
9
|
Occurrence of Dirofilaria repens in wild carnivores in Poland. Parasitol Res 2023; 122:1229-1237. [PMID: 36939921 PMCID: PMC10097766 DOI: 10.1007/s00436-023-07823-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Dirofilaria repens is an expanding vector-borne zoonotic parasite of canines and other carnivores. Sub-clinically infected dogs constitute the most important reservoir of the parasite and the source of infection for its mosquito vectors. However, occurrence of D. repens infection in wild animals may contribute to the transmission of the parasite to humans and may explain the endemicity of filariae in newly invaded regions. The aim of the current study was to determine the occurrence of D. repens in 511 blood and spleen samples from seven species of wild carnivores (wolves, red foxes, Eurasian badgers, raccoons, raccoon dogs, stone martens, and pine martens) from different regions of Poland by means of a PCR protocol targeting the 12S rDNA gene. Dirofilaria repens-positive hosts were identified in seven of fourteen voivodeships in four of the seven regions of Poland: Masovia, Lesser Poland, Pomerania and Warmia-Masuria. The highest prevalence was found in Masovia region (8%), coinciding with the highest previously recorded prevalence in dogs in Central Poland. The DNA of Dirofilaria was detected in 16 samples of three species (total prevalence 3.13%). A low and similar percentage of positive samples (1.9%, 4.2% and 4.8%) was recorded among badgers, red foxes, and wolves, respectively. Dirofilaria repens-positive hosts were identified in seven of fourteen voivodships. Based on detection in different voivodeships, D. repens-positive animals were recorded in four out of the seven regions of Poland: in Masovia, Lesser Poland, Pomerania, and Warmia-Masuria. The highest prevalence of filariae was found in Masovia region (8%), reflecting the highest previously recorded prevalence in dogs (12-50%) in Central Poland. In summary, we conducted the first comprehensive study on the epidemiology of D. repens in seven species of wild hosts in all seven regions of Poland and identified the first case of D. repens infection in Eurasian badgers in Poland and the second in Europe.
Collapse
|
10
|
Morchón R, Montoya-Alonso JA, Rodríguez-Escolar I, Carretón E. What Has Happened to Heartworm Disease in Europe in the Last 10 Years? Pathogens 2022; 11:pathogens11091042. [PMID: 36145474 PMCID: PMC9503846 DOI: 10.3390/pathogens11091042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Heartworm disease caused by Dirofilaria immitis is a vector-borne disease that affects canids and felids, both domestic and wild, throughout the world. It is a chronic disease which causes vascular damage in pulmonary arteries, and in advanced stages, the presence of pulmonary hypertension and right-sided congestive heart failure can be evidenced. Moreover, pulmonary thromboembolism is caused by the death of the worms, which can be lethal for the infected animal. Furthermore, it is the causative agent of human pulmonary dirofilariosis, being a zoonotic disease. The aim of this review was to update the current epidemiological situation of heartworm in Europe in dogs, cats, wild animals, and vectors insects, and to analyse the factors that may have contributed to the continuous spread of the disease in the last decade (2012–2021). In Europe, the disease has extended to eastern countries, being currently endemic in countries where previously only isolated or imported cases were reported. Furthermore, its prevalence has continued to increase in southern countries, traditionally endemic. This distribution trends and changes are influenced by several factors which are discussed in this review, such as the climate changes, presence of vectors in new areas, the appearance of new competent vector species in the continent, increased movement of pets that travelled to or originated from endemic countries, the urbanisation of rural areas leading to the formation of so-called “heat islands”, or the creation of extensive areas of irrigated crops. The continuous expansion of D. immitis must be monitored, and measures adapted to the situation of each country must be carried out for adequate control.
