1
|
WIN SY, HORIO F, SATO J, MOTAI Y, SEO H, FUJISAWA S, SATO T, OISHI E, HTUN LL, BAWM S, OKAGAWA T, MAEKAWA N, KONNAI S, OHASHI K, MURATA S. Potential of histamine release factor for the utilization as a universal vaccine antigen against poultry red mites, tropical fowl mites, and northern fowl mites. J Vet Med Sci 2025; 87:1-12. [PMID: 39567007 PMCID: PMC11735211 DOI: 10.1292/jvms.24-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae), tropical fowl mites (TFMs, Ornithonyssus bursa), and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous mites that are distributed worldwide which pose a serious challenge to the poultry industry and negatively impact poultry production and welfare. Vaccines represent a promising approach for controlling avian mites, and the identification of antigens with broad efficacy against multiple avian mite species is advantageous for vaccine control. This study aimed to identify histamine release factor (HRF), which was previously reported as a candidate vaccine antigen against PRMs, from TFMs and NFMs and to analyze its cross-reactivity and acaricidal effects on different avian mite species. The deduced amino acid sequences of the HRFs identified in the TFMs and NFMs were highly homologous to those of the PRMs. We generated recombinant HRF (rHRF) of TFMs, NFMs, and PRMs, and immune plasma against each rHRF was produced by immunization with each antigen. The immune plasma contained antibodies specific to each antigen and showed cross-reactivity with rHRFs from different avian mites. Moreover, PRM nymphs (protonymphs) artificially fed each immune plasma showed higher mortality rates than those fed the control plasma. These results suggest that HRFs can be used as candidate antigens for a universal vaccine with broad efficacy across avian mites.
Collapse
Affiliation(s)
- Shwe Yee WIN
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumiya HORIO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei SATO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshinosuke MOTAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hikari SEO
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Sotaro FUJISAWA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | - Lat Lat HTUN
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw BAWM
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro OKAGAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoya MAEKAWA
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoru KONNAI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development (GU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Kazuhiko OHASHI
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shiro MURATA
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
2
|
Konečný L, Peterková K. Unveiling the peptidases of parasites from the office chair - The endothelin-converting enzyme case study. ADVANCES IN PARASITOLOGY 2024; 126:1-52. [PMID: 39448189 DOI: 10.1016/bs.apar.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The emergence of high-throughput methodologies such as next-generation sequencing and proteomics has necessitated significant advancements in biological databases and bioinformatic tools, therefore reshaping the landscape of research into parasitic peptidases. In this review we outline the development of these resources along the -omics technologies and their transformative impact on the field. Apart from extensive summary of general and specific databases and tools, we provide a general pipeline on how to use these resources effectively to identify candidate peptidases from these large datasets and how to gain as much information about them as possible without leaving the office chair. This pipeline is then applied in an illustrative case study on the endothelin-converting enzyme 1 homologue from Schistosoma mansoni and attempts to highlight the contemporary capabilities of bioinformatics. The case study demonstrate how such approach can aid to hypothesize enzyme functions and interactions through computational analysis alone effectively and emphasizes how such virtual investigations can guide and optimize subsequent wet lab experiments therefore potentially saving precious time and resources. Finally, by showing what can be achieved without traditional wet laboratory methods, this review provides a compelling narrative on the use of bioinformatics to bridge the gap between big data and practical research applications, highlighting the key role of these technologies in furthering our understanding of parasitic diseases.
Collapse
Affiliation(s)
- Lukáš Konečný
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Ecology, Centre of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia.
