1
|
Xie Y, Liu F. Precision medicine for focal segmental glomerulosclerosis. Kidney Res Clin Pract 2024; 43:709-723. [PMID: 38325863 PMCID: PMC11615440 DOI: 10.23876/j.krcp.23.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 02/09/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is one of the common causes of nephrotic syndrome in adults and children worldwide. FSGS consists of a group of kidney diseases classified based on specific histopathological features. The current classification of FSGS makes it difficult to distinguish individual differences in pathogenesis, disease progression, and response to treatment. In recent years, the spread of next-generation sequencing, updates in biological techniques, and improvements of treatment have changed our understanding of FSGS. In this review, we will discuss the use of genetic testing in patients with FSGS, explore its clinical significance from a genetic identification perspective, and introduce several new biomarkers, that may help in the early diagnosis of FSGS and guide the development of specific or targeted therapies, so as to understand the biological characteristics in FSGS. This will certainly help develop more effective and safer treatments and advance precision medicine.
Collapse
Affiliation(s)
- Yi Xie
- Department of Nephrology, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Elnaga AAA, Alsaied MA, Elettreby AM, Ramadan A, Abouzid M, Shetta R, Al-Ajlouni YA. Safety and efficacy of sparsentan versus irbesartan in focal segmental glomerulosclerosis and IgA nephropathy: a systematic review and meta-analysis of randomized controlled trials. BMC Nephrol 2024; 25:316. [PMID: 39333921 PMCID: PMC11429118 DOI: 10.1186/s12882-024-03713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sparsentan has shown positive effects on managing different subtypes of glomerulonephritis. The recent results of trials require a pooled analysis to validate these results. AIM We aim to assess the safety and efficacy of sparsentan versus irbesartan for patients with IgA nephropathy and focal glomerulosclerosis (FSGS). METHODS We conducted a systematic review and meta-analysis of randomized controlled trials retrieved by systematically searching PubMed, Web of Science, Scopus, and Cochrane through March 2024. We used Review Manager v.5.4 to pool dichotomous data using risk ratio (RR) and continuous data using mean difference (MD) with a 95% confidence interval (CI). RESULTS Three studies with a total of 884 patients were included. Sparsentan was superior to irbesartan in improving urine protein to creatinine ratio (UP/C) (ratio of percentage reduction 0.66, 95% CI [0.58 to 0.74], P < 0.001); as well as the proportion of patients achieved complete and partial remission of proteinuria (RR = 2.57, 95% CI [1.73 to 3.81], P < 0.001) and (RR = 1.63, 95% CI [1.4 to 1.91], P < 0.001) respectively. Regarding the effect on the glomerular filtration rate, the results estimate did not favor either sparsentan or irbesartan (MD = 1.98 ml/min per 1.73mm2, 95% CI [-1.05 to 5.01], P = 0.2). There were no significant differences in adverse events except for hypotension, which showed higher rates in the sparsentan group (RR = 2.02, 95% CI [1.3 to 3.16], P = 0.002). CONCLUSION Sparsentan is effective and has a good safety profile for treating FSGS and patients with IgA nephropathy. However, more well-designed RCTs against ARBs, ACE inhibitors, and steroids with larger sample sizes are needed to get conclusive evidence.
Collapse
Affiliation(s)
| | | | | | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St, Poznan, 60-806, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, 60-812, Poland
| | - Raghda Shetta
- Department of Internal Medicine, UCF College of Medicine, HCA Florida Ocala, Ocala, USA
| | - Yazan A Al-Ajlouni
- Department of Physical Medicine and Rehabilitation, Montefiore Medical Center, Wakefield Campus, NY, Montefiore, USA.
| |
Collapse
|
3
|
Wang F, Huang X, Wang S, Wu D, Zhang M, Wei W. The main molecular mechanisms of ferroptosis and its role in chronic kidney disease. Cell Signal 2024; 121:111256. [PMID: 38878804 DOI: 10.1016/j.cellsig.2024.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The term ferroptosis, coined in 2012, has been widely applied in various disease research fields. Ferroptosis is a newly regulated form of cell death distinct from apoptosis, necrosis, and autophagy, the mechanisms of which have been extensively studied. Chronic kidney disease, characterized by renal dysfunction, is a common disease severely affecting human health, with its occurrence and development influenced by multiple factors and leading to dysfunction in multiple systems. It often lacks obvious clinical symptoms in the early stages, and thus, diagnosis is typically made in the later stages, complicating treatment. While research on ferroptosis and acute kidney injury has made continuous progress, studies on the association between ferroptosis and chronic kidney disease remain limited. This review aims to summarize chronic kidney disease, investigate the mechanism and regulation of ferroptosis, and attempt to elucidate the role of ferroptosis in the occurrence and development of chronic kidney disease.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xuesong Huang
- Department of Urology, Jilin People's Hospital, Jilin, China
