1
|
Kakade VR, Akman Z, Motrapu M, Cassini MF, Xu L, Moeckel G, Somlo S, Cantley LG. Adamts1 and Cyst Expansion in Polycystic Kidney Disease. J Am Soc Nephrol 2024:00001751-990000000-00482. [PMID: 39514301 DOI: 10.1681/asn.0000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Key Points
Adamts1 mRNA expression in the kidney was increased with loss of Pkd1, leading to cleavage of V1 isoform of versican in the tubular basement membrane.Increased versican cleavage promoted peritubular accumulation and activation of macrophages.Deletion of both Adamts1 and Pkd1 reduced versican cleavage, macrophage accumulation, and cyst growth and improved kidney function and survival.
Background
Autosomal dominant polycystic kidney disease is characterized by mutations in either the Pkd1 or Pkd2 genes, leading to progressive cyst growth and often kidney failure. We have previously demonstrated that tubules can enlarge after loss of Pkd1 without an increase in tubular cell numbers, suggesting that tubular basement membrane remodeling is important for cystic dilation. RNA sequencing of Pkd1 null kidneys revealed increased expression of 17 metalloproteinases, of which A Disintegrin and Metalloproteinase with Thrombospondin Motif 1 (Adamts1) is the most highly expressed and upregulated.
Methods
Mice were generated with inducible tubule-specific knock-out of Adamts1 alone (AtsTKO), Pkd1 alone (PkdTKO), or both (P/ATKO) after doxycycline induction from age 4 to 6 weeks. Uninduced mice were used as controls. AtsTKO mice had no detectable phenotype through age 12 weeks.
Results
Upregulation of Adamts1 in PkdTKO kidneys correlated with a significant increase in the 70 kDa cleavage product of the V1 isoform of versican, which localized to the tubular basement membrane and adjacent interstitial mononuclear cells. Simultaneous deletion of both Adamts1 and Pkd1 (P/ATKO) reduced Adamts1 expression levels by >90%, prevented V1 versican cleavage, and reduced interstitial macrophage accumulation and activation. P/ATKO mice demonstrated reduced cystic enlargement, improved BUN and creatinine, and better survival than did PkdTKO mice.
Conclusions
Preventing Adamts1 upregulation after loss of tubular Pkd1 effectively reduced cyst growth and preserved kidney function.
Collapse
Affiliation(s)
- Vijayakumar R Kakade
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Zafer Akman
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Manga Motrapu
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - Marcelo F Cassini
- Department of Pathology and Laboratory Medicine, Nuvance Health Network, Danbury, Connecticut
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gilbert Moeckel
- Section of Renal Pathology, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Schueler J, Kuenzel J, Thuesing A, Pion E, Behncke RY, Haegerling R, Fuchs D, Kraus A, Buchholz B, Huang B, Merhof D, Werner JM, Schmidt KM, Hackl C, Aung T, Haerteis S. Ultra high frequency ultrasound enables real-time visualization of blood supply from chorioallantoic membrane to human autosomal dominant polycystic kidney tissue. Sci Rep 2024; 14:10063. [PMID: 38698187 PMCID: PMC11066115 DOI: 10.1038/s41598-024-60783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.
Collapse
Affiliation(s)
- Jan Schueler
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Jonas Kuenzel
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Anna Thuesing
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Rose Yinghan Behncke
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Rene Haegerling
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
- Research Group 'Development and Disease', Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, 10117, Berlin, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc., 1114 AB, Amsterdam, The Netherlands
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Boqiang Huang
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Dorit Merhof
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katharina M Schmidt
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
4
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Sagar PS, Rangan GK. Cardiovascular Manifestations and Management in ADPKD. Kidney Int Rep 2023; 8:1924-1940. [PMID: 37850017 PMCID: PMC10577330 DOI: 10.1016/j.ekir.2023.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 10/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the major cause of mortality in autosomal dominant polycystic kidney disease (ADPKD) and contributes to significant burden of disease. The manifestations are varied, including left ventricular hypertrophy (LVH), intracranial aneurysms (ICAs), valvular heart disease, and cardiomyopathies; however, the most common presentation and a major modifiable risk factor is hypertension. The aim of this review is to detail the complex pathogenesis of hypertension and other extrarenal cardiac and vascular conditions in ADPKD drawing on preclinical, clinical, and epidemiological evidence. The main drivers of disease are the renin-angiotensin-aldosterone system (RAAS) and polycystin-related endothelial cell dysfunction, with the sympathetic nervous system (SNS), nitric oxide (NO), endothelin-1 (ET-1), and asymmetric dimethylarginine (ADMA) likely playing key roles in different disease stages. The reported rates of some manifestations, such as LVH, have decreased likely due to the use of antihypertensive therapies; and others, such as ischemic cardiomyopathy, have been reported with increased prevalence likely due to longer survival and higher rates of chronic disease. ADPKD-specific screening and management guidelines exist for hypertension, LVH, and ICAs; and these are described in this review.
Collapse
Affiliation(s)
- Priyanka S. Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, New South Wales, Australia
| | - Gopala K. Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
7
|
Pana C, Stanigut AM, Cimpineanu B, Alexandru A, Salim C, Nicoara AD, Resit P, Tuta LA. Urinary Biomarkers in Monitoring the Progression and Treatment of Autosomal Dominant Polycystic Kidney Disease-The Promised Land? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050915. [PMID: 37241147 DOI: 10.3390/medicina59050915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease, and it leads to end-stage renal disease (ESRD). The clinical manifestations of ADPKD are variable, with extreme differences observable in its progression, even among members of the same family with the same genetic mutation. In an age of new therapeutic options, it is important to identify patients with rapidly progressive evolution and the risk factors involved in the disease's poor prognosis. As the pathophysiological mechanisms of the formation and growth of renal cysts have been clarified, new treatment options have been proposed to slow the progression to end-stage renal disease. Furthermore, in addition to the conventional factors (PKD1 mutation, hypertension, proteinuria, total kidney volume), increasing numbers of studies have recently identified new serum and urinary biomarkers of the disease's progression, which are cheaper and more easily to dosing from the early stages of the disease. The present review discusses the utility of new biomarkers in the monitoring of the progress of ADPKD and their roles in new therapeutic approaches.