| | - Kristýna Peterková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Bayramoğlu M, Bayramoğlu Z, Aydın L, Zengin SA, Çırak VY, Demirbağ Z, Demir İ. Entomopathogenic fungi with biological control potential against poultry red mite (Dermanyssus gallinae, Arachnida: Dermanyssidae). Vet Parasitol 2024; 328:110155. [PMID: 38452531 DOI: 10.1016/j.vetpar.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
The poultry red mite, Dermanyssus gallinae (Arachnida: Dermanyssidae) is a pest that causes significant economic loss in laying hens for which control methods are limited. In this study, the effects of 20 indigenous fungal strains on poultry red mites in chicken farms were investigated. All experiments were conducted under laboratory condition at 28 ± 1 °C and 80 ± 5% humidity. A screening test showed that Metharizium flavoviride strain As-2 and Beauveria bassiana strain Pa4 had the greatest measured effect on D. gallinae at 1 × 107 conidia/ml 7 days after application. In a subsequent does-response experiment, these strains also caused 92.7% mortality at 1 × 109 conidia/ml within the same period. The LC50 of these strains was 5.5 × 104 (95% CI: 0.8-37.5) conidia/ml for As-2 and 3.2 × 104 (95% CI: 0.4-26.0) conidia/ml for Pa4, and their LT50 were 1.94 and 1.57 days, respectively. The commercial Metarhizium anisopliae bioinsecticide Bio-Storm 1.15% WP, used as a comparator, had LC50 and LT50 1 × 105 (95% CI: 0.1-7.9) conidia/ml and 3.03 (95% CI: 2.4-3.8) days, respectively. It is suggested that mycoacaricides could be developed using the best two fungal strains found in this study (As-2 and Pa4), providing potential for biological control of poultry red mites.
Collapse
Affiliation(s)
- Miraç Bayramoğlu
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Zeynep Bayramoğlu
- Department of Plant and Animal Production, Pazar Vocational School, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Levent Aydın
- Department of Parasitology, Faculty of Veterinary Medicine, Uludağ University, Bursa, Türkiye
| | - Suna Aslı Zengin
- Arion Pharmaceuticals Istanbul Tuzla Organized Industrial Zone (ITOSB) , 12th Street No:8 34959 Tepeören Tuzla, İstanbul, Türkiye
| | - Veli Yılgör Çırak
- Department of Parasitology, Faculty of Veterinary Medicine, Uludağ University, Bursa, Türkiye
| | - Zihni Demirbağ
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - İsmail Demir
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye.
| |
Collapse
|
4
|
Win SY, Seo H, Horio F, Fujisawa S, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K, Murata S. In Vivo Characterization of the Anti-Glutathione S-Transferase Antibody Using an In Vitro Mite Feeding Model. Vaccines (Basel) 2024; 12:148. [PMID: 38400132 PMCID: PMC10892040 DOI: 10.3390/vaccines12020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Poultry red mites (Dermanyssus gallinae, PRMs), tropical fowl mites (Ornithonyssus bursa, TFMs), and northern fowl mites (O. sylviarum, NFMs) are blood-feeding pests that debilitate poultry worldwide. Glutathione S-transferase (GST) plays an important role in the detoxification and drug metabolism of mites. However, research on avian mite GSTs as vaccine antigens is still lacking. Therefore, we aimed to evaluate the potential of avian mite GSTs for vaccine development. We identified GST genes from TFMs and NFMs. We prepared recombinant GST (rGST) from TFMs, NFMs, and PRMs, and assessed their protein functions. Moreover, we evaluated the cross-reactivity and acaricidal effect of immune plasma against each rGST on TFMs, NFMs, and PRMs. The deduced amino acid sequences of GSTs from TFMs and NFMs were 80% similar to those of the PRMs. The rGSTs exhibited catalytic activity in conjugating glutathione to the 1-chloro-2,4-dinitrobenzene substrate. Immune plasma against each rGST showed cross-reactivity with rGST from different mite species. Moreover, the survival rate of PRMs fed with immune plasma against the rGST of TFMs and NFMs was significantly lower than that of the control plasma. These results demonstrate the potential application of GST as an antigen for the development of a broad-spectrum vaccine against avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Fumiya Horio
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Akira Taneno
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15013, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (GU-IVReD), Hokkaido University, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
5
|
Abstract