| | - Shaokun Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Dawei Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | | | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Kohan DE, Bedard P, Jenkinson C, Hendry B, Komers R. Mechanism of protective actions of sparsentan in the kidney: lessons from studies in models of chronic kidney disease. Clin Sci (Lond) 2024; 138:645-662. [PMID: 38808486 PMCID: PMC11139641 DOI: 10.1042/cs20240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Simultaneous inhibition of angiotensin II AT1 and endothelin ETA receptors has emerged as a promising approach for treatment of chronic progressive kidney disease. This therapeutic approach has been advanced by the introduction of sparsentan, the first dual AT1 and ETA receptor antagonist. Sparsentan is a single molecule with high affinity for both receptors. It is US Food and Drug Administration approved for immunoglobulin A nephropathy (IgAN) and is currently being developed as a treatment for rare kidney diseases, such as focal segmental glomerulosclerosis. Clinical studies have demonstrated the efficacy and safety of sparsentan in these conditions. In parallel with clinical development, studies have been conducted to elucidate the mechanisms of action of sparsentan and its position in the context of published evidence characterizing the nephroprotective effects of dual ETA and AT1 receptor inhibition. This review summarizes this evidence, documenting beneficial anti-inflammatory, antifibrotic, and hemodynamic actions of sparsentan in the kidney and protective actions in glomerular endothelial cells, mesangial cells, the tubulointerstitium, and podocytes, thus providing the rationale for the use of sparsentan as therapy for focal segmental glomerulosclerosis and IgAN and suggesting potential benefits in other renal diseases, such as Alport syndrome.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, U.S.A
| | | | | | - Bruce Hendry
- Travere Therapeutics, Inc., San Diego, CA, U.S.A
| | - Radko Komers
- Travere Therapeutics, Inc., San Diego, CA, U.S.A
| |
Collapse
|
5
|
Qadri AH, Prajapati J, Faheem I, Bhattacharjee U, Padmanaban HK, Mulukala SKN, Pasupulati AK. Biophysical characterization and insights into the oligomeric nature of CD2-associated protein. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:20-33. [PMID: 38765876 PMCID: PMC11101965 DOI: 10.62347/uvsh8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Glomerular podocytes are specialized epithelial cells localized to the blood-urine interface of the kidney. Podocyte slit-diaphragm (SD), a size-and-charge-selective junction, is instrumental in blood ultrafiltration and the formation of protein-free urine. The SD consists of macromolecular complexes of several proteins, such as nephrin, podocin, and CD2-associated protein (CD2AP). CD2AP is an adapter protein and is considered to be crucial for the integrity of SD. Mutations in the SD proteins cause nephrotic syndrome (NS), characterized by proteinuria. SD proteins' structural features must be elucidated to understand the mechanism of proteinuria in NS. In this study, we expressed, purified, and biophysically characterized heterologously expressed human CD2AP. METHODS Codon-optimized human CD2AP was expressed in E. coli Rosetta cells. The recombinant protein was induced with 1 mM IPTG and purified by Ni-NTA affinity chromatography. Analytical size-exclusion chromatography, blue native-PAGE, circular dichroism, and fluorescence spectroscopy were performed to decipher the oligomeric nature, secondary structural content, and tertiary packing of CD2AP. RESULTS Our analysis revealed that CD2AP adopts a predominantly disordered secondary structure despite exhibiting moderate tertiary packing, characterized by low helical and β-sheet content. CD2AP readily assembles into homo-oligomers, with octamers and tetramers constituting the primary population. Interestingly, the inherent flexibility of CD2AP's secondary structural elements appears resistant to thermal denaturation. Frameshift mutation (p.K579Efs*7) that leads to loss of the coiled-coil domain promotes aberrant oligomerization of CD2AP through SH3 domains. CONCLUSION We successfully expressed full-length human CD2AP in a heterologous system, wherein the secondary structure of CD2AP is predominantly disordered. CD2AP can form higher-order oligomers, and the significance of these oligomers and the impact of mutations in the context of size-selective permeability of SD needs further investigation.
Collapse
Affiliation(s)
- Abrar H Qadri
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Jyotsana Prajapati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore 560012, India
| | - Utsa Bhattacharjee
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | | | | | - Anil K Pasupulati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| |
Collapse
|
6
|
Mbanefo NR, Igbokwe OO, Iloh ON, Chikani UN, Bisi-Onyemaechi AI, Muoneke VU, Okafor HU, Uwaezuoke SN, Odetunde OI. Percutaneous kidney biopsy and the histopathologic patterns of kidney diseases in children: An observational descriptive study at a South-East Nigerian tertiary hospital. Niger J Clin Pract 2023; 26:795-801. [PMID: 37470655 DOI: 10.4103/njcp.njcp_855_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Background Kidney biopsy remains the best standard for kidney tissue analysis. Although percutaneous kidney biopsy is an invasive procedure, it is an indispensable part of interventional nephrology for accurate diagnosis, selection of appropriate therapy protocol, and prognostication of kidney diseases in children. With improvement in expertise among pediatric nephrologists, data on procedure outcomes are now being documented. Aim: We aimed to describe the outcomes in a 5-year practice of kidney biopsy at the pediatric nephrology unit in a southeast Nigerian tertiary hospital. Patients and Methods An observational descriptive study conducted on the kidney biopsy performed in our facility from 2017 to 2022. The focus was on the patients' clinical profile, indications for biopsy, the adopted procedure, and the histopathologic findings. Results A total of 69 patients had kidney biopsy, 40 (58.0%) were males, while 29 (42.0%) were females. Sixty-four (92.7%) patients had the procedure at the age of >10 years, while five (7.2%) at the age of <7 years. The patients' prebiopsy mean systolic and diastolic blood pressures were 111.20 ± 16.93 and 74.64 ± 12.69 mmHg, respectively. Their estimated glomerular filtration rate (eGFR) was 119.27 ± 52.78 ml/min/1.73 m2. The most frequent indication was steroid resistance (39/69, 56.5%). Focal segmental glomerulosclerosis was the commonest histopathologic finding (38/69, 55.0%). Conclusion Outcomes of percutaneous kidney biopsy at a Nigerian tertiary hospital are adjudged successful. The histopathologic patterns highlight FSGS as the major cause of steroid resistance in childhood nephrotic syndrome in this clime.