Collapse
Affiliation(s)
- Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, Campus Miguel Unamuno, 37007 Salamanca, Spain
- Correspondence: (R.M.); (E.C.)
| | - José Alberto Montoya-Alonso
- Internal Medicine, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Campus Arucas, Arucas, 35413 Las Palmas, Spain
| | - Iván Rodríguez-Escolar
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, Campus Miguel Unamuno, 37007 Salamanca, Spain
| | - Elena Carretón
- Internal Medicine, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Campus Arucas, Arucas, 35413 Las Palmas, Spain
- Correspondence: (R.M.); (E.C.)
| |
Collapse
|
11
|
Distribution of dirofilariasis in Omsk region. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Recently, in the Russian Federation, there has been a tendency to an increase in the number of registered cases of dirofilariasis among residents living in a temperate climate zone, including in Western Siberia. The species Dirofilaria repens and Dirofilaria immitis are of clinical importance for humans. Dirofilariae are characterized by migration into the subcutaneous tissue, mucous membranes, organs of vision, internal organs. In the Omsk region, there is an increase in cases of dirofilariasis, including among children.The aim. To assess endemicity of the territory of the Omsk region in relation to pathogens of dirofilariasis.Materials and methods. The maps of the epidemiological survey of persons infected with dirofilariae for the period 2013–2020 were analyzed, parasitological and molecular biological methods examined 1155 blood samples of dogs, 2488 samples female blood-sucking mosquitoes, 26 samples of dirofilaria helminths removed from residents of the Omsk region.Results. In 18 people, the infection was regarded as local, since the infected persons had not left the Omsk region for the previous three years. Local infections are reported annually. Infection of the final owners – dogs – with dirofilaria ranges from 0.6 to 4.8 % in different years. On average, the extensiveness of the invasion was 3.0 ± 0.6 %; and the intensity of microfilaremia was 1277.68 ± 395.87 specimens/ml of blood. On the territory of Omsk and the Omsk region, 11 species of mosquitoes belonging to the genus Aedes, Ochlerotatus, Culex, Anopheles, Coquillettidia were identified. The estimated individual infection of mosquitoes of different species ranged from 0.6 % (O. flavescens) to 9.8 % (An. messeae). The total infection of vectors was 3.4 %. All positive samples were found to contain DNA of D. repens.Conclusion. The territory of the Omsk region is endemic for pathogens of dirofilariasis, in particular, D. repens. Further studies are needed to study the prevalence and species diversity of pathogens of dirofilariasis in Western Siberia, to identify the most dangerous from an epidemiological point of view, species of vectors.
Collapse
|
12
|
Sharifdini M, Karimi M, Ashrafi K, Soleimani M, Mirjalali H. Prevalence and molecular characterization of Dirofilaria immitis in road killed canids of northern Iran. BMC Vet Res 2022; 18:161. [PMID: 35501899 PMCID: PMC9063217 DOI: 10.1186/s12917-022-03270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Dirofilaria immitis is a mosquito-borne filarial nematode, which infects primarily wild and domestic canids, causing cardiopulmonary dirofilariasis. The aim of the present study was to determine the prevalence and characterize molecular features of D. immitis in road killed canids, northern Iran. Methods The carcasses of 53 road killed canids including 18 dogs (Canis familiaris), and 35 golden jackals (C. aureus) were necropsied in both Mazanderan and Guilan provinces, northern Iran. The molecular analyses were conducted based on the cytochrome oxidase (Cox) 1 and 18S ribosomal RNA (rRNA) genes. Results The heartworm infection was found in 55.6% of dogs and 22.9% of jackals. Our study revealed significantly higher prevalence of D. immitis in dogs compared to jackals (P = 0.031). The prevalence of D. immitis was no statistically significant between males and females in both dogs and jackal (P > 0.05). Comparison of the Cox1 gene sequences with available data in the GenBank illustrated 100% similarity with D. immitis isolates from different hosts in European, Asian, and South American continents. Moreover, the 18S rRNA gene sequences showed 100% identity with dog isolates from Japan and French Guiana. Conclusions This study confirms the high prevalence of D. immitis in dogs and jackals of northern Iran. Developing control programs to prevent transmission of the disease is necessary for dogs and humans in the study areas.