The complexity of parasites and their life cycles makes vaccination against parasitic diseases challenging. This review highlights this by discussing vaccination against four relevant parasites of poultry. Coccidia, i.e., Eimeria spp., are the most important parasites in poultry production, causing multiple billions of dollars of damage worldwide. Due to the trend of antibiotic-free broiler production, use of anticoccidia vaccines in broilers is becoming much more important. As of now, only live vaccines are on the market, almost all of which must be produced in birds. In addition, these live vaccines require extra care in the management of flocks to provide adequate protection and prevent the vaccines from causing damage. Considerable efforts to develop recombinant vaccines and related work to understand the immune response against coccidia have not yet resulted in an alternative. Leucozytozoon caulleryi is a blood parasite that is prevalent in East and South Asia. It is the only poultry parasite for which a recombinant vaccine has been developed and brought to market. Histomonas meleagridis causes typhlohepatitis in chickens and turkeys. The systemic immune response after intramuscular vaccination with inactivated parasites is not protective. The parasite can be grown and attenuated in vitro, but only together with bacteria. This and the necessary intracloacal application make the use of live vaccines difficult. So far, there have been no attempts to develop a recombinant vaccine against H. meleagridis. Inactivated vaccines inducing antibodies against the poultry red mite Dermanyssus gallinae have the potential to control infestations with this parasite. Potential antigens for recombinant vaccines have been identified, but the use of whole-mite extracts yields superior results. In conclusion, while every parasite is unique, development of vaccines against them shares common problems, namely the difficulties of propagating them in vitro and the identification of protective antigens that might be used in recombinant vaccines.
Collapse
Affiliation(s)
- Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849,
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
6
|
Bowman CE. Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:139-235. [PMID: 37676375 PMCID: PMC10562343 DOI: 10.1007/s10493-023-00832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are digitised from published sources. Relevant gnathosomal macro- and micro-features are compared and contrasted in detail which may subtly impact the control of channel- or 'pipe'-based transport of prey liquids around various gnathosomal locations. Relative deutosternal groove width on the mesostigmatid subcapitulum is important but appears unrelated to the closing velocity ratio of the moveable digit. Big mites are adapted for handling large and watery prey. The repeated regular distance between deutosternal transverse ridges ('Querleisten') supports the idea of them enabling a regular fluctuating bulging or pulsing droplet-based fluid wave 'sticking' and 'slipping' along the groove. Phytoseiids are an outlier functional group with a low deutosternal pipe flow per body size designed for slot-like microchannel transport in low volume fluid threads arising from daintily nibbling nearby prey klinorhynchidly. Deutosternal groove denticles are orientated topographically in order to synergise flow and possible mixing of coxal gland-derived droplets and circumcapitular reservoir fluids across the venter of the gnathosomal base back via the hypostome to the prey being masticated by the chelicerae. As well as working with the tritosternum to mechanically clean the deutosternum, denticles may suppress fluid drag. Shallow grooves may support edge-crawling viscous flow. Lateral features may facilitate handling unusual amounts of fluid arising from opportunistic feeding on atypical prey. Various conjectures for confirmatory follow-up are highlighted. Suggestions as to how to triage non-uropodoid species as candidate plant pest control agents are included.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
7
|
da Silva GG, Zaldívar MF, Oliveira LAR, Mariano RMDS, Lair DF, de Souza RA, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Nascimento Araújo R, Ferreira LL, Giunchetti RC. Advances in Non-Chemical Tools to Control Poultry Hematophagous Mites. Vet Sci 2023; 10:589. [PMID: 37888541 PMCID: PMC10611074 DOI: 10.3390/vetsci10100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The blood-sucking mites Dermanyssus gallinae ("red mite"), Ornithonyssus sylviarum ("northern fowl mite"), and Ornithonyssus bursa ("tropical fowl mite") stand out for causing infestations in commercial poultry farms worldwide, resulting in significant economic damage for producers. In addition to changes in production systems that include new concerns for animal welfare, global climate change in recent years has become a major challenge in the spread of ectoparasites around the world. This review includes information regarding the main form of controlling poultry mites through the use of commercially available chemicals. In addition, non-chemical measures against blood-sucking mites were discussed such as extracts and oils from plants and seeds, entomopathogenic fungi, semiochemicals, powder such as diatomaceous earth and silica-based products, and vaccine candidates. The control of poultry mites using chemical methods that are currently used to control or eliminate them are proving to be less effective as mites develop resistance. In contrast, the products based on plant oils and extracts, powders of plant origin, fungi, and new antigens aimed at developing transmission-blocking vaccines against poultry mites provide some encouraging options for the rational control of these ectoparasites.