Collapse
Affiliation(s)
- N R Mbanefo
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - O O Igbokwe
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - O N Iloh
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - U N Chikani
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - A I Bisi-Onyemaechi
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - V U Muoneke
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - H U Okafor
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - S N Uwaezuoke
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - O I Odetunde
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| |
Collapse
|
7
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
8
|
Durand A, Winkler CA, Vince N, Douillard V, Geffard E, Binns-Roemer E, Ng DK, Gourraud PA, Reidy K, Warady B, Furth S, Kopp JB, Kaskel FJ, Limou S. Identification of Novel Genetic Risk Factors for Focal Segmental Glomerulosclerosis in Children: Results From the Chronic Kidney Disease in Children (CKiD) Cohort. Am J Kidney Dis 2023; 81:635-646.e1. [PMID: 36623684 DOI: 10.1053/j.ajkd.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/02/2022] [Indexed: 01/09/2023]
Abstract
RATIONALE & OBJECTIVE Focal segmental glomerulosclerosis (FSGS) is a major cause of pediatric nephrotic syndrome, and African Americans exhibit an increased risk for developing FSGS compared with other populations. Predisposing genetic factors have previously been described in adults. Here we performed genomic screening of primary FSGS in a pediatric African American population. STUDY DESIGN Prospective cohort with case-control genetic association study design. SETTING & PARTICIPANTS 140 African American children with chronic kidney disease from the Chronic Kidney Disease in Children (CKiD) cohort, including 32 cases with FSGS. PREDICTORS Over 680,000 common single-nucleotide polymorphisms (SNPs) were tested for association. We also ran a pathway enrichment analysis and a human leucocyte antigen (HLA)-focused association study. OUTCOME Primary biopsy-proven pediatric FSGS. ANALYTICAL APPROACH Multivariate logistic regression models. RESULTS The genome-wide association study revealed 169 SNPs from 14 independent loci significantly associated with FSGS (false discovery rate [FDR]<5%). We observed notable signals for genetic variants within the APOL1 (P=8.6×10-7; OR, 25.8 [95% CI, 7.1-94.0]), ALMS1 (P=1.3×10-7; 13.0% in FSGS cases vs 0% in controls), and FGFR4 (P=4.3×10-6; OR, 24.8 [95% CI, 6.3-97.7]) genes, all of which had previously been associated with adult FSGS, kidney function, or chronic kidney disease. We also highlighted novel, functionally relevant genes, including GRB2 (which encodes a slit diaphragm protein promoting podocyte structure through actin polymerization) and ITGB1 (which is linked to renal injuries). Our results suggest a major role for immune responses and antigen presentation in pediatric FSGS through (1) associations with SNPs in PTPRJ (or CD148, P=3.5×10-7), which plays a role in T-cell receptor signaling, (2) HLA-DRB1∗11:01 association (P=6.1×10-3; OR, 4.5 [95% CI, 1.5-13.0]), and (3) signaling pathway enrichment (P=1.3×10-6). LIMITATIONS Sample size and no independent replication cohort with genomic data readily available. CONCLUSIONS Our genetic study has identified functionally relevant risk factors and the importance of immune regulation for pediatric primary FSGS, which contributes to a better description of its molecular pathophysiological mechanisms.
Collapse
Affiliation(s)
- Axelle Durand
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory, National Cancer Institute, Frederick, Maryland
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Venceslas Douillard
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Estelle Geffard
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Elizabeth Binns-Roemer
- Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory, National Cancer Institute, Frederick, Maryland
| | - Derek K Ng
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Kimberley Reidy
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | | | - Susan Furth
- Children's Hospital of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Frederick J Kaskel
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France.
| |
Collapse
|
9
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Harshman LA, Bartosh S, Engen RM. Focal segmental glomerulosclerosis: Risk for recurrence and interventions to optimize outcomes following recurrence. Pediatr Transplant 2022; 26:e14307. [PMID: 35587003 DOI: 10.1111/petr.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND FSGS is a common indication for kidney transplant with a high-risk of posttransplant recurrence. METHODS In this review, we summarize current knowledge about FSGS recurrence after kidney transplantation, including epidemiology, pretransplant planning, posttransplant management, and investigational treatments. RESULTS FSGS recurs in 14%-60% of first transplants, likely associated with a circulating permeability factor. Pretransplant counseling regarding recurrence is critical, and patients with FSGS should undergo pretransplant genetic screening. Rapid progression to ESKD, initial steroid responsiveness, younger age at diagnosis, race/ethnicity, and mesangial hypercellularity or minimal change histology on native biopsy may be associated with recurrence. Living donation is not contraindicated but does not result in improved graft survival relative to deceased donation. Pretransplant nephrectomy may be performed for a variety of reasons, but does not decrease recurrence. Pretransplant therapy with rituximab and/or PE is understudied but not clearly effective at preventing recurrence. Patients with FSGS typically present early with rapid-onset severe proteinuria. Diagnosis can be confirmed by biopsy showing foot process effacement; typical FSGS lesions are not seen on light microscopy in the early stages. There is no established effective treatment for recurrent FSGS, but renin-angiotensin-aldosterone system inhibition and extracorporeal therapies, including PE and IA, are most commonly used. Adjunct or alternative therapies may include rituximab, lipopheresis, and cyclosporine.
Collapse
Affiliation(s)
- Lyndsay A Harshman
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sharon Bartosh
- University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Rachel M Engen
- University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Potential contribution of the immune system to the emergence of renal diseases. Immunol Lett 2022; 248:1-6. [DOI: 10.1016/j.imlet.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
|
12
|
Nelms CL, Shroff R, Boyer O, Topaloglu R. Managing the Nutritional Requirements of the Pediatric End-Stage Kidney Disease Graduate. Adv Chronic Kidney Dis 2022; 29:283-291. [PMID: 36084975 DOI: 10.1053/j.ackd.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
The pediatric patient with end-stage kidney disease who transitions to the adult dialysis unit or nephrology center requires a unique nutritional focus. Clinicians in the adult center may be faced with complex issues that have often been part of the patient's journey since early childhood. The causes of kidney disease in children are often quite different than those which affect the adult population and may require different nutritional priorities. Abnormal growth including severe short stature, underweight, overweight or obesity, and poor musculature may affect the long-term health and psychosocial well-being of these patients. Nutritional assessment of these patients should include a focus on past growth and anthropometric data, dietary information, including appetite, quality of diet, and assessment of biochemical data through a pediatric lens. This review discusses the unique factors that must be considered when transitioning pediatric patients and notes major recommendations from a compilation of pediatric guideline statements.