Collapse
Affiliation(s)
- Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mahan Karimi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Keyhan Ashrafi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Soleimani
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Skrinjar I, Brailo V, Loncar Brzak B, Lozic Erent J, Bukovski S, Juras DV. Live Intraoral Dirofilaria repens of Lower Lip Mimicking Mucocele-First Reported Case from Croatia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074330. [PMID: 35410011 PMCID: PMC8998914 DOI: 10.3390/ijerph19074330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023]
Abstract
Dirofilariasis is an endemic infestation in tropical and subtropical countries caused by about 40 different species. It rarely occurs in the oral cavity and is mostly presented as mucosal and submucosal nodules. Differential diagnoses include lipoma, mucocele, and pleomorphic adenoma. We report a rare case of oral dirofilariasis mimicking mucocele in a 41-year-old male patient from Croatia without an epidemiological history of travelling outside the country. He came in because of non-painful lower lip swelling that had lasted for two months. The parasite was surgically removed from the lesion. This is the first reported case of oral dirofilariasis in Croatia. It is important to point out this rare diagnosis in order to make dentists aware of the possibility of the presence of such an infestation in common lesions of the oral mucosa.
Collapse
Affiliation(s)
- Ivana Skrinjar
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.S.); (B.L.B.); (D.V.J.)
- Department of Oral Medicine, University Clinical Hospital Zagreb, 10000 Zagreb, Croatia
| | - Vlaho Brailo
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.S.); (B.L.B.); (D.V.J.)
- Department of Oral Medicine, University Clinical Hospital Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| | - Bozana Loncar Brzak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.S.); (B.L.B.); (D.V.J.)
| | - Jelena Lozic Erent
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.L.E.); (S.B.)
| | - Suzana Bukovski
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (J.L.E.); (S.B.)
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Danica Vidovic Juras
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.S.); (B.L.B.); (D.V.J.)
- Department of Oral Medicine, University Clinical Hospital Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
15
|
Konorov EA, Lukashev AN, Oyun NY. Genome Variation of Endosymbiotic Wolbachia in Introduced Populations of Asian Tiger Mosquito Aedes albopictus from Krasnodar Krai. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Gutiérrez-Jara JP, Salazar-Viedma M, González CR, Cancino-Faure B. The emergence of Dirofilaria repens in a non-endemic area influenced by climate change: dynamics of transmission using a mathematical model. Acta Trop 2022; 226:106230. [PMID: 34801478 DOI: 10.1016/j.actatropica.2021.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/01/2022]
Abstract
Dirofilaria repens is a nematode affecting domestic and wild canids, transmitted by several species of mosquitoes of different genera. It usually causes a non-pathogenic subcutaneous infection in dogs and is the principal agent of human dirofilariasis in the Old World. The geographic distribution of D. repens is changing rapidly, and several factors contribute to the spread of the infection to non-endemic areas. A mathematical model for transmission of Dirofilaria spp. was built, using a system of ordinary differential equations that consider the interactions between reservoirs, vectors, and humans. The transmission simulations of D. repens were carried out considering a projection in time, with intervals of 15 and 100 years. For the dynamics of the vector, seasonal variations were presented as series with quarter periodicity during the year. The results of the simulations highlight the peak of contagions in the reservoir and in humans, a product of the action of the vector when it remains active throughout the year. A 300% infection increase in the reservoir was observed during the first decade and remains present in the population with a representative number of cases. When the vector maintains its density and infectivity during the year, the incidence of the infection in humans increases. Accumulated cases amount to 45 per 100,000 inhabitants, which corresponds to a cumulative incidence of 0.05%, in 85 years. This indicates that early prevention of infection in canids would significantly reduce the disease, also reducing the number of accumulated cases of human dirofilariasis by D. repens. The interaction between the simulations generated by the model highlights the sensitivity of the epidemiological curve to the periodicity of seasonality, reaffirming the hypothesis of the probability of movement of the zoonotic disease to non-endemic areas, due to climate change.