Collapse
Affiliation(s)
- Camelia Pana
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Alina Mihaela Stanigut
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Bogdan Cimpineanu
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Andreea Alexandru
- Nephrology Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Camer Salim
- Emergency Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Alina Doina Nicoara
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Periha Resit
- Faculty of Medicine, "Ovidius" University of Constanta, 900601 Constanta, Romania
| | - Liliana Ana Tuta
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
8
|
Yanda MK, Zeidan A, Cebotaru L. Ameliorating liver disease in an autosomal recessive polycystic kidney disease mouse model. Am J Physiol Gastrointest Liver Physiol 2023; 324:G404-G414. [PMID: 36880660 PMCID: PMC10085553 DOI: 10.1152/ajpgi.00255.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Systemic and portal hypertension, liver fibrosis, and hepatomegaly are manifestations associated with autosomal recessive polycystic kidney disease (ARPKD), which is caused by malfunctions of fibrocystin/polyductin (FPC). The goal is to understand how liver pathology occurs and to devise therapeutic strategies to treat it. We injected 5-day-old Pkhd1del3-4/del3-4 mice for 1 mo with the cystic fibrosis transmembrane conductance regulator (CFTR) modulator VX-809 designed to rescue processing and trafficking of CFTR folding mutants. We used immunostaining and immunofluorescence techniques to evaluate liver pathology. We assessed protein expression via Western blotting. We detected abnormal biliary ducts consistent with ductal plate abnormalities, as well as a greatly increased proliferation of cholangiocytes in the Pkhd1del3-4/del3-4 mice. CFTR was present in the apical membrane of cholangiocytes and increased in the Pkhd1del3-4/del3-4 mice, consistent with a role for apically located CFTR in enlarged bile ducts. Interestingly, we also found CFTR in the primary cilium, in association with polycystin (PC2). Localization of CFTR and PC2 and overall length of the cilia were increased in the Pkhd1del3-4/del3-4 mice. In addition, several of the heat shock proteins; 27, 70, and 90 were upregulated, suggesting that global changes in protein processing and trafficking had occurred. We found that a deficit of FPC leads to bile duct abnormalities, enhanced cholangiocyte proliferation, and misregulation of heat shock proteins, which all returned toward wild type (WT) values following VX-809 treatment. These data suggest that CFTR correctors can be useful as therapeutics for ARPKD. Given that these drugs are already approved for use in humans, they can be fast-tracked for clinical use.NEW & NOTEWORTHY ARPKD is a multiorgan genetic disorder resulting in newborn morbidity and mortality. There is a critical need for new therapies to treat this disease. We show that persistent cholangiocytes proliferation occurs in a mouse model of ARPKD along with mislocalized CFTR and misregulated heat shock proteins. We found that VX-809, a CFTR modulator, inhibits proliferation and limits bile duct malformation. The data provide a therapeutic pathway for strategies to treat ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Adi Zeidan
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Liu P, Liu Y, Zhou J. Ciliary mechanosensation - roles of polycystins and mastigonemes. J Cell Sci 2023; 136:286945. [PMID: 36752106 DOI: 10.1242/jcs.260565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.
Collapse
Affiliation(s)
- Peiwei Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China.,College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Shiiya T, Hirashima M. From lymphatic endothelial cell migration to formation of tubular lymphatic vascular network. Front Physiol 2023; 14:1124696. [PMID: 36895637 PMCID: PMC9989012 DOI: 10.3389/fphys.2023.1124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
During development, lymphatic endothelial cell (LEC) progenitors differentiate from venous endothelial cells only in limited regions of the body. Thus, LEC migration and subsequent tube formation are essential processes for the development of tubular lymphatic vascular network throughout the body. In this review, we discuss chemotactic factors, LEC-extracellular matrix interactions and planar cell polarity regulating LEC migration and formation of tubular lymphatic vessels. Insights into molecular mechanisms underlying these processes will help in understanding not only physiological lymphatic vascular development but lymphangiogenesis associated with pathological conditions such as tumors and inflammation.
Collapse
Affiliation(s)
- Tomohiro Shiiya
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
11
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
12
|
Wang JY, Wang J, Lu XG, Song W, Luo S, Zou DF, Hua LD, Peng Q, Tian Y, Gao LD, Liao WP, He N. Recessive PKD1 Mutations Are Associated With Febrile Seizures and Epilepsy With Antecedent Febrile Seizures and the Genotype-Phenotype Correlation. Front Mol Neurosci 2022; 15:861159. [PMID: 35620448 PMCID: PMC9128595 DOI: 10.3389/fnmol.2022.861159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe PKD1 encodes polycystin-1, a large transmembrane protein that plays important roles in cell proliferation, apoptosis, and cation transport. Previous studies have identified PKD1 mutations in autosomal dominant polycystic kidney disease (ADPKD). However, the expression of PKD1 in the brain is much higher than that in the kidney. This study aimed to explore the association between PKD1 and epilepsy.MethodsTrios-based whole-exome sequencing was performed in a cohort of 314 patients with febrile seizures or epilepsy with antecedent febrile seizures. The damaging effects of variants was predicted by protein modeling and multiple in silico tools. The genotype-phenotype association of PKD1 mutations was systematically reviewed and analyzed.ResultsEight pairs of compound heterozygous missense variants in PKD1 were identified in eight unrelated patients. All patients suffered from febrile seizures or epilepsy with antecedent febrile seizures with favorable prognosis. All of the 16 heterozygous variants presented no or low allele frequencies in the gnomAD database, and presented statistically higher frequency in the case-cohort than that in controls. These missense variants were predicted to be damaging and/or affect hydrogen bonding or free energy stability of amino acids. Five patients showed generalized tonic-clonic seizures (GTCS), who all had one of the paired missense mutations located in the PKD repeat domain, suggesting that mutations in the PKD domains were possibly associated with GTCS. Further analysis demonstrated that monoallelic mutations with haploinsufficiency of PKD1 potentially caused kidney disease, compound heterozygotes with superimposed effects of two missense mutations were associated with epilepsy, whereas the homozygotes with complete loss of PKD1 would be embryonically lethal.ConclusionPKD1 gene was potentially a novel causative gene of epilepsy. The genotype-phenotype relationship of PKD1 mutations suggested a quantitative correlation between genetic impairment and phenotypic variation, which will facilitate the genetic diagnosis and management in patients with PKD1 mutations.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Dong-Fang Zou
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li-Dong Hua
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan City Maternal and Child Health Hospital, Southern Medical University, Dongguan, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Na He,
| |
Collapse
|
13
|
Radadiya PS, Thornton MM, Daniel EA, Idowu JY, Wang W, Magenheimer B, Subramaniam D, Tran PV, Calvet JP, Wallace DP, Sharma M. Quinomycin A reduces cyst progression in polycystic kidney disease. FASEB J 2021; 35:e21533. [PMID: 33826787 PMCID: PMC8251518 DOI: 10.1096/fj.202002490r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.
Collapse
Affiliation(s)
- Priyanka S Radadiya
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mackenzie M Thornton
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily A Daniel
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jessica Y Idowu
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wei Wang
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brenda Magenheimer
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Pamela V Tran
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P Wallace
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Madhulika Sharma
- Departments of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
14
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
15
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
16
|
Peintner L, Venkatraman A, Waeldin A, Hofherr A, Busch T, Voronov A, Viau A, Kuehn EW, Köttgen M, Borner C. Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy 2020; 17:2384-2400. [PMID: 32967521 DOI: 10.1080/15548627.2020.1826716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the PKD1 gene result in autosomal dominant polycystic kidney disease (ADPKD), the most common monogenetic cause of end-stage renal disease (ESRD) in humans. Previous reports suggested that PKD1, together with PKD2/polycystin-2, may function as a receptor-cation channel complex at cilia and on intracellular membranes and participate in various signaling pathways to regulate cell survival, proliferation and macroautophagy/autophagy. However, the exact molecular function of PKD1 and PKD2 has remained enigmatic. Here we used Pkd1-deficient mouse inner medullary collecting duct cells (mIMCD3) genetically deleted for Pkd1, and tubular epithelial cells isolated from nephrons of doxycycline-inducible conditional pkd1fl/fl;Pax8rtTA;TetOCre+ knockout mice to show that the lack of Pkd1 caused diminished lysosomal acidification, LAMP degradation and reduced CTSB/cathepsin B processing and activity. This led to an impairment of autophagosomal-lysosomal fusion, a lower delivery of ubiquitinated cargo from multivesicular bodies (MVB)/exosomes to lysosomes and an enhanced secretion of unprocessed CTSB into the extracellular space. The TFEB-dependent lysosomal biogenesis pathway was however unaffected. Pkd1-deficient cells exhibited increased activity of the calcium-dependent CAPN (calpain) proteases, probably due to a higher calcium influx. Consistent with this notion CAPN inhibitors restored lysosomal function, CTSB processing/activity and autophagosomal-lysosomal fusion, and blocked CTSB secretion and LAMP degradation in pkd1 knockout cells. Our data reveal for the first time a lysosomal function of PKD1 which keeps CAPN activity in check and ensures lysosomal integrity and a correct autophagic flux.Abbreviations: acCal: acetyl-calpastatin peptide; ADPKD: autosomal dominant polycystic kidney disease; CI-1: calpain inhibitor-1; CQ: chloroquine; Dox: doxycycline; EV: extracellular vesicles; EXO: exosomes; LAMP1/2: lysosomal-associated membrane protein 1/2; LGALS1/GAL1/galectin-1: lectin, galactose binding, soluble 1; LMP: lysosomal membrane permeabilization; mIMCD3: mouse inner medullary collecting duct cells; MV: microvesicles; MVB: multivesicular bodies; PAX8: paired box 8; PKD1/polycystin-1: polycystin 1, transient receptor potential channel interacting; PKD2/polycystin-2: polycystin 2, transient receptor potential cation channel; Tet: tetracycline; TFEB: transcription factor EB; VFM: vesicle-free medium; WT: wild-type.