Collapse
Affiliation(s)
| | - Rukshana Shroff
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | - Olivia Boyer
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Service Néphrologie Pédiatrique, Centre de référence MARHEA, Institut Imagine, Université Paris Cité, Paris, France
| | - Rezan Topaloglu
- Hacettepe University School of Medicine Department of Pediatric Nephrology, Ankara, Turkey.
| |
Collapse
|
13
|
Thakor JM, Parmar G, Mistry KN, Gang S, Rank DN, Joshi CG. Mutational landscape of TRPC6, WT1, LMX1B, APOL1, PTPRO, PMM2, LAMB2 and WT1 genes associated with Steroid resistant nephrotic syndrome. Mol Biol Rep 2021; 48:7193-7201. [PMID: 34546508 DOI: 10.1007/s11033-021-06711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nephrotic syndrome appears as a group of symptoms like proteinuria, edema and hyperlipidemia. Identification of monogenic forms revealed the physiology and pathogenesis of the SRNS. METHODS AND RESULTS We performed Illumina panel sequencing of seven genes in 90 Indian patients to determine the role of these genetic mutations in nephrotic syndrome prognosis. Samtool was used for variants calling, and SnpEff and Snpsift did variants annotation. Clinical significance and variant classification were performed by the ClinVar database. In SSNS and SRNS patients, we found 0.78% pathogenic and 3.41% likely pathogenic mutations. Pathogenic mutations were found in LAMB2, LMX1B and WT1 genes, while likely pathogenic mutations were found in (6/13) LAMB2, (2/13) LMX1B, (2/13) TRPC6, (2/13) PTPRO and (1/13) PMM2 genes. Approximately 46% likely pathogenic mutations were contributed to the LAMB2 gene in SSNS and SRNS patients. We also detect 30 VUS (variants of uncertain significance), which were found (17/30) pathogenic and (13/30) likely pathogenic by different prediction tools. CONCLUSIONS Multigene panels were used for genetic screening of heterogeneous disorders like nephrotic syndrome in the Indian population. We found pathogenic, likely pathogenic and certain VUS, which were responsible for the pathogenesis of the disease. Therefore, mutational analysis of SSNS and SRNS is necessary to avoid adverse effects of corticosteroids, modify the intensity of immunosuppressing agents, and prevent the disease's progression.
Collapse
Affiliation(s)
- Jinal M Thakor
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Glory Parmar
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, ADIT Campus, New Vallabh Vidyanagar, 388121, Anand, Gujarat, India.
| | - Sishir Gang
- Muljibhai Patel Urological Hospital, Dr. V.V. Desai Road, Nadiad, 387001, Gujarat, India
| | - Dharamshibhai N Rank
- Department of Animal Breeding and Genetics, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, 388110, Gujarat, India
| |
Collapse
|
14
|
A girl with a mutation of the ciliary gene CC2D2A presenting with FSGS and nephronophthisis. CEN Case Rep 2021; 11:116-119. [PMID: 34435324 DOI: 10.1007/s13730-021-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022] Open
Abstract
Mutations in the ciliary gene TTC21B, NPHP4, and CRB2 cause familial focal and segmental glomerulosclerosis (FSGS). We report a girl with a mutation of the ciliary gene CC2D2A presenting with FSGS and nephronophthisis. The patient had mental retardation, postaxial polydactyly, and ataxic breathing, and was diagnosed as having compound heterozygous CC2D2A missense mutations at age 5. Retrospectively, azotemia at 1 year and proteinuria at 5 years were recorded but not investigated. At age 6, she was referred to the pediatric nephrology service because of hypertension, pretibial pitting edema, heavy proteinuria, and hematuria. eGFR was 66 ml/min/1.73 m2, total protein 5.3 g/dl, albumin 2.4 g/dl, and cholesterol 317 mg/dl. Ultrasonography showed normal-sized kidneys with a cyst in the right. Losartan was started. On renal biopsy, 8 out of 24 glomeruli were globally sclerosed, and three showed segmental sclerosis and/or hyalinosis with no immune deposits. Mild tubular dilatation, tubular atrophy, and interstitial fibrosis were observed. On electron microscopy, glomeruli showed focal foot process effacement with no electron dense deposits. Since losartan did not exert an obvious effect, treatment with prednisolone was tried. Urine protein decreased from 6.6 to 3.7 g/gCr. Prednisolone was discontinued after 10 days, however, because she developed duodenal ulcer perforation that necessitated omentoplasty. Subsequently, she was treated with losartan only. Her renal function deteriorated and peritoneal dialysis was initiated 8 months later. FSGS in this patient could be primary glomerular associated with CC2D2A mutation, rather than the consequences of tubulointerstitial fibrosis.
Collapse
|
15
|
Expression Pattern of α-Tubulin, Inversin and Its Target Dishevelled-1 and Morphology of Primary Cilia in Normal Human Kidney Development and Diseases. Int J Mol Sci 2021; 22:ijms22073500. [PMID: 33800671 PMCID: PMC8037028 DOI: 10.3390/ijms22073500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal expression of α-tubulin, inversin and dishevelled-1 (DVL-1) proteins associated with the Wnt-signaling pathway, and primary cilia morphology were analyzed in developing kidneys (14th–38th developmental weeks), healthy postnatal (1.5- and 7-years old) and pathologically changed human kidneys, including multicystic dysplastic kidneys (MCDK), focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome of the Finnish type (CNF). The analysis was performed by double immunofluorescence, electron microscopy, semiquantitative and statistical methods. Cytoplasmic co-expression of α-tubulin, inversin and DVL-1 was observed in the proximal convoluted tubules (pct), distal convoluted tubules (dct) and glomeruli (g) of analyzed tissues. During kidney development, the overall expression of α-tubulin, inversin and DVL-1 decreased, while in the postnatal period slightly increased. The highest expressions of α-tubulin and inversin characterized dct and g, while high DVL-1 characterized pct. α-tubulin, inversin and DVL-1 expression pattern in MCDK, FSGS and CNF kidneys significantly differed from the healthy control. Compared to healthy kidneys, pathologically changed kidneys had dysmorphic primary cilia. Different expression dynamics of α-tubulin, inversin and DVL-1 during kidney development could indicate that switch between the canonical and noncanonical Wnt-signaling is essential for normal kidney morphogenesis. In contrast, their disturbed expression in pathological kidneys might be associated with abnormal primary cilia, leading to chronic kidney diseases.