Collapse
|
17
|
Younes L, Barré-Cardi H, Bedjaoui S, Ayhan N, Varloud M, Mediannikov O, Otranto D, Davoust B. Dirofilaria immitis and Dirofilaria repens in mosquitoes from Corsica Island, France. Parasit Vectors 2021; 14:427. [PMID: 34446069 PMCID: PMC8390287 DOI: 10.1186/s13071-021-04931-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dirofilaria immitis and Dirofilaria repens are the main causative agents of heartworm disease and subcutaneous dirofilariasis in domestic and wild canids, respectively. Both pathogens have zoonotic potential and are transmitted by mosquitoes. The present study aimed to determine the transmission period, prevalence and diversity of Dirofilaria spp. vectors from endemic areas of Corsica (France). METHODS A monthly point data model based on average temperature recorded by four meteorological stations during 2017 was used to calculate the Dirofilaria transmission period. From June to September 2017, female mosquitoes (n = 1802) were captured using Biogents® Sentinel 2 traps lured with carbon dioxide and BG-Lure™ or octanol. Mosquitoes were identified to species level, pooled accordingly, and screened using multiplex real-time qPCR to detect D. immitis and D. repens. RESULTS The monthly point data model showed the possible transmission of Dirofilaria spp. from the third week in May to the last week in October in the studied area. Mosquitoes were identified as Ochlerotatus caspius (n = 1432), Aedes albopictus (n = 199), Culex pipiens sensu lato (n = 165) and Aedes vexans (n = 6) and were grouped into 109 pools (from 1 to 27 specimens, mean 11.4 ± 0.7), of which 16 scored positive for Dirofilaria spp. (i.e., n = 13; estimated infection rate [EIR] = 1.1% for D. immitis and n = 3; EIR = 0.2% for D. repens). Specifically, 6 (i.e., EIR = 3.8%) of 15 pools of Ae. albopictus were positive for D. immitis, 2 of 14 of Cx. pipiens s.l. were positive for D. immitis and D. repens, respectively, and 8 of 77 pools of Oc. caspius were positive for D. immitis (i.e., n = 6; EIR = 0.4%) and D. repens (i.e., 2; EIR = 0.1%). The highest mosquito infection rate was recorded in July (EIR = 2.5%), then in June (EIR = 1.3%) and September (EIR = 0.6%). CONCLUSIONS The data suggest that both Dirofilaria species are endemic and occur possibly in sympatry in the studied area in Corsica, highlighting the need to implement preventive chemoprophylaxis and vector control strategies to reduce the risk of these filarioids in dog and human populations.
Collapse
Affiliation(s)
- Laidoudi Younes
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | | | - Samia Bedjaoui
- Laboratory of Food Hygiene and Quality Insurance System (HASAQ), Higher National Veterinary School, Issad Abbes, Oued Smar, Algiers, Algeria
| | - Nazli Ayhan
- IHU Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD 190, INSERM U1207, Unité des Virus Emergents, Marseille, France
| | - Marie Varloud
- Ceva Santé Animale, 10, Av de la Ballastière, Libourne, France
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Domenico Otranto
- IHU Méditerranée Infection, Marseille, France.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Animal Epidemiology Experts Group of the Military Health Service, Tours, France.