Collapse
Affiliation(s)
- Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Anusha Venkatraman
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Albert Ludwigs University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Astrid Waeldin
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tilman Busch
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Voronov
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Amandine Viau
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E Wolfgang Kuehn
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Integrative Biological Signalling Studies (CIBSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS), Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Dixon EE, Maxim DS, Halperin Kuhns VL, Lane-Harris AC, Outeda P, Ewald AJ, Watnick TJ, Welling PA, Woodward OM. GDNF drives rapid tubule morphogenesis in a novel 3D in vitro model for ADPKD. J Cell Sci 2020; 133:jcs249557. [PMID: 32513820 PMCID: PMC7375472 DOI: 10.1242/jcs.249557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023] Open
Abstract
Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation. Mouse renal tubule fragments were pulsed with a cell differentiation cocktail including glial-derived neurotrophic factor (GDNF) to yield collecting duct-like tubuloid structures with appropriate polarity, primary cilia, and gene expression. Using the 3D tubuloid model with an inducible Pkd2 knockout system allowed the tracking of morphological, protein, and genetic changes during cyst formation. Within hours of inactivation of Pkd2 and loss of polycystin-2, we observed significant progression in tubuloid to cyst morphology that correlated with 35 differentially expressed genes, many related to cell junctions, matrix interactions, and cell morphology previously implicated in cystogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Eryn E Dixon
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Demetrios S Maxim
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | | | - Allison C Lane-Harris
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Patricia Outeda
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Andrew J Ewald
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | - Terry J Watnick
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Paul A Welling
- Johns Hopkins University School of Medicine, Departments of Medicine and Physiology, Baltimore, MD 21205, USA
| | - Owen M Woodward
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Griffin BR, You Z, Noureddine L, Gitomer B, Perrenoud L, Wang W, Chonchol M, Jalal D. KIM-1 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease: HALT-PKD Results. Am J Nephrol 2020; 51:473-479. [PMID: 32541154 DOI: 10.1159/000508051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cyst compression of renal tubules plays a role in the progression of autosomal dominant polycystic kidney disease (ADPKD) and may induce expression of kidney injury molecule-1 (KIM-1). Whether urinary KIM-1 indexed for creatinine (uKIM-1/Cr) is a prognostic marker of disease progression in ADPKD is unknown.In this secondary analysis of a prospective cohort study, we sought to determine whether patients with high as opposed to low uKIM-1/CR at baseline had greater rates of eGFR loss and height-adjusted total kidney volume (HtTKV) increase. METHODS Baseline uKIM-1/Cr values were obtained from 754 participants in Halt Progression of Polycystic Kidney Disease (HALT-PKD) studies A (early ADPKD) and B (late ADPKD). The predictor was uKIM-1/Cr, which was dichotomized by a median value of 0.2417 pg/g, and the primary outcomes were measured longitudinally over time. Mixed-effects linear models were used in the analysis to calculate the annual slope of change in eGFR and HtTKV. RESULTS Patients with high uKIM-1/Cr (above the median) had an annual decline in eGFR that was 0.47 mL/min greater than that in those with low uKIM-1/Cr (p = 0.0015) after adjustment for all considered covariates. This association was seen in study B patients alone (0.45 mL/min; p = 0.009), but not in study A patients alone (0.42 mL/min; p = 0.06). High baseline uKIM-1/Cr was associated with higher HtTKV in the baseline cross-sectional analysis compared to low uKIM-1/Cr (p = 0.02), but there was no difference between the groups in the mixed-effects model annual slopes. CONCLUSION Elevated baseline uKIM-1/Cr is associated with a greater decline in eGFR over time. Further research is needed to determine whether uKIM-1/Cr improves risk stratification in patients with ADPKD.
Collapse
Affiliation(s)
- Benjamin R Griffin
- Division of Nephrology and Hypertension, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA,
- Center for Access and Delivery Research and Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA,
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lama Noureddine
- Division of Nephrology and Hypertension, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Loni Perrenoud
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wei Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana Jalal
- Division of Nephrology and Hypertension, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Center for Access and Delivery Research and Evaluation (CADRE), Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Lamarche C, Iliuta IA, Kitzler T. Infectious Disease Risk in Dialysis Patients: A Transdisciplinary Approach. Can J Kidney Health Dis 2019; 6:2054358119839080. [PMID: 31065378 PMCID: PMC6488776 DOI: 10.1177/2054358119839080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/25/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE OF REVIEW Infections are a major contributor to morbidity and mortality in end-stage renal disease (ESRD) patients. A better understanding of the interplay between infectious processes and ESRD may eventually lead to the development of targeted treatment strategies aimed at lowering overall disease morbidity and mortality. Monogenic causes are a major contributor to the development of adult chronic kidney disease (CKD). Recent studies identified a genetic cause in 10% to 20% of adults with CKD. With the introduction of whole-exome sequencing (WES) into clinical mainstay, this proportion is expected to increase in the future. Once patients develop CKD/ESRD due to a genetic cause, secondary changes, such as a compromised immune status, affect overall disease progression and clinical outcomes. Stratification according to genotype may enable us to study its effects on secondary disease outcomes, such as infectious risk. Moreover, this knowledge will enable us to better understand the molecular interplay between primary disease and secondary disease outcomes. SOURCES OF INFORMATION We conducted a literature review using search engines such as PubMed, PubMed central, and Medline, as well as cumulative knowledge from our respective areas of expertise. METHODS This is a transdisciplinary perspective on infectious complications in ESRD due to monogenic causes, such as autosomal dominant polycystic kidney disease (ADPKD), combining expertise in genomics and immunology. KEY FINDINGS In ADPKD, infection is a frequent complication manifesting primarily as lower urinary tract infection and less frequently as renal infection. Infectious episodes may be a direct consequence of a specific underlying structural abnormality, for example the characteristic cysts, among others. However, evidence suggests that infectious disease risk is also increased in ESRD due to secondary not-well-understood disease mechanisms. These disease mechanisms may vary depending on the underlying nature of the primary disease. While the infectious disease risk is well documented in ADPKD, there are currently insufficient data on the risk in other monogenic causes of ESRD. WES in combination with novel technologies, such as RNA sequencing and single-cell RNA sequencing, can provide insight into the molecular mechanisms of disease progression in different monogenic causes of CKD/ESRD and may lead to the development of novel risk-stratification profiles in the future. LIMITATIONS This is not a systematic review of the literature and the proposed perspective is tainted by the authors' point of view on the topic. IMPLICATIONS WES in combination with novel technologies such as RNA sequencing may enable us to fully unravel underlying disease mechanisms and secondary disease outcomes in monogenic causes of CKD and better characterize individual risk profiles. This understanding will hopefully facilitate the development of novel targeted therapies.