Collapse
|
16
|
Müller-Deile J, Sarau G, Kotb AM, Jaremenko C, Rolle-Kampczyk UE, Daniel C, Kalkhof S, Christiansen SH, Schiffer M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci Rep 2021; 11:4577. [PMID: 33633212 PMCID: PMC7907124 DOI: 10.1038/s41598-021-83883-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Idiopathic forms of Focal Segmental Glomerulosclerosis (FSGS) are caused by circulating permeability factors, which can lead to early recurrence of FSGS and kidney failure after kidney transplantation. In the past three decades, many research endeavors were undertaken to identify these unknown factors. Even though some potential candidates have been recently discussed in the literature, "the" actual factor remains elusive. Therefore, there is an increased demand in FSGS research for the use of novel technologies that allow us to study FSGS from a yet unexplored angle. Here, we report the successful treatment of recurrent FSGS in a patient after living-related kidney transplantation by removal of circulating factors with CytoSorb apheresis. Interestingly, the classical published circulating factors were all in normal range in this patient but early disease recurrence in the transplant kidney and immediate response to CytoSorb apheresis were still suggestive for pathogenic circulating factors. To proof the functional effects of the patient's serum on podocytes and the glomerular filtration barrier we used a podocyte cell culture model and a proteinuria model in zebrafish to detect pathogenic effects on the podocytes actin cytoskeleton inducing a functional phenotype and podocyte effacement. We then performed Raman spectroscopy in the < 50 kDa serum fraction, on cultured podocytes treated with the FSGS serum and in kidney biopsies of the same patient at the time of transplantation and at the time of disease recurrence. The analysis revealed changes in podocyte metabolome induced by the FSGS serum as well as in focal glomerular and parietal epithelial cell regions in the FSGS biopsy. Several altered Raman spectra were identified in the fractionated serum and metabolome analysis by mass spectrometry detected lipid profiles in the FSGS serum, which were supported by disturbances in the Raman spectra. Our novel innovative analysis reveals changed lipid metabolome profiles associated with idiopathic FSGS that might reflect a new subtype of the disease.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Ahmed M Kotb
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Asyût, Egypt
| | - Christian Jaremenko
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Institute of Optics, Information and Photonics, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany.,Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Silke H Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany.,Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany.,Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany.,Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Sol M, Kamps JAAM, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, Hillebrands JL. Glomerular Endothelial Cells as Instigators of Glomerular Sclerotic Diseases. Front Pharmacol 2020; 11:573557. [PMID: 33123011 PMCID: PMC7573930 DOI: 10.3389/fphar.2020.573557] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS) and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct contact with cells and factors circulating in the blood. Disturbances in these circulating factors can induce GEnC dysfunction. GEnC dysfunction occurs in early stages of FSGS and DN, and is characterized by a compromised endothelial glycocalyx, an inflammatory phenotype, mitochondrial damage and oxidative stress, aberrant cell signaling, and endothelial-to-mesenchymal transition (EndMT). GEnCs are in an interdependent relationship with podocytes and mesangial cells, which involves bidirectional cross-talk via intercellular signaling. Given that GEnC behavior directly influences podocyte function, it is conceivable that GEnC dysfunction may culminate in podocyte damage, proteinuria, subsequent mesangial activation, and ultimately glomerulosclerosis. Indeed, GEnC dysfunction is sufficient to cause podocyte injury, proteinuria and activation of mesangial cells. Aberrant gene expression patterns largely contribute to GEnC dysfunction and epigenetic changes seem to be involved in causing aberrant transcription. This review summarizes literature that uncovers the importance of cross-talk between GEnCs and podocytes, and GEnCs and mesangial cells in the context of the development of FSGS and DN, and the potential use of GEnCs as efficacious cellular target to pharmacologically halt development and progression of DN and FSGS.