| |
Collapse
|
18
|
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021; 14:245. [PMID: 33962669 PMCID: PMC8105934 DOI: 10.1186/s13071-021-04742-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract ![]()
Collapse
Affiliation(s)
| | | | - Sara Epis
- Department of Biosciences and Pediatric CRC 'Romeo Ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
19
|
Kirik H, Burtin V, Tummeleht L, Kurina O. Friends in All the Green Spaces: Weather Dependent Changes in Urban Mosquito (Diptera: Culicidae) Abundance and Diversity. INSECTS 2021; 12:insects12040352. [PMID: 33920956 PMCID: PMC8071238 DOI: 10.3390/insects12040352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Many female mosquitoes require vertebrate blood for egg production. Cities are becoming increasingly important points of contact between mosquitoes and their prey, as large-scale urbanization continues. Human settlements represent unique but fragmented habitats that are permanently warmer than rural areas. Because of this, there is a growing demand to better understand urban mosquito populations and the factors affecting them in various circumstances. The aim of this study was to investigate the weather conditions influencing mosquito species and abundance in a Northern European town. Thus, a three-year-long mosquito collection effort was undertaken in Estonia. Results indicated that the number of active mosquitoes decreased with wind and higher temperatures. Interestingly, there was a significant negative correlation between temperature and humidity. Furthermore, while mosquitoes belonging to the Culex pipiens/Culex torrentium group were consistently abundant during the end of the warm season, other dominant species varied considerably between the months and the three study years. Overall, springtime hydrological conditions seemed to greatly influence the mosquito season. Urbanization could generate both higher temperatures and drier environments, resulting in fewer mosquitoes in some areas. This study also revealed the mosquito species most likely to contribute to disease transmission in Estonian towns. Abstract Mosquitoes (Diptera: Culicidae) are universally recognized as troublesome pests and vectors of various pathogens and parasites. Understandably, the species makeup and diversity of individual populations depends on local and broad scale environmental trends, especially on temperature and hydrological variations. Anthropogenic landscapes make for unique habitats, but their effect on insects likely varies across climatic regions. The aim of this study was to investigate the diversity and seasonal patterns of urban mosquitoes in the boreal region. Specimens were collected with an insect net from May to September during three years and determined to species or species group level. Weather information was added to each data point and results analyzed using multivariate regression models. Fieldwork yielded 1890 mosquitoes from four genera. Both abundance and the effective number of species (ENS) significantly decreased during the study period. The number of collected mosquitoes had a negative correlation with wind speed and temperature, latter of which exhibited a negative association with humidity. Species succession followed predictable patterns, but with some variation between years. Still, Culex pipiens/Culex torrentium were the most abundant throughout the study. Importantly, all dominant species were known disease vectors. Our work showed that higher temperatures could result in fewer mosquitoes in boreal towns.
Collapse
Affiliation(s)
- Heli Kirik
- Inst of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 5D, 51006 Tartu, Estonia;
- Correspondence: ; Tel.: +372-5649-6490
| | | | - Lea Tummeleht
- Inst of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 62, 51006 Tartu, Estonia;
| | - Olavi Kurina
- Inst of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 5D, 51006 Tartu, Estonia;
| |
Collapse
|
20
|
Demirci B, Bedir H, Taskin Tasci G, Vatansever Z. Potential Mosquito Vectors of Dirofilaria immitis and Dirofilaira repens (Spirurida: Onchocercidae) in Aras Valley, Turkey. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:906-912. [PMID: 33164092 DOI: 10.1093/jme/tjaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Dirofilaria immitis (Leidy, 1856) and Dirofilaria repens (Railliet & Henry, 1911) are mosquito-borne filarial nematodes that primarily affect dogs, causing heartworm disease and subcutaneous dirofilariosis. The canine heartworm is reported in different provinces in Turkey. However, studies about the transmitting mosquito species are limited. Hence, this study aimed to investigate potential vectors of D. immitis and D. repens in Aras Valley, Turkey. In total, 17,995 female mosquitoes were collected from eight villages during three mosquito seasons (2012-2014) in Aras Valley, located in north-eastern Turkey. A total of 1,054 DNA pools (527 abdomen and 527 head-thorax) were tested with Dirofilaria primers by multiplex-polymerase chain reaction (PCR). Aedes caspius was the most abundant species in collection sites with 90%; this was followed by Culex theileri Theobald, 1903 (Diptera: Culicidae) (7.31%), Anopheles maculipennis Meigen 1818 (Diptera: Culicidae) (1.28%), Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) (0.43%), (Anopheles) hyrcanus (Pallas, 1771) (Diptera: Culicidae) (0.37%), Aedes vexans (Meigen, 1830) (Diptera: Culicidae) (0.25%), and Culiseta annulata Schrank, 1776 (Diptera:Culicidae) (0.02%). Dirofilaria immitis and D. repens were detected in mosquito pools from five villages. The total Dirofilaria spp. estimated infection rate was 1.33%. The highest estimated infection rate was found in Ae. vexans (6.66%) and the lowest was in Ae. caspius (1.26%). The results show that An. maculipennis sl, Ae. caspius, Ae. vexans, Cx. theileri and Cx. pipiens are potential vectors of D. immitis and D. repens with DNA in head-thorax pools; An. hyrcanus is also a likely vector, but Dirofilaria DNA was found only in abdomen pools for the study area. This study revealed new potential vector species for D. immitis. Mosquitoes with natural infections of D. repens were reported for the first time in Turkey.