Collapse
Affiliation(s)
- Caroline Lamarche
- Department of Surgery, The University of
British Columbia, Vancouver, Canada
- BC Children’s Hospital Research
Institute, Vancouver, Canada
| | - Ioan-Andrei Iliuta
- Department of Medicine, Division of
Nephrology, University of Toronto, ON, Canada
- University Health Network, Toronto, ON,
Canada
| | - Thomas Kitzler
- Department of Medicine, Division of
Nephrology, Harvard Medical School, Boston, MA, USA
- Boston Children’s Hospital, MA,
USA
| |
Collapse
|
21
|
Tan AY, Zhang T, Michaeel A, Blumenfeld J, Liu G, Zhang W, Zhang Z, Zhu Y, Rennert L, Martin C, Xiang J, Salvatore SP, Robinson BD, Kapur S, Donahue S, Bobb WO, Rennert H. Somatic Mutations in Renal Cyst Epithelium in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2018; 29:2139-2156. [PMID: 30042192 DOI: 10.1681/asn.2017080878] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a ciliopathy caused by mutations in PKD1 and PKD2 that is characterized by renal tubular epithelial cell proliferation and progressive CKD. Although the molecular mechanisms involved in cystogenesis are not established, concurrent inactivating constitutional and somatic mutations in ADPKD genes in cyst epithelium have been proposed as a cellular recessive mechanism. METHODS We characterized, by whole-exome sequencing (WES) and long-range PCR techniques, the somatic mutations in PKD1 and PKD2 genes in renal epithelial cells from 83 kidney cysts obtained from nine patients with ADPKD, for whom a constitutional mutation in PKD1 or PKD2 was identified. RESULTS Complete sequencing data by long-range PCR and WES was available for 63 and 65 cysts, respectively. Private somatic mutations of PKD1 or PKD2 were identified in all patients and in 90% of the cysts analyzed; 90% of these mutations were truncating, splice site, or in-frame variations predicted to be pathogenic mutations. No trans-heterozygous mutations of PKD1 or PKD2 genes were identified. Copy number changes of PKD1 ranging from 151 bp to 28 kb were observed in 12% of the cysts. WES also identified significant mutations in 53 non-PKD1/2 genes, including other ciliopathy genes and cancer-related genes. CONCLUSIONS These findings support a cellular recessive mechanism for cyst formation in ADPKD caused primarily by inactivating constitutional and somatic mutations of PKD1 or PKD2 in kidney cyst epithelium. The potential interactions of these genes with other ciliopathy- and cancer-related genes to influence ADPKD severity merits further evaluation.
Collapse
Affiliation(s)
- Adrian Y Tan
- Departments of Pathology and Laboratory Medicine.,Microbiology and Immunology
| | | | | | - Jon Blumenfeld
- Medicine, and.,The Rogosin Institute, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York; and
| | - Genyan Liu
- Departments of Pathology and Laboratory Medicine
| | | | | | - Yi Zhu
- Departments of Pathology and Laboratory Medicine
| | - Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, South Carolina
| | - Che Martin
- Departments of Pathology and Laboratory Medicine
| | | | | | | | - Sandip Kapur
- Surgery, Weill Cornell Medicine, New York, New York
| | - Stephanie Donahue
- The Rogosin Institute, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York; and
| | - Warren O Bobb
- The Rogosin Institute, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York; and
| | | |
Collapse
|
22
|
Li A, Xu Y, Fan S, Meng J, Shen X, Xiao Q, Li Y, Zhang L, Zhang X, Wu G, Liang C, Wu D. Canonical Wnt inhibitors ameliorate cystogenesis in a mouse ortholog of human ADPKD. JCI Insight 2018. [PMID: 29515026 DOI: 10.1172/jci.insight.95874] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) can be caused by mutations in the PKD1 or PKD2 genes. The PKD1 gene product is a Wnt cell-surface receptor. We previously showed that a lack of the PKD2 gene product, PC2, increases β-catenin signaling in mouse embryonic fibroblasts, kidney renal epithelia, and isolated renal collecting duct cells. However, it remains unclear whether β-catenin signaling plays a role in polycystic kidney disease phenotypes or if a Wnt inhibitor can halt cyst formation in ADPKD disease models. Here, using genetic and pharmacologic approaches, we demonstrated that the elevated β-catenin signaling caused by PC2 deficiency contributes significantly to disease phenotypes in a mouse ortholog of human ADPKD. Pharmacologically inhibiting β-catenin stability or the production of mature Wnt protein, or genetically reducing the expression of Ctnnb1 (which encodes β-catenin), suppressed the formation of renal cysts, improved renal function, and extended survival in ADPKD mice. Our study clearly demonstrates the importance of β-catenin signaling in disease phenotypes associated with Pkd2 mutation. It also describes the effects of two Wnt inhibitors, XAV939 and LGK974, on various Wnt signaling targets as a potential therapeutic modality for ADPKD, for which there is currently no effective therapy.
Collapse
Affiliation(s)
- Ao Li
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuchen Xu
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Song Fan
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jialin Meng
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xufeng Shen
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Xiao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuan Li
- State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiansheng Zhang
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Guanqing Wu
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaozhao Liang
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Madej MG, Ziegler CM. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch 2018; 470:213-225. [PMID: 29344776 DOI: 10.1007/s00424-018-2107-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
Abstract
Cryo-electron microscopy (cryo-EM) permits the determination of atomic protein structures by averaging large numbers of individual projection images recorded at cryogenic temperatures-a method termed single-particle analysis. The cryo-preservation traps proteins within a thin glass-like ice layer, making literally a freeze image of proteins in solution. Projections of randomly adopted orientations are merged to reconstruct a 3D density map. While atomic resolution for highly symmetric viruses was achieved already in 2009, the development of new sensitive and fast electron detectors has enabled cryo-EM for smaller and asymmetrical proteins including fragile membrane proteins. As one of the most important structural biology methods at present, cryo-EM was awarded in October 2017 with the Nobel Prize in Chemistry. The molecular understanding of Transient-Receptor-Potential (TRP) channels has been boosted tremendously by cryo-EM single-particle analysis. Several near-atomic and atomic structures gave important mechanistic insights, e.g., into ion permeation and selectivity, gating, as well as into the activation of this enigmatic and medically important membrane protein family by various chemical and physical stimuli. Lastly, these structures have set the starting point for the rational design of TRP channel-targeted therapeutics to counteract life-threatening channelopathies. Here, we attempt a brief introduction to the method, review the latest advances in cryo-EM structure determination of TRP channels, and discuss molecular insights into the channel function based on the wealth of TRP channel cryo-EM structures.
Collapse
Affiliation(s)
- M Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany
| | - Christine M Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany.
| |
Collapse
|
24
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Abstract
INTRODUCTION Polycystic kidney disease (PKD) is clinically and genetically heterogeneous and constitutes the most common heritable kidney disease. Most patients are affected by the autosomal dominant form (ADPKD) which generally is an adult-onset multisystem disorder. By contrast, the rarer recessive form ARPKD usually already manifests perinatally or in childhood. In some patients, however, ADPKD and ARPKD can phenotypically overlap with early manifestation in ADPKD and only late onset in ARPKD. Progressive fibrocystic renal changes are often accompanied by severe hepatobiliary changes or other extrarenal abnormalities. Areas covered: A reduced dosage of disease proteins disturbs cell homeostasis and explains a more severe clinical course in some PKD patients. Cystic kidney disease is also a common feature of other ciliopathies and genetic syndromes. Genetic diagnosis may guide clinical management and helps to avoid invasive measures and to detect renal and extrarenal comorbidities early in the clinical course. Expert Commentary: The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach. Interpretation of data becomes the challenge and bench and bedside benefit from digitized multidisciplinary interrelationships.