Collapse
Affiliation(s)
- Geralda Gabriele da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Renata Antunes de Souza
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Ricardo Nascimento Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Lorena Lopes Ferreira
- Laboratory of Ectoparasites, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
8
|
Win SY, Murata S, Fujisawa S, Seo H, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K. Characterization of cysteine proteases from poultry red mite, tropical fowl mite, and northern fowl mite to assess the feasibility of developing a broadly efficacious vaccine against multiple mite species. PLoS One 2023; 18:e0288565. [PMID: 37440547 DOI: 10.1371/journal.pone.0288565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Infestation with poultry red mites (PRM, Dermanyssus gallinae) causes anemia, reduced egg production, and death in serious cases, resulting in significant economic losses to the poultry industry. As a novel strategy for controlling PRMs, vaccine approaches have been focused upon and several candidate vaccine antigens against PRMs have been reported. Tropical (TFM, Ornithonyssus bursa) and northern (NFM, Ornithonyssus sylviarum) fowl mites are also hematophagous and cause poultry industry problems similar to those caused by PRM. Therefore, ideal antigens for anti-PRM vaccines are molecules that cross-react with TFMs and NFMs, producing pesticidal effects similar to those against PRMs. In this study, to investigate the potential feasibility of developing vaccines with broad efficacy across mite species, we identified and characterized cysteine proteases (CPs) of TFMs and NFMs, which were previously reported to be effective vaccine antigens of PRMs. The open reading frames of CPs from TFMs and NFMs had the same sequences, which was 73.0% similar to that of PRMs. Phylogenetic analysis revealed that the CPs of TFMs and NFMs clustered in the same clade as CPs of PRMs. To assess protein functionality, we generated recombinant peptidase domains of CPs (rCP-PDs), revealing all rCP-PDs showed CP-like activities. Importantly, the plasma obtained from chickens immunized with each rCP-PD cross-reacted with rCP-PDs of different mites. Finally, all immune plasma of rCP-PDs reduced the survival rate of PRMs, even when the plasma was collected from chickens immunized with rCP-PDs derived from TFM and NFM. Therefore, CP antigen is a promising, broadly efficacious vaccine candidate against different avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
9
|
Win SY, Murata S, Fujisawa S, Seo H, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K. Potential of ferritin 2 as an antigen for the development of a universal vaccine for avian mites, poultry red mites, tropical fowl mites, and northern fowl mites. Front Vet Sci 2023; 10:1182930. [PMID: 37138911 PMCID: PMC10149675 DOI: 10.3389/fvets.2023.1182930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Poultry red mites (PRMs, Dermanyssus gallinae), blood-sucking ectoparasites, are a threat to the poultry industry because of reduced production caused by infestation. In addition, tropical fowl mites (TFMs, Ornithonyssus bursa) and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous, distributed in various regions, genetically and morphologically close to PRMs, and cause similar problems to the poultry industry. Vaccine approaches have been studied for PRM control, and several molecules have been identified in PRMs as candidates for effective vaccine antigens. The development of an anti-PRM vaccine as a universal vaccine with broad efficacy against avian mites could improve the productivity of poultry farms worldwide. Molecules that are highly conserved among avian mites and have critical functions in the physiology and growth of mites could be ideal antigen candidates for the development of universal vaccines. Ferritin 2 (FER2), an iron-binding protein, is critical for the reproduction and survival of PRMs and has been reported as a useful vaccine antigen for the control of PRMs and a candidate for the universal vaccine antigen in some tick species. Method and results Herein, we identified and characterized FER2 in TFMs and NFM. Compared with the sequence of PRM, the ferroxidase centers of the heavy chain subunits were conserved in FER2 of TFMs and NFMs. Phylogenetic analysis revealed that FER2 belongs to clusters of secretory ferritins of mites and other arthropods. Recombinant FER2 (rFER2) proteins from PRMs, TFMs, and NFMs exhibited iron-binding abilities. Immunization with each rFER2 induced strong antibody responses in chickens, and each immune plasma cross-reacted with rFER2 from different mites. Moreover, mortality rates of PRMs fed with immune plasma against rFER2 from TFMs or NFMs, in addition to PRMs, were higher than those of control plasma. Discussion rFER2 from each avian mite exhibited anti-PRM effects. This data suggests that it has the potential to be used as an antigen candidate for a universal vaccine against avian mites. Further studies are needed to access the usefulness of FER2 as a universal vaccine for the control of avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Li H, Chenglin G, Yae Z, Wanyu Z, Rong C. Identification and genetic characterisatin of cathepsin L in Demodex. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:329-344. [PMID: 37058174 DOI: 10.1007/s10493-023-00789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/23/2023] [Indexed: 05/09/2023]
Abstract
Owing to difficulties in obtaining functional gene sequences, molecular pathogenic mechanisms in Demodex have been understudied. In this study, overlap extension PCR was used to obtain the sequences of cathepsin L (CatL), a pathogenicity-related gene, to provide a foundation for subsequent functional research. Demodex folliculorum and Demodex brevis mites were obtained from the face skin of Chinese individuals, and Demodex canis mites were isolated from the skin lesions of a dog. RNA was extracted and used to synthesise double-stranded cDNA. PCR amplification, cloning, sequencing, and bioinformatics analysis of CatL were performed. CatL gene sequences of 1005, 1008, and 1008 bp were successfully amplified for D. brevis, D. folliculorum, and D. canis, respectively. These sequences showed 99.9 or 100% identity with templates previously obtained by RNA-seq. The Maximum Likelihood (ML) phylogenetic tree showed that D. folliculorum clustered with D. canis first, then with D. brevis, and finally with other Acariformes mite species. The three Demodex species had nine similar motifs to those of Sarcoptes scabies, Dermatophagoides pteronyssinus, and Dermatophagoides farinae, and motifs 10-13 were valuable for identification. CatL proteins of Demodex species were predicted to be approximately 38 kDa, be located in lysosomes, have a signal peptide but no transmembrane region, and have two functional domains, I29 and Pept_C1. However, interspecific differences were observed in secondary and tertiary protein structures. In conclusion, we successfully obtained CatL sequences of three Demodex species by overlap extension PCR, which creates conditions for further pathogenic mechanism studies.
Collapse
Affiliation(s)
- Hu Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Guan Chenglin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Zhao Yae
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| | - Zhang Wanyu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Chai Rong
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Qi X, Li H, Liu X, Wang B, Meng J, Liu Q, Sun W, Pan B. Location of olfactory organs and architecture of gustatory organs in the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae). ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Ariizumi T, Murata S, Fujisawa S, Isezaki M, Sato T, Oishi E, Taneno A, Ichii O, Maekawa N, Okagawa T, Konnai S, Ohashi K. In vitro evaluation of a cysteine protease from poultry red mites, Demanyssus gallinae, as a vaccine antigen for chickens. Poult Sci 2021; 101:101638. [PMID: 34986449 PMCID: PMC8743220 DOI: 10.1016/j.psj.2021.101638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae) are hematophagous ectoparasites that negatively affect egg production, which causes serious economic losses to the poultry industry worldwide. Currently, the emergence of acaricide-resistant PRMs has impeded PRM control in poultry farms. Several alternatives for acaricide use have been described for managing PRM-caused problems. Vaccination is among the methods for controlling PRMs in poultry houses. Currently, several candidates for vaccine antigens have been identified. This study identified a cysteine protease, Deg-CPR-2, which differs from 2 other previously reported cysteine proteases in PRMs, from previously obtained data from RNA-sequencing (RNA-seq) analysis. We investigated the characteristics of Deg-CPR-2 and assessed its efficacy as a vaccine antigen in vitro. Phylogenetic analysis revealed that Deg-CPR-2 belonged to a different cluster from those of other cysteine proteases in PRMs. This cluster also included cathepsin L-like proteases, enzymes thought to be involved in hemoglobin digestion in ticks. Expression analysis revealed Deg-CPR-2 expression in midguts and all the life-stages; however, there were differences in the expression levels across the life-stages. The enzyme activity of recombinant Deg-CPR-2 was inhibited in the presence of a cysteine protease inhibitor, which suggests that Deg-CPR-2 functions as a cysteine protease in PRMs. Finally, there was an in vitro increase in the mortality of PRMs, mainly protonymphs that were artificially fed with plasma from chickens immunized with Deg-CPR-2. These findings suggest that Deg-CPR-2 may contribute to protein digestion in the midgut of PRMs and is crucially involved in physiological processes in PRMs. Additionally, immunization with Deg-CPR-2 may reduce the number of protonymphs, and Deg-CPR-2 should be considered as a candidate antigen for anti-PRM vaccine development.
Collapse
Affiliation(s)
- Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Osamu Ichii
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Fujisawa S, Murata S, Takehara M, Aoyama J, Morita A, Isezaki M, Win SY, Ariizumi T, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Ichii O, Konnai S, Ohashi K. In vitro characterization of adipocyte plasma membrane-associated protein from poultry red mites, Dermanyssus gallinae, as a vaccine antigen for chickens. Vaccine 2021; 39:6057-6066. [PMID: 34509323 DOI: 10.1016/j.vaccine.2021.08.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023]
Abstract
The poultry red mite (Dermanyssus gallinae; PRM) is a blood-sucking ectoparasite of chickens that is a threat to poultry farming worldwide and significantly reduces productivity in the egg-laying industry. Chemical acaricides that are widely used in poultry farms for the prevention of PRMs are frequently ineffective due to the emergence of acaricide-resistant PRMs. Therefore, alternative control methods are needed, and vaccination is a promising strategy for controlling PRMs. A novel adipocyte-plasma membrane-associated protein-like molecule (Dg-APMAP) is highly expressed in blood-fed PRMs according to a previous RNA sequencing analysis. Here, we attempted to identify the full sequence of Dg-APMAP, study its expression in different life stages of PRMs, and evaluate its potential as a vaccine antigen. Dg-APMAP mRNA was expressed in the midgut and ovaries, and in all life stages regardless of feeding states. Importantly, in vitro feeding of PRMs with plasma derived from chickens immunized with the recombinant protein of the extracellular region of Dg-APMAP significantly reduced their survival rate in nymphs and adults, which require blood meals. Our data suggest that the host immune responses induced by vaccination with Dg-APMAP could be an effective strategy to reduce the suffering caused by PRMs in the poultry industry.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaki Takehara
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Julia Aoyama
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ayu Morita
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Abstract
Poultry red mites (Dermanyssus gallinae, PRM) are dangerous ectoparasites that infest chickens and threaten the poultry industry worldwide. PRMs usually develop resistance to chemical acaricides, necessitating the development of more effective preventive agents, and vaccination could be an alternative strategy for controlling PRMs. The suitability of plasma membrane proteins expressed in the midguts as vaccine antigens was evaluated because these molecules are exposed to antibodies in the ingested blood and the binding of antibodies could potentially induce direct damage to midgut tissue and indirect damage via inhibition of the functions of target molecules. Therefore, in the present study, a copper transporter 1-like molecule (Dg-Ctr1) was identified and its efficacy as a vaccine antigen was assessed in vitro. Dg-Ctr1 mRNA was expressed in the midguts and ovaries and in all the life stages, and flow cytometric analysis indicated that Dg-Ctr1 was expressed on the plasma membrane. Importantly, nymphs fed on plasma derived from chickens immunized with the recombinant protein of the extracellular region of Dg-Ctr1 showed a significant reduction in the survival rate. These data indicate that the application of Dg-Ctr1 as a vaccine antigen could reduce the number of nymphs in the farms, contributing to reduction in the economic losses caused by PRMs in the poultry industry. To establish an effective vaccination strategy, the acaricidal effects of the combined use of Dg-Ctr1 with chemical acaricides or other vaccine antigens must be examined.
Collapse
|