Collapse
Affiliation(s)
- Berna Demirci
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Kafkas University, Kars, Turkey
| | - Hilal Bedir
- Department of Medical Parasitology, Faculty of Medicine, Kafkas University Kars, Turkey
| | - Gencay Taskin Tasci
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University Kars, Turkey
| | - Zati Vatansever
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University Kars, Turkey
| |
Collapse
|
21
|
Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL. Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis. Pathogens 2021; 10:39. [PMID: 33419044 PMCID: PMC7825316 DOI: 10.3390/pathogens10010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.
Collapse
Affiliation(s)
- Luísa Maria Inácio da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste-Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| |
Collapse
|
22
|
Ding H, Yeo H, Puniamoorthy N. Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore. Parasit Vectors 2020; 13:612. [PMID: 33298138 PMCID: PMC7724734 DOI: 10.1186/s13071-020-04466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the influence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous studies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. Methods We conducted tissue-specific polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecular marker. Mosquito-Wolbachia associations were explored using three methods—tanglegram, distance-based, and event-based methods—and by inferred instances of vertical transmission and host shifts. Results Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including five in the genus Aedes and five in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugnomyia gracilis. Wolbachia were predominantly detected in the reproductive tissues, which is an indication of vertical transmission. However, Wolbachia infection rates varied widely within a mosquito host species. There was no clear signal of cophylogeny between the mosquito hosts and the 12 putative Wolbachia strains observed in this study. Host shift events were also observed. Conclusions Our results suggest that the mosquito-Wolbachia relationship is complex and that combinations of transmission modes and multiple evolutionary events likely explain the observed distribution of Wolbachia diversity across mosquito hosts. These findings have implications for a better understanding of the diversity and ecology of Wolbachia and for their utility as biocontrol agents.
Collapse
Affiliation(s)
- Huicong Ding
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| |
Collapse
|
23
|
Aydın MF, Altay K, Aytmirzakizi A, Dumanlı N. First Molecular Detection of Dirofilaria immitis and D. repens in Dogs from Kyrgyzstan. Acta Parasitol 2020; 65:949-953. [PMID: 32588179 DOI: 10.1007/s11686-020-00245-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dirofilaria immitis and Dirofilaria repens are the causative agents of cardiopulmonary and subcutaneous dirofilariosis, respectively. This neglected disease mainly seen in dogs, cats and wild carnivores is re-emerging recent years. No study was conducted on dirofilariosis in dogs in Kyrgyzstan. PURPOSE The goal of this study was to investigate Dirofilaria species using PCR and sequencing in dogs from Kyrgyzstan. METHOD Dirofilaria spp. infection in dogs was screened via convential PCR and sequencing in 337 dogs from Kyrgyzstan. RESULT The overall prevalence of Dirofilaria spp. was 0.59% (2/337): DNA of D. immitis was detected in one sample and DNA of D. repens in second positive sample. In second sample, parallel co-infection of D. repens with Wolbachia was also found. While D. immitis sequence showed 98.70-100% similarity with previously reported sequences of D. immitis from dog blood, D. repens shared 100% identity with other sequences of D. repens. CONCLUSION These results provided first evidence for Dirofilaria spp. in Kyrgyzstan and emphasized the veterinary and medical importance.