Collapse
Affiliation(s)
- Carsten Bergmann
- a Center for Human Genetics , Bioscientia , Ingelheim , Germany.,b Department of Medicine , University Hospital Freiburg , Freiburg , Germany
| |
Collapse
|
26
|
Cornec-Le Gall E, Torres VE, Harris PC. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J Am Soc Nephrol 2017; 29:13-23. [PMID: 29038287 DOI: 10.1681/asn.2017050483] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Data indicate significant phenotypic and genotypic overlap, plus a common pathogenesis, between two groups of inherited disorders, autosomal dominant polycystic kidney diseases (ADPKD), a significant cause of ESRD, and autosomal dominant polycystic liver diseases (ADPLD), which result in significant PLD with minimal PKD. Eight genes have been associated with ADPKD (PKD1 and PKD2), ADPLD (PRKCSH, SEC63, LRP5, ALG8, and SEC61B), or both (GANAB). Although genetics is only infrequently used for diagnosing these diseases and prognosing the associated outcomes, its value is beginning to be appreciated, and the genomics revolution promises more reliable and less expensive molecular diagnostic tools for these diseases. We therefore propose categorization of patients with a phenotypic and genotypic descriptor that will clarify etiology, provide prognostic information, and better describe atypical cases. In genetically defined cases, the designation would include the disease and gene names, with allelic (truncating/nontruncating) information included for PKD1 Recent data have shown that biallelic disease including at least one weak ADPKD allele is a significant cause of symptomatic, very early onset ADPKD. Including a genic (and allelic) descriptor with the disease name will provide outcome clues, guide treatment, and aid prevalence estimates.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and.,Department of Nephrology, University Hospital, European University of Brittany, and National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
27
|
Sweeney WE, Frost P, Avner ED. Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney disease. World J Nephrol 2017; 6:188-200. [PMID: 28729967 PMCID: PMC5500456 DOI: 10.5527/wjn.v6.i4.188] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the therapeutic potential of tesevatinib (TSV), a unique multi-kinase inhibitor currently in Phase II clinical trials for autosomal dominant polycystic kidney disease (ADPKD), in well-defined rodent models of autosomal recessive polycystic kidney disease (ARPKD).
METHODS We administered TSV in daily doses of 7.5 and 15 mg/kg per day by I.P. to the well characterized bpk model of polycystic kidney disease starting at postnatal day (PN) 4 through PN21 to assess efficacy and toxicity in neonatal mice during postnatal development and still undergoing renal maturation. We administered TSV by oral gavage in the same doses to the orthologous PCK model (from PN30 to PN90) to assess efficacy and toxicity in animals where developmental processes are complete. The following parameters were assessed: Body weight, total kidney weight; kidney weight to body weight ratios; and morphometric determination of a cystic index and a measure of hepatic disease. Renal function was assessed by: Serum BUN; creatinine; and a 12 h urinary concentrating ability. Validation of reported targets including the level of angiogenesis and inhibition of angiogenesis (active VEGFR2/KDR) was assessed by Western analysis.
RESULTS This study demonstrates that: (1) in vivo pharmacological inhibition of multiple kinase cascades with TSV reduced phosphorylation of key mediators of cystogenesis: EGFR, ErbB2, c-Src and KDR; and (2) this reduction of kinase activity resulted in significant reduction of renal and biliary disease in both bpk and PCK models of ARPKD. The amelioration of disease by TSV was not associated with any apparent toxicity.
CONCLUSION The data supports the hypothesis that this multi-kinase inhibitor TSV may provide an effective clinical therapy for human ARPKD.
Collapse
|
28
|
Wang J, Zhuang S. Src family kinases in chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F721-F728. [PMID: 28615246 PMCID: PMC5625110 DOI: 10.1152/ajprenal.00141.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and .,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
29
|
Vareesangthip K, Vareesangthip K, Limwongse C, Reesukumal K. Role of Urinary Neutrophil Gelatinase-Associated Lipocalin for Predicting the Severity of Renal Functions in Patients With Autosomal-Dominant Polycystic Kidney Disease. Transplant Proc 2017; 49:950-954. [PMID: 28583565 DOI: 10.1016/j.transproceed.2017.03.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autosomal-dominant polycystic kidney disease (ADPKD) has a feature of disruption of tubular integrity with increased cellular proliferation and apoptosis. There are several known tubular membrane proteins in the pathogenesis of ADPKD, and one of these proteins is the neutrophil gelatinase-associated lipocalin (NGAL). NGAL is a protein expressed on renal tubular cells of which production is markedly increased in response to harmful stimuli such as ischemia or toxicity. OBJECTIVE We aim to study whether urinary NGAL levels could be used as a marker to identify the severity of ADPKD in patients. METHODS Urinary NGAL levels were measured in 30 patients with ADPKD compared with 30 control patients who were matched by age, gender, and glomerular filtration rate (GFR). All patients with ADPKD were diagnosed by using both phenotypic and genotypic criteria, which showed that all cases of ADPKD were caused by PKD1 gene mutation. The urinary NGAL level was measured using The NGAL Test by Roche, with analytic range of 25-1000 ng/mL. RESULTS In the ADPKD group, there was significant negative correlation between urinary NGAL and GFR (Pearson r = -0.472; P = .008) and significant positive correlation between urinary NGAL and serum creatinine (Pearson r = 0.718; P < .01). Elevated urinary NGAL was increased as GFR of ADPKD patients was decreased. CONCLUSION Urinary NGAL might play role in the pathway of renal tubular damage in patients with ADPKD and might be useful in the prediction of the possibility to progress to chronic kidney disease in patients with ADPKD.
Collapse
Affiliation(s)
- K Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - K Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - C Limwongse
- Division of Medical Genetics, Department of Medicine Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - K Reesukumal
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
The changes in glucose metabolism and cell proliferation in the kidneys of polycystic kidney disease mini-pig models. Biochem Biophys Res Commun 2017; 488:374-381. [PMID: 28501615 DOI: 10.1016/j.bbrc.2017.05.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023]
Abstract
The pathogenic mechanism of polycystic kidney disease (PKD) is unclear. Abnormal glucose metabolism is maybe involved in hyper-proliferation of renal cyst epithelial cells. Mini-pigs are more similar to humans than rodents and therefore, are an ideal large animal model. In this study, for the first time, we systematically investigated the changes in glucose metabolism and cell proliferation signaling pathways in the kidney tissues of chronic progressive PKD mini-pig models created by knock-outing PKD1gene. The results showed that in the kidneys of PKD mini-pigs, the glycolysis is increased and the expressions of key oxidative phosphorylation enzymes Complexes I and IV significantly decreased. The activities of mitochondrial respiration chain Complexes I and IV significantly decreased; the phosphorylation level of key metabolism-modulating molecule AMP-activated protein kinase (AMPK) significantly decreased; and the mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) signaling pathway are activated obviously. This study showed that in the kidneys of PKD mini-pigs, the level of glycolysis significantly increased, oxidative phosphorylation significantly decreased, and cell proliferation signaling pathways significantly activated, suggesting that metabolic changes in PKD may result in the occurrence and development of PKD through the activation of proliferation signaling pathways.