Collapse
Affiliation(s)
- Marloes Sol
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Abstract
BACKGROUND Glomerulosclerosis represents the final stage of glomerular injury during the course of kidney disease and can result from a primary disturbance in disorders like focal segmental glomerulosclerosis or a secondary response to tubulointerstitial disease. Overall, primary focal glomerulosclerosis (FSGS), the focus of this review, accounts for 10-20% of patients of all ages who progress to end stage kidney disease. There are no FDA approved therapeutic options that effectively prevent or delay the onset of kidney failure. AREAS COVERED Current immunosuppressive therapy and conservative management including inhibitors of the renin-angiotensin-aldosterone axis and sodium-glucose cotransporter are reviewed. FSGS is now recognized to represent a heterogeneous entity with multiple underlying disease mechanisms. Therefore, novel approaches targeting the podocyte cytoskeleton, immunological, inflammatory, hemodynamic and metabolic pathways are highlighted. EXPERT OPINION A number of factors are driving the development of drugs to treat focal segmental glomerulosclerosis in particular and glomerulosclerosis in general including growing awareness of the burden of chronic kidney disease, improved scientific understanding of the mechanism of injury, and the development of noninvasive profiles to identify subgroups of patients with discrete mechanisms of glomerular injury.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Division of Nephrology, NYU Langone Health , New York, NY, USA
| |
Collapse
|
19
|
Gipson DS, Hladunewich MA, Lafayette R, Sedor JR, Rovin BH, Barbour SJ, McMahon A, Jennette JC, Nachman PH, Willette RN, Paglione M, Gao F, Ross Terres JA, Vallow S, Holland MC, Thorneloe KS, Sprecher DL. Assessing the Impact of Losmapimod on Proteinuria in Idiopathic Focal Segmental Glomerulosclerosis. Kidney Int Rep 2020; 5:1228-1239. [PMID: 32775822 PMCID: PMC7403548 DOI: 10.1016/j.ekir.2020.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
Introduction Idiopathic focal segmental glomerulosclerosis (FSGS) is a leading cause of nephrotic syndrome and end-stage renal disease. In preclinical models and biopsies of human FSGS kidneys, p38 mitogen-activated protein kinase (MAPK) has demonstrated enhanced activity; and p38 MAPK inhibition has improved disease markers. This proof-of-concept trial aimed to assess efficacy, safety, tolerability, and pharmacokinetics of losmapimod, an oral p38 MAPK inhibitor, in humans with FSGS. Methods A single-arm, multicenter, open-label, Phase II trial (NCT02000440) was conducted in adults with FSGS; proteinuria ≥2.0 g/d; estimated glomerular filtration rate (eGFR) ≥45 ml/min per 1.73 m2; blood pressure <140/90 mm Hg. Collapsing and genetic forms of FSGS were excluded. The primary endpoint was number of patients with ≥50% proteinuria reduction and eGFR ≥70% of baseline after receiving losmapimod twice-daily for 16 to 24 weeks. Results Seventeen patients received ≥1 losmapimod dose. No patients achieved the primary endpoint; therefore, the study was terminated following a prespecified interim analysis. At week 24, proteinuria reductions between 20% and <50% were observed in 4 patients and proteinuria increases >20% in 3 patients. One patient achieved a proteinuria response (≥50% reduction) at week 2 but subsequently relapsed. Losmapimod pharmacokinetics were consistent with prior studies. No serious adverse events (AEs) were reported. Conclusion p38 MAPK inhibition with losmapimod did not result in ≥50% reduction of proteinuria in patients with FSGS. However, study population heterogeneity may have contributed to our negative findings and therefore this does not eliminate the potential to demonstrate benefit in a population more sensitive to p38 MAPK inhibition if identifiable in the future by precision-medicine methods.
Collapse
Affiliation(s)
- Debbie S Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle A Hladunewich
- Department of Internal Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Richard Lafayette
- Department of Internal Medicine, Stanford University, Stanford, California, USA
| | - John R Sedor
- Department of Internal Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brad H Rovin
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sean J Barbour
- Department of Internal Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alan McMahon
- Department of Internal Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - J Charles Jennette
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Patrick H Nachman
- Department of Internal Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Feng Gao
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | - Sue Vallow
- Worldwide Clinical Trials, Morrisville, North Carolina, USA
| | | | | | | |
Collapse
|
20
|
Taherkhani A, Farrokhi Yekta R, Mohseni M, Saidijam M, Arefi Oskouie A. Chronic kidney disease: a review of proteomic and metabolomic approaches to membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy biomarkers. Proteome Sci 2019; 17:7. [PMID: 31889913 PMCID: PMC6925425 DOI: 10.1186/s12953-019-0155-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a global health problem annually affecting millions of people around the world. It is a comprehensive syndrome, and various factors may contribute to its occurrence. In this study, it was attempted to provide an accurate definition of chronic kidney disease; followed by focusing and discussing on molecular pathogenesis, novel diagnosis approaches based on biomarkers, recent effective antigens and new therapeutic procedures related to high-risk chronic kidney disease such as membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy, which may lead to end-stage renal diseases. Additionally, a considerable number of metabolites and proteins that have previously been discovered and recommended as potential biomarkers of various CKDs using ‘-omics-’ technologies, proteomics, and metabolomics were reviewed.
Collapse
Affiliation(s)
- Amir Taherkhani
- 1Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maede Mohseni
- 3Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- 1Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Arefi Oskouie
- 4Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Raina R, Chauvin A, Chakraborty R, Nair N, Shah H, Krishnappa V, Kusumi K. The Role of Endothelin and Endothelin Antagonists in Chronic Kidney Disease. KIDNEY DISEASES 2019; 6:22-34. [PMID: 32021871 DOI: 10.1159/000504623] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Background Endothelins (ET) are a family of peptides that act as potent vasoconstrictors and pro-fibrotic growth factors. ET-1 is integral to renal and cardiovascular pathophysiology and exerts effects via autocrine, paracrine and endocrine signaling pathways tied to regulation of aldosterone, catecholamines, and angiotensin. In the kidney, ET-1 is critical to maintaining renal perfusion and controls glomerular arteriole tone and hemodynamics. It is hypothesized that ET-1 influences the progression of chronic kidney disease (CKD), and the objective of this review is to discuss the pathophysiology, and role of ET and endothelin receptor antagonists (ERAs) in CKD. Summary The use of ERAs in hypertensive nephropathy has the potential to decrease proteinuria, and in diabetic nephropathy has the potential to restore glycocalyx thickness, also decreasing proteinuria. Focal segmental glomerular sclerosis has no specific Food and Drug Administration-approved therapy currently, however, ERAs show promise in decreasing proteinuria and slowing tissue damage. ET-1 is a potential biomarker for autosomal dominant polycystic kidney disease progression and so it is thought that ERAs may be of some therapeutic benefit. Key Messages Multiple studies have shown the utility of ERAs in CKD. These agents have shown to reduce blood pressure, proteinuria, and arterial stiffness. However, more clinical trials are needed, and the results of active or recently concluded studies are eagerly awaited.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Akron Children's Hospital, Akron, Ohio, USA
| | | | - Ronith Chakraborty
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA
| | - Nikhil Nair
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Haikoo Shah
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Vinod Krishnappa
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
22
|
Govender MA, Fabian J, Gottlich E, Levy C, Moonsamy G, Maher H, Winkler CA, Ramsay M. The podocin V260E mutation predicts steroid resistant nephrotic syndrome in black South African children with focal segmental glomerulosclerosis. Commun Biol 2019; 2:416. [PMID: 31754646 PMCID: PMC6858321 DOI: 10.1038/s42003-019-0658-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 01/17/2023] Open
Abstract
In black African children with focal segmental glomerulosclerosis (FSGS) there are high rates of steroid resistance. The aim was to determine genetic associations with apolipoprotein L1 (APOL1) renal risk variants and podocin (NPHS2) variants in 30 unrelated black South African children with FSGS. Three APOL1 variants were genotyped and the exons of the NPHS2 gene sequenced in the cases and controls. APOL1 risk alleles show a modest association with steroid sensitive nephrotic syndrome (SSNS) and steroid resistant nephrotic syndrome (SRNS). The NPHS2 V260E variant was present in SRNS cases (V/V = 5; V/E = 4; E/E = 11), and was absent in SSNS cases. Haplotype analysis suggests a single mutation origin for V260E and it was associated with a decline in kidney function over a 60-month period (p = 0.026). The V260E variant is a good predictor of autosomal recessive SRNS in black South African children and could provide useful information in a clinical setting.