Collapse
Affiliation(s)
- Mehmet Fatih Aydın
- Department of Public Health, Faculty of Health Sciences, University of Karamanoglu Mehmetbey, 70100, Karaman, Turkey.
| | - Kürşat Altay
- Department of Parasitology, College of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Ayperi Aytmirzakizi
- College of Veterinary Medicine, Kırgızistan-Türkiye Manas University, 720044, Bishkek, Kyrgyzstan
| | - Nazir Dumanlı
- College of Veterinary Medicine, Kırgızistan-Türkiye Manas University, 720044, Bishkek, Kyrgyzstan
- Department of Parasitology, College of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
24
|
Khanzadeh F, Khaghaninia S, Maleki-Ravasan N, Koosha M, Oshaghi MA. Molecular detection of Dirofilaria spp. and host blood-meal identification in the Simulium turgaicum complex (Diptera: Simuliidae) in the Aras River Basin, northwestern Iran. Parasit Vectors 2020; 13:548. [PMID: 33148310 PMCID: PMC7641795 DOI: 10.1186/s13071-020-04432-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Blackflies (Diptera: Simuliidae) are known as effective vectors of human and animal pathogens, worldwide. We have already indicated that some individuals in the Simulium turgaicum complex are annoying pests of humans and livestock in the Aras River Basin, Iran. However, there is no evidence of host preference and their possible vectorial role in the region. This study was conducted to capture the S. turgaicum (s.l.), to identify their host blood-meals, and to examine their potential involvement in the circulation of zoonotic microfilariae in the study areas. Methods Adult blackflies of the S. turgaicum complex were bimonthly trapped with insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the river, as well as rice and alfalfa farms) of ten villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanlou, Khetay, Khomarlou, Larijan, Mohammad Salehlou, Parvizkhanlou and Qarloujeh) of the Aras River Basin. A highly sensitive and specific nested PCR assay was used for detection of filarial nematodes in S. turgaicum (s.l.), using nuclear 18S rDNA-ITS1 markers. The sources of blood meals of engorged specimens were determined using multiplex and conventional cytb PCR assays. Results A total of 2754 females of S. turgaicum (s.l.) were collected. The DNA of filarial parasites was detected in 6 (0.62%) of 960 randomly examined individuals. Sequence analysis of 420 base pairs of 18S rDNA-ITS1 genes identified Dirofilaria spp. including 5 D. immitis and 1 D. repens. Importantly, all filarial positive specimens have been captured from humans and animals outdoors. Cytb-PCR assays showed that in all ecotypes studied, members of the S. turgaicum complex had preferably fed on humans, dogs, bovids, and birds, respectively. Conclusions To the best of our knowledge, this is the first report of D. immitis/D. repens detection in blackflies. Results showed that S. turgaicum (s.l.) was the most abundant (97%) and anthropophilic (45%) blackfly in all studied ecotypes/villages and that DNA of Dirofilaria spp. was detected in the flies taken from six villages. Dirofilariasis is a common zoonosis between humans and carnivores, with mosquitoes (Culicidae) as the principal vectors. Further investigations are needed to demonstrate that blackflies are actual vectors of Dirofilaria in the studied region.![]()
Collapse
Affiliation(s)
- Fariba Khanzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tehran, Iran
| | - Samad Khaghaninia
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran. .,Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
25
|
Human seroprevalence data indicate other factors than climatic conditions influencing dirofilariosis transmission in the Russian Federation. J Helminthol 2020; 94:e195. [DOI: 10.1017/s0022149x20000760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
The species of the genus Dirofilaria are filarial parasites causing zoonotic infections in humans with an increasing incidence in temperate and tropical areas of the world. Due to its classification as a vector-borne disease, the most important factors influencing dirofilariosis transmission are those related to climate, such as temperature and humidity. However, other factors linked with human behaviour can influence the distribution of the parasite. Although the Russian Federation could be considered as a non-suitable area for Dirofilaria spp. transmission due to its climatic conditions, one third of the human cases of dirofilariosis have been declared in this country. Here, seroepidemiological data on human dirofilariosis for five different regions distributed throughout the Russian Federation (Rostov, Moscow, Ekaterinburg, Yakutia and Khabarovsk) were obtained. A total of 940 serum samples from totally random donors living in these areas were analysed by enzyme-linked immunosorbent assay for the detection of anti-Dirofilaria immitis immunoglobulin G antibodies. Similar seroprevalence data ranging from 3.41% in Yakutia to 6.95% in Khabarovsk, with no significant correlation with climatic data of yearly average temperature and rainfall from these regions were found. These results suggest that other factors probably related to human behaviour, and not only climatic conditions, might be facilitating the spread of human dirofilariosis in these areas.