Collapse
|
31
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
32
|
Li A, Fan S, Xu Y, Meng J, Shen X, Mao J, Zhang L, Zhang X, Moeckel G, Wu D, Wu G, Liang C. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J Cell Mol Med 2017; 21:1619-1635. [PMID: 28244683 PMCID: PMC5543471 DOI: 10.1111/jcmm.13091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Although translational research into autosomal dominant polycystic kidney disease (ADPKD) and its pathogenesis has made considerable progress, there is presently lack of standardized animal model for preclinical trials. In this study, we developed an orthologous mouse model of human ADPKD by cross‐mating Pkd2 conditional‐knockout mice (Pkd2f3) to Cre transgenic mice in which Cre is driven by a spectrum of kidney‐related promoters. By systematically characterizing the mouse model, we found that Pkd2f3/f3 mice with a Cre transgene driven by the mouse villin‐1 promoter (Vil‐Cre;Pkd2f3/f3) develop overt cysts in the kidney, liver and pancreas and die of end‐stage renal disease (ESRD) at 4–6 months of age. To determine whether these Vil‐Cre;Pkd2f3/f3 mice were suitable for preclinical trials, we treated the mice with the high‐dose mammalian target of rapamycin (mTOR) inhibitor rapamycin. High‐dose rapamycin significantly increased the lifespan, lowered the cystic index and kidney/body weight ratio and improved renal function in Vil‐Cre;Pkd2f3/f3 mice in a time‐ and dose‐dependent manner. In addition, we further found that rapamycin arrested aberrant epithelial‐cell proliferation in the ADPKD kidney by down‐regulating the cell‐cycle‐associated cyclin‐dependent kinase 1 (CDK1) and cyclins, namely cyclin A, cyclin B, cyclin D1 and cyclin E, demonstrating a direct link between mTOR signalling changes and the polycystin‐2 dysfunction in cystogenesis. Our newly developed ADPKD model provides a practical platform for translating in vivo preclinical results into ADPKD therapies. The newly defined molecular mechanism by which rapamycin suppresses proliferation via inhibiting abnormally elevated CDK1 and cyclins offers clues to new molecular targets for ADPKD treatment.
Collapse
Affiliation(s)
- Ao Li
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Fan
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuchen Xu
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jialin Meng
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xufeng Shen
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Mao
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Li Zhang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiansheng Zhang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Guanqing Wu
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaozhao Liang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
33
|
Cordido A, Besada-Cerecedo L, García-González MA. The Genetic and Cellular Basis of Autosomal Dominant Polycystic Kidney Disease-A Primer for Clinicians. Front Pediatr 2017; 5:279. [PMID: 29326913 PMCID: PMC5741702 DOI: 10.3389/fped.2017.00279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic disorders worldwide. In recent decades, the field has undergone a revolution, starting with the identification of causal ADPKD genes, including PKD1, PKD2, and the recently identified GANAB. In addition, advances defining the genetic mechanisms, protein localization and function, and the identification of numerous pathways involved in the disease process, have contributed to a better understanding of this illness. Together, this has led to a better prognosis, diagnosis, and treatment in clinical practice. In this mini review, we summarize and discuss new insights about the molecular mechanisms underlying ADPKD, including its genetics, protein function, and cellular pathways.
Collapse
Affiliation(s)
- Adrián Cordido
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Lara Besada-Cerecedo
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Miguel A García-González
- Grupo de Genética y Biología del Desarrollo de las Enfermedades Renales, Laboratorio de Nefrología (n.° 11), Instituto de Investigación Sanitaria (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
34
|
Sweeney WE, Avner ED. Emerging Therapies for Childhood Polycystic Kidney Disease. Front Pediatr 2017; 5:77. [PMID: 28473970 PMCID: PMC5395658 DOI: 10.3389/fped.2017.00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic kidney diseases comprise a varied collection of hereditary disorders, where renal cysts comprise a major element of their pleiotropic phenotype. In pediatric patients, the term polycystic kidney disease (PKD) commonly refers to two specific hereditary diseases, autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Remarkable progress has been made in understanding the complex molecular and cellular mechanisms of renal cyst formation in ARPKD and ADPKD. One of the most important discoveries is that both the genes and proteins products of ARPKD and ADPKD interact in a complex network of genetic and functional interactions. These interactions and the shared phenotypic abnormalities of ARPKD and ADPKD, the "cystic phenotypes" suggest that many of the therapies developed and tested for ADPKD may be effective in ARPKD as well. Successful therapeutic interventions for childhood PKD will, therefore, be guided by knowledge of these molecular interactions, as well as a number of clinical parameters, such as the stage of the disease and the rate of disease progression.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | - Ellis D Avner
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
35
|
Wu Y, Xu JX, El-Jouni W, Lu T, Li S, Wang Q, Tran M, Yu W, Wu M, Barrera IE, Bonventre JV, Zhou J, Denker BM, Kong T. Gα12 is required for renal cystogenesis induced by Pkd1 inactivation. J Cell Sci 2016; 129:3675-3684. [PMID: 27505895 DOI: 10.1242/jcs.190496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mutation of PKD1, encoding the protein polycystin-1 (PC1), is the main cause of autosomal dominant polycystic kidney disease (ADPKD). The signaling pathways downstream of PC1 in ADPKD are still not fully understood. Here, we provide genetic evidence for the necessity of Gα12 (encoded by Gna12, hereafter Gα12) for renal cystogenesis induced by Pkd1 knockout. There was no phenotype in mice with deletion of Gα12 (Gα12-/-). Polyinosine-polycytosine (pI:pC)-induced deletion of Pkd1 (Mx1Cre+Pkd1f/fGα12+/+) in 1-week-old mice resulted in multiple kidney cysts by 9 weeks, but the mice with double knockout of Pkd1 and Gα12 (Mx1Cre+Pkd1f/fGα12-/-) had no structural and functional abnormalities in the kidneys. These mice could survive more than one year without kidney abnormalities except multiple hepatic cysts in some mice, which indicates that the effect of Gα12 on cystogenesis is kidney specific. Furthermore, Pkd1 knockout promoted Gα12 activation, which subsequently decreased cell-matrix and cell-cell adhesion by affecting the function of focal adhesion and E-cadherin, respectively. Our results demonstrate that Gα12 is required for the development of kidney cysts induced by Pkd1 mutation in mouse ADPKD.
Collapse
Affiliation(s)
- Yong Wu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jen X Xu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wassim El-Jouni
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tzongshi Lu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suyan Li
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qingyi Wang
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mei Tran
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Renal Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Wanfeng Yu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maoqing Wu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan E Barrera
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhou
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley M Denker
- Renal Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Tianqing Kong
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Balbo BE, Amaral AG, Fonseca JM, de Castro I, Salemi VM, Souza LE, Dos Santos F, Irigoyen MC, Qian F, Chammas R, Onuchic LF. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout. Kidney Int 2016; 90:580-97. [PMID: 27475230 DOI: 10.1016/j.kint.2016.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
Abstract
Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1(cond/cond)Nestin(cre) (CYG+) cystic mice exposed to increased blood pressure, at 5 to 6 and 20 to 24 weeks of age, and Pkd1(+/-) (HTG+) noncystic mice at 5-6 and 10-13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1(cond/cond) and Pkd1(+/+) controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis, and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1(cond/cond):Nestin(cre);Lgals3(-/-) (CYG-) and Pkd1(+/-);Lgals3(-/-) (HTG-) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from the controls. CYG- and HTG- showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1(V/V); VVG+) showed that Pkd1(V/V);Lgals3(-/-) (VVG-) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG- and VVG- animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype.