Collapse
Affiliation(s)
- Melanie A. Govender
- Sydney Brenner Institute for Molecular Bioscience and Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
- Division of Nephrology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Errol Gottlich
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics, University of Pretoria, Pretoria, South Africa
| | - Cecil Levy
- Nelson Mandela Children’s Hospital, Division of Nephrology, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Glenda Moonsamy
- Charlotte Maxeke Johannesburg Academic Hospital, Division of Nephrology, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Maher
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience and Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Impact of Intravenous Iron on Oxidative Stress and Mitochondrial Function in Experimental Chronic Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8100498. [PMID: 31640237 PMCID: PMC6826506 DOI: 10.3390/antiox8100498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Mitochondrial dysfunction is observed in chronic kidney disease (CKD). Iron deficiency anaemia (IDA), a common complication in CKD, is associated with poor clinical outcomes affecting mitochondrial function and exacerbating oxidative stress. Intravenous (iv) iron, that is used to treat anaemia, may lead to acute systemic oxidative stress. This study evaluated the impact of iv iron on mitochondrial function and oxidative stress. Methods: Uraemia was induced surgically in male Sprague-Dawley rats and studies were carried out 12 weeks later in two groups sham operated and uraemic (5/6 nephrectomy) rats not exposed to i.v. iron versus sham operated and uraemic rats with iv iron. Results: Induction of uraemia resulted in reduced iron availability (serum iron: 31.1 ± 1.8 versus 46.4 ± 1.4 µM), low total iron binding capacity (26.4 ± 0.7 versus 29.5 ± 0.8 µM), anaemia (haematocrit: 42.5 ± 3.0 versus 55.0 ± 3.0%), cardiac hypertrophy, reduced systemic glutathione peroxidase activity (1.12 ± 0.11 versus 1.48 ± 0.12 U/mL), tissue oxidative stress (oxidised glutathione: 0.50 ± 0.03 versus 0.36 ± 0.04 nmol/mg of tissue), renal mitochondrial dysfunction (proton/electron leak: 61.8 ± 8.0 versus 22.7 ± 5.77) and complex I respiration (134.6 ± 31.4 versus 267.6 ± 26.4 pmol/min/µg). Iron therapy had no effect on renal function and cardiac hypertrophy but improved anaemia and systemic glutathione peroxidase (GPx) activity. There was increased renal iron content and complex II and complex IV dysfunction. Conclusion: Iron therapy improved iron deficiency anaemia in CKD without significant impact on renal function or oxidant status.
Collapse
|
24
|
Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodliff A, Lay AC, Birnbaumer L, Heesom KJ, Xu SZ, Saleem MA, Welsh GI. TRPC6 Binds to and Activates Calpain, Independent of Its Channel Activity, and Regulates Podocyte Cytoskeleton, Cell Adhesion, and Motility. J Am Soc Nephrol 2019; 30:1910-1924. [PMID: 31416818 DOI: 10.1681/asn.2018070729] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in the transient receptor potential channel 6 (TRPC6) gene are associated with an inherited form of FSGS. Despite widespread expression, patients with TRPC6 mutations do not present with any other pathologic phenotype, suggesting that this protein has a unique yet unidentified role within the target cell for FSGS, the kidney podocyte. METHODS We generated a stable TRPC6 knockout podocyte cell line from TRPC6 knockout mice. These cells were engineered to express wild-type TRPC6, a dominant negative TRPC6 mutation, or either of two disease-causing mutations of TRPC6, G109S or K874*. We extensively characterized these cells using motility, detachment, and calpain activity assays; immunofluorescence; confocal or total internal reflection fluorescence microscopy; and western blotting. RESULTS Compared with wild-type cells, TRPC6-/- podocytes are less motile and more adhesive, with an altered actin cytoskeleton. We found that TRPC6 binds to ERK1/2 and the actin regulatory proteins, caldesmon (a calmodulin- and actin-binding protein) and calpain 1 and 2 (calcium-dependent cysteine proteases that control the podocyte cytoskeleton, cell adhesion, and motility via cleavage of paxillin, focal adhesion kinase, and talin). Knockdown or expression of the truncated K874* mutation (but not expression of the gain-of-function G019S mutation or dominant negative mutant of TRPC6) results in the mislocalization of calpain 1 and 2 and significant downregulation of calpain activity; this leads to altered podocyte cytoskeleton, motility, and adhesion-characteristics of TRPC6 -/- podocytes. CONCLUSIONS Our data demonstrate that independent of TRPC6 channel activity, the physical interaction between TRPC6 and calpain in the podocyte is important for cell motility and detachment and demonstrates a scaffolding role of the TRPC6 protein in disease.