Collapse
|
26
|
Novel Mitochondrial DNA Lineage Found among Ochlerotatus communis (De Geer, 1776) of the Nordic-Baltic Region. INSECTS 2020; 11:insects11060397. [PMID: 32604846 PMCID: PMC7348767 DOI: 10.3390/insects11060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022]
Abstract
The Ochlerotatus (Oc.) communis complex consist of three Northern American species as well as a common Holarctic mosquito (Diptera: Culicidae) Oc. communis (De Geer, 1776). These sister species exhibit important ecological differences and are capable of transmitting various pathogens, but cannot always be differentiated by morphological traits. To investigate the Oc. communis complex in Europe, we compared three molecular markers (COI, ND5 and ITS2) from 54 Estonian mosquitoes as well as two COI marker sequences from Sweden. These sequences were subjected to phylogenetic analysis and screened for Wolbachia Hertig and Wolbach symbionts. Within and between groups, distances were calculated for each marker to better understand the relationships among individuals. Results demonstrate that a group of samples, extracted from adult female mosquitoes matching the morphology of Oc. communis, show a marked difference from the main species when comparing the mitochondrial markers COI and ND5. However, there is no variance between the same specimens when considering the nuclear ITS2. We conclude that Oc. communis encompasses two distinct mitochondrial DNA lineages in the Nordic-Baltic region. Further research is needed to investigate the origin and extent of these genetic differences.
Collapse
|
27
|
Hennocq Q, Helary A, Debelmas A, Monsel G, Labat A, Bertolus C, Martin C, Caumes E. Oral migration of Dirofilaria repens after creeping dermatitis. ACTA ACUST UNITED AC 2020; 27:16. [PMID: 32186510 PMCID: PMC7079549 DOI: 10.1051/parasite/2020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/07/2020] [Indexed: 11/26/2022]
Abstract
We report an autochthonous case of oral dirofilariasis in a 46-year-old female patient exposed in South-Eastern France. The patient first presented eyelid creeping dermatitis of one-week duration, then a sub-mucosal nodule appeared in the cheek. The entire nodule was removed surgically. Histologically, the nodule appeared as inflammatory tissue in which a worm was seen. The molecular analysis, based on cox1 and 12S sequences, identified Dirofilaria repens. Ivermectin treatment was given prior to diagnosis, while taking into consideration the most common causes of creeping dermatitis, but treatment was ineffective. The oral form of dirofilariasis is uncommon and could lead to diagnostic wandering.
Collapse
Affiliation(s)
- Quentin Hennocq
- Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Université Pierre et Marie Curie Paris 6, Sorbonne Université, 75013 Paris, France
| | - Aloïs Helary
- Assistance Publique - Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Universitaire Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Alexandre Debelmas
- Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Université Pierre et Marie Curie Paris 6, Sorbonne Université, 75013 Paris, France
| | - Gentiane Monsel
- Assistance Publique - Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Universitaire Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Amandine Labat
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, 75231 Paris, France
| | - Chloé Bertolus
- Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Maxillo-faciale et Stomatologie, Hôpital Universitaire Pitié-Salpêtrière, Université Pierre et Marie Curie Paris 6, Sorbonne Université, 75013 Paris, France
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, 75231 Paris, France
| | - Eric Caumes
- Assistance Publique - Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Universitaire Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| |
Collapse
|