Collapse
Affiliation(s)
- Bruno E Balbo
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Andressa G Amaral
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jonathan M Fonseca
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Isac de Castro
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vera M Salemi
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leandro E Souza
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernando Dos Santos
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria C Irigoyen
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Roger Chammas
- Center for Translational Research in Oncology, Cancer Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Center for Cellular and Molecular Studies and Therapy (NETCEM), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME, Madsen CD, Mauritz SR, Banks CJ, Baheti S, Reddy B, Herrero JI, Bañales JM, Hogan MC, Tasic V, Watnick TJ, Chapman AB, Vigneau C, Lavainne F, Audrézet MP, Ferec C, Le Meur Y, Torres VE, Harris PC, Harris PC. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet 2016; 98:1193-1207. [PMID: 27259053 DOI: 10.1016/j.ajhg.2016.05.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
38
|
Li A, Tian X, Zhang X, Huang S, Ma Y, Wu D, Moeckel G, Somlo S, Wu G. Human polycystin-2 transgene dose-dependently rescues ADPKD phenotypes in Pkd2 mutant mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2843-60. [PMID: 26435415 DOI: 10.1016/j.ajpath.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
Abstract
Although much is known about the molecular genetic mechanisms of autosomal-dominant polycystic kidney disease (ADPKD), few effective treatment is currently available. Here, we explore the in vivo effects of causal gene replacement in orthologous gene models of ADPKD in mice. Wild-type mice with human PKD2 transgene (PKD2(tg)) overexpressed polycystin (PC)-2 in several tissues, including the kidney and liver, and showed no significant cyst formation in either organ. We cross-mated PKD2(tg) with a Pkd2-null mouse model, which is embryonically lethal and forms renal and pancreatic cysts. Pkd2(-/-) mice with human PKD2 transgene (Pkd2(-/-);PKD2(tg)) were born in expected Mendelian ratios, indicating that the embryonic lethality of the Pkd2(-/-) mice was rescued. Pkd2(-/-);PKD2(tg) mice survived up to 12 months and exhibited moderate to severe cystic phenotypes of the kidney, liver, and pancreas. Moreover, Pkd2(-/-) mice with homozygous PKD2(tg)-transgene alleles (Pkd2(-/-);PKD2(tg/tg)) showed significant further amelioration of the cystic severity compared to that in Pkd2(-/-) mice with a hemizygous PKD2(tg) allele (Pkd2(-/-);PKD2(tg)), suggesting that the ADPKD phenotype was improved by increased transgene dosage. On further analysis, cystic improvement mainly resulted from reduced proliferation, rather apoptosis, of cyst-prone epithelial cells in the mouse model. The finding that the functional restoration of human PC2 significantly rescued ADPKD phenotypes in a dose-dependent manner suggests that increasing PC2 activity may be beneficial in some forms of ADPKD.
Collapse
Affiliation(s)
- Ao Li
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xiaoli Zhang
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunwei Huang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yujie Ma
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Guanqing Wu
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medicine, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
39
|
Hakim S, Dyson JM, Feeney SJ, Davies EM, Sriratana A, Koenig MN, Plotnikova OV, Smyth IM, Ricardo SD, Hobbs RM, Mitchell CA. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet 2016; 25:2295-2313. [PMID: 27056978 DOI: 10.1093/hmg/ddw097] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of renal failure with few effective treatments. INPP5E is an inositol polyphosphate 5-phosphatase that dephosphorylates phosphoinositide 3-kinase (PI3K)-generated PI(3,4,5)P3 and is mutated in ciliopathy syndromes. Germline Inpp5e deletion is embryonically lethal, attributed to cilia stability defects, and is associated with polycystic kidneys. However, the molecular mechanisms responsible for PKD development upon Inpp5e loss remain unknown. Here, we show conditional inactivation of Inpp5e in mouse kidney epithelium results in severe PKD and renal failure, associated with a partial reduction in cilia number and hyperactivation of PI3K/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment with an mTORC1 inhibitor improved kidney morphology and function, but did not affect cilia number or length. Therefore, we identify Inpp5e as an essential inhibitor of the PI3K/Akt/mTORC1 signaling axis in renal epithelial cells, and demonstrate a critical role for Inpp5e-dependent mTORC1 regulation in PKD suppression.
Collapse
Affiliation(s)
- Sandra Hakim
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer M Dyson
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth M Davies
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monica N Koenig
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Olga V Plotnikova
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ian M Smyth
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Robin M Hobbs
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
40
|
Abstract
Autosomal dominant polycystic kidney disease is caused by mutation of PKD1 (polycystic kidney disease-1) or PKD2 (polycystic kidney disease-2). PKD1 and PKD2 encode PC1 (polycystin-1) and PC2 (polycystin-2), respectively. In addition, the mutation of cilia-associated proteins is also a recognized major factor of pathogenesis, since PC1 and PC2 are located in primary cilium. Abnormalities of PC1 or PC2 lead to aberrant signaling through downstream pathways, such as the negative growth regulation, G protein activation, and canonical and non-canonical Wnt pathways. According to the "second hit" model, an additional somatic mutation results in the expansion of cyst growth. In this chapter we discuss the genetic mechanisms and signaling pathways involved in ADPKD.
Collapse
|
41
|
Rodriguez D, Kapoor S, Edenhofer I, Segerer S, Riwanto M, Kipar A, Yang M, Mei C, Wüthrich RP. Inhibition of Sodium-Glucose Cotransporter 2 with Dapagliflozin in Han: SPRD Rats with Polycystic Kidney Disease. Kidney Blood Press Res 2015; 40:638-47. [PMID: 26698317 DOI: 10.1159/000368540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dapagliflozin (DAPA) is a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2) which induces glucosuria and osmotic diuresis. The therapeutic effect of DAPA in progressing stages of polycystic kidney disease (PKD) has not been studied. METHODS We examined the effect of DAPA in the Han: SPRD rat model of PKD. DAPA (10 mg/kg/day) or vehicle (VEH) was administered orally via gavage to 5 week old male Han: SPRD (Cy/+) or control (+/+) rats (n = 8-9 per group) for 5 weeks. Blood and urine were collected at baseline and after 2.5 and 5 weeks of treatment to assess renal function and albuminuria. At the end of the treatment, rats were sacrificed and kidneys were excised for histological analysis. RESULTS After 5 weeks of treatment, DAPA-treated Cy/+ and +/+ rats exhibited significantly higher glucosuria, water intake and urine output than VEH-treated rats. DAPA-treated Cy/+ rats also exhibited significantly higher clearances for creatinine and BUN and less albuminuria than VEH-treated Cy/+ rats. DAPA treatment for 5 weeks resulted in a significant increase of the kidney weight in Cy/+ rats but no change in cyst growth. The degree of tubular epithelial cell proliferation, macrophage infiltration and interstitial fibrosis was also similar in DAPA-and VEH-treated Cy/+ rats. CONCLUSION The induction of glucosuria with the SGLT2-specific inhibitor DAPA was associated with improved renal function and decreased albuminuria, but had no effect on cyst growth in Cy/+ rats. Overall the beneficial effects of DAPA in this PKD model were weaker than the previously described effects of the combined SGLT1/2 inhibitor phlorizin.