Collapse
Affiliation(s)
| | | | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, and
| | - Lan Ni
- Bristol Renal, Bristol Medical School
| | | | | | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.,Faculty of Medical Sciences, Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina; and
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
25
|
Uwaezuoke SN, Ndu IK, Mbanefo NR. Prevalence rates of histopathologic subtypes associated with steroid resistance in childhood nephrotic syndrome in Sub-Saharan Africa: a systematic review. Int J Nephrol Renovasc Dis 2019; 12:167-176. [PMID: 31372025 PMCID: PMC6627175 DOI: 10.2147/ijnrd.s207372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/22/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction The prevalence rates of the common histopathologic subtypes of childhood nephrotic syndrome associated with steroid resistance appear to be changing globally. In Sub Saharan Africa (SSA), the trend is similar over the past few decades. Aim This systematic review aims to determine the current prevalence rates of the histopathologic subtypes associated with childhood steroid-resistant nephrotic syndrome (SRNS) in SSA. Methods A search of the PubMed, Google and African Journals Online databases was conducted from January to December 2018 using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow-chart to identify relevant articles which met the aim of the systematic review. A qualitative synthesis and descriptive analysis of the extracted data were then conducted. The mean values for the prevalence rates of the reported histopathologic subtypes were calculated. A meta-analysis was not done due to few numbers of studies reviewed. The review is registered with PROSPERO, number CRD42018111916. Results In the West African sub-region, the currently reported histopathologic subtypes associated with childhood nephrotic syndrome are focal segmental glomerulosclerosis (FSGS), minimal-change nephropathy (MCN), membrano-proliferative glomerulonephritis (MPGN), membranous nephropathy (MN) and mesangial proliferative glomerulonephritis (MesPGN). The picture is the same in South Africa. More importantly, the predominant histopathologic lesions associated with steroid resistance are FSGS (West Africa) and MCN/FSGS (South Africa), with mean prevalence rates of 57.2% and 36.1% respectively. Conclusion The prevalence of FSGS is currently high in childhood nephrotic syndrome in SSA. This histopathologic subtype remains the commonest lesion associated with SRNS in this part of the globe.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Pediatric Nephrology Firm, Department of Pediatrics, College of Medicine, University of Nigeria Nsukka/University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ikenna K Ndu
- Department of Pediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| | - Ngozi R Mbanefo
- Pediatric Nephrology Firm, Department of Pediatrics, College of Medicine, University of Nigeria Nsukka/University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| |
Collapse
|
26
|
Solomon S, Zolotnitskaya A, Del Rio M. Ofatumumab in post-transplantation recurrence of focal segmental glomerulosclerosis in a child. Pediatr Transplant 2019; 23:e13413. [PMID: 30973669 DOI: 10.1111/petr.13413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
FSGS is a potentially devastating form of nephrotic syndrome. Treatment of SRNS can be difficult, especially post-transplantation. The current therapy of post-transplant SRNS includes plasmapheresis, ACE-I, CNI, and monoclonal antibodies (rituximab). Patients who are refractory to these interventions have limited therapeutic alternatives. We present a case of a patient with SRNS secondary to FSGS. He did not respond to immunosuppressive medications prior to transplant, progressed to ESRD, and was started on chronic hemodialysis. He received a DDKT which was complicated by post-transplant FSGS recurrence. A course of plasmapheresis, rituximab, and CNI were administered with some response. Ofatumumab was then given to the patient. As a result, the patient achieved partial remission. Ofatumumab may be a safe and effective option for post-transplant recurrence of FSGS.
Collapse
|
27
|
Anigilaje EA, Olutola A. Prospects of genetic testing for steroid-resistant nephrotic syndrome in Nigerian children: a narrative review of challenges and opportunities. Int J Nephrol Renovasc Dis 2019; 12:119-136. [PMID: 31190951 PMCID: PMC6512787 DOI: 10.2147/ijnrd.s193874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of childhood steroid-resistant nephrotic syndrome (SRNS) ranges from 35% to 92%. This steroid resistance among Nigerian children also reflects underlying renal histopathology, revealing a rare minimal-change disease and a varying burden of membranoproliferative glomerulonephritis and focal segmental glomerulosclerosis (FSGS). FSGS tends to progress to end-stage kidney disease, which requires dialysis and/or renal transplantation. While knowledge of the molecular basis of NS is evolving, recent data support the role of mutant genes that otherwise maintain the structural and functional composition of the glomerular filtration barrier to account for many monogenic forms of FSGS. With the advent of next-generation sequencing, >39 genes are currently associated with SRNS, and the number is likely to increase in the near future. Monogenic FSGS is primarily resistant to steroids, and this foreknowledge obviates the need for steroids, other immunosuppressive therapy, and renal biopsy. Therefore, a multidisciplinary collaboration among cell biologists, molecular physiologists, geneticists, and clinicians holds prospects of fine-tuning the management of SRNS caused by known mutant genes. This article describes the genetics of NS/SRNS in childhood and also gives a narrative review of the challenges and opportunities for molecular testing among children with SRNS in Nigeria. For these children to benefit from genetic diagnosis, Nigeria must aspire to have and develop the manpower and infrastructure required for medical genetics and genomic medicine, leveraging on her existing experiences in genomic medicine. Concerted efforts can be put in place to increase the number of enrollees in Nigeria’s National Health Insurance Scheme (NHIS). The scope of the NHIS can be expanded to cater for the expensive bill of genetic testing within or outside the structure of the National Renal Care Policy proposed by Nigerian nephrologists.
Collapse
Affiliation(s)
- Emmanuel Ademola Anigilaje
- Nephrology Unit, Department of Paediatrics, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria,
| | | |
Collapse
|
28
|
Taylor DM, Aronow BJ, Tan K, Bernt K, Salomonis N, Greene CS, Frolova A, Henrickson SE, Wells A, Pei L, Jaiswal JK, Whitsett J, Hamilton KE, MacParland SA, Kelsen J, Heuckeroth