Collapse
Affiliation(s)
- Daniel Rodriguez
- Division of Nephrology, University Hospital, Zx00FC;rich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Semin Immunopathol 2015; 38:371-83. [PMID: 26385481 DOI: 10.1007/s00281-015-0527-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023]
Abstract
Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
|
44
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
45
|
Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 2015; 35:1393-406. [PMID: 25263802 DOI: 10.1002/humu.22708] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is characterized by the progressive development and expansion of bilateral fluid-filled cysts derived from the renal tubule epithelial cells. Although typically leading to end-stage renal disease in late middle age, ADPKD represents a continuum, from neonates with hugely enlarged cystic kidneys to cases with adequate kidney function into old age. Since the identification of the first causative gene (i.e., PKD1, encoding polycystin 1) 20 years ago, genetic studies have uncovered a large part of the key factors that underlie the phenotype variability. Here, we provide a comprehensive review of these significant advances as well as those related to disease pathogenesis models, including mutation analysis of PKD1 and PKD2 (encoding polycystin 2), current mutation detection rate, allelic heterogeneity, genotype and phenotype relationships (in terms of three different inheritance patterns: classical autosomal dominant inheritance, complex inheritance, and somatic and germline mosaicism), modifier genes, the role of second somatic mutation hit in renal cystogenesis, and findings from mouse models of polycystic kidney disease. Based upon a combined consideration of the current knowledge, we attempted to propose a unifying framework for explaining the phenotype variability in ADPKD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Régional Universitaire, Hôpital de la Cavale Blanche, Brest, France
| | | | | | | | | |
Collapse
|
46
|
Antignac C, Calvet JP, Germino GG, Grantham JJ, Guay-Woodford LM, Harris PC, Hildebrandt F, Peters DJM, Somlo S, Torres VE, Walz G, Zhou J, Yu ASL. The Future of Polycystic Kidney Disease Research--As Seen By the 12 Kaplan Awardees. J Am Soc Nephrol 2015; 26:2081-95. [PMID: 25952256 DOI: 10.1681/asn.2014121192] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common life-threatening genetic diseases. Jared J. Grantham, M.D., has done more than any other individual to promote PKD research around the world. However, despite decades of investigation there is still no approved therapy for PKD in the United States. In May 2014, the University of Kansas Medical Center hosted a symposium in Kansas City honoring the occasion of Dr. Grantham's retirement and invited all the awardees of the Lillian Jean Kaplan International Prize for Advancement in the Understanding of Polycystic Kidney Disease to participate in a forward-thinking and interactive forum focused on future directions and innovations in PKD research. This article summarizes the contributions of the 12 Kaplan awardees and their vision for the future of PKD research.
Collapse
Affiliation(s)
- Corinne Antignac
- National Institute of Health and Medical Research, Laboratory of Inherited Kidney Diseases, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and The Department of Genetics, Necker Hospital, Paris, France
| | - James P Calvet
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| | - Gregory G Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jared J Grantham
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, DC
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Friedhelm Hildebrandt
- Howard Hughes Medical Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gerd Walz
- Renal Division, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany; and
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan S L Yu
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
47
|
Olsan EE, Matsushita T, Rezaei M, Weimbs T. Exploitation of the Polymeric Immunoglobulin Receptor for Antibody Targeting to Renal Cyst Lumens in Polycystic Kidney Disease. J Biol Chem 2015; 290:15679-15686. [PMID: 25922073 DOI: 10.1074/jbc.m114.607929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 12/22/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common life-threatening genetic disease that leads to renal failure. No treatment is available yet to effectively slow disease progression. Renal cyst growth is, at least in part, driven by the presence of growth factors in the lumens of renal cysts, which are enclosed spaces lacking connections to the tubular system. We have shown previously shown that IL13 in cyst fluid leads to aberrant activation of STAT6 via the IL4/13 receptor. Although antagonistic antibodies against many of the growth factors implicated in ADPKD are already available, they are IgG isotype antibodies that are not expected to gain access to renal cyst lumens. Here we demonstrate that targeting antibodies to renal cyst lumens is possible with the use of dimeric IgA (dIgA) antibodies. Using human ADPKD tissues and polycystic kidney disease mouse models, we show that the polymeric immunoglobulin receptor (pIgR) is highly expressed by renal cyst-lining cells. pIgR expression is, in part, driven by aberrant STAT6 pathway activation. pIgR actively transports dIgA from the circulation across the cyst epithelium and releases it into the cyst lumen as secretory IgA. dIgA administered by intraperitoneal injection is preferentially targeted to polycystic kidneys whereas injected IgG is not. Our results suggest that pIgR-mediated transcytosis of antagonistic antibodies in dIgA format can be exploited for targeted therapy in ADPKD.
Collapse
Affiliation(s)
- Erin E Olsan
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106-9610
| | - Tamami Matsushita
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106-9610
| | - Mina Rezaei
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106-9610
| | - Thomas Weimbs
- From the Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106-9610.
| |
Collapse
|
48
|
Mamenko M, Zaika O, Boukelmoune N, O'Neil RG, Pochynyuk O. Deciphering physiological role of the mechanosensitive TRPV4 channel in the distal nephron. Am J Physiol Renal Physiol 2015; 308:F275-86. [PMID: 25503733 PMCID: PMC4329491 DOI: 10.1152/ajprenal.00485.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022] Open
Abstract
Long-standing experimental evidence suggests that epithelial cells in the renal tubule are able to sense osmotic and pressure gradients caused by alterations in ultrafiltrate flow by elevating intracellular Ca(2+) concentration. These responses are viewed as critical regulators of a variety of processes ranging from transport of water and solutes to cellular growth and differentiation. A loss in the ability to sense mechanical stimuli has been implicated in numerous pathologies associated with systemic imbalance of electrolytes and to the development of polycystic kidney disease. The molecular mechanisms conferring mechanosensitive properties to epithelial tubular cells involve activation of transient receptor potential (TRP) channels, such as TRPV4, allowing direct Ca(2+) influx to increase intracellular Ca(2+) concentration. In this review, we critically analyze the current evidence about signaling determinants of TRPV4 activation by luminal flow in the distal nephron and discuss how dysfunction of this mechanism contributes to the progression of polycystic kidney disease. We also review the physiological relevance of TRPV4-based mechanosensitivity in controlling flow-dependent K(+) secretion in the distal renal tubule.
Collapse
Affiliation(s)
- M Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - O Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - N Boukelmoune
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - R G O'Neil
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - O Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
49
|
Menezes LF, Germino GG. Systems biology of polycystic kidney disease: a critical review. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:39-52. [PMID: 25641951 DOI: 10.1002/wsbm.1289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
The proliferation and diminishing costs of 'omics' approaches have finally opened the doors for small and medium laboratories to enter the 'systems biology era'. This is a welcome evolution that requires a new framework to design, interpret, and validate studies. Here, we highlight some of the challenges, contributions, and prospects of the 'cyst-ems biology' of polycystic kidney disease.
Collapse
Affiliation(s)
- Luis Fernando Menezes
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
50
|
Tao S, Kakade VR, Woodgett JR, Pandey P, Suderman ED, Rajagopal M, Rao R. Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease. Kidney Int 2015; 87:1164-75. [PMID: 25629553 PMCID: PMC4449797 DOI: 10.1038/ki.2014.427] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and plays a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly up-regulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function and extended lifespan. GSK3β inhibition also reduced pERK, c-Myc and Cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β plays a novel functional role in PKD pathophysiology and its inhibition may be therapeutically useful to slow cyst expansion and progression of PKD.
Collapse
Affiliation(s)
- Shixin Tao
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Vijayakumar R Kakade
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James R Woodgett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pankaj Pandey
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin D Suderman
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhumitha Rajagopal
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Reena Rao
- Department of Medicine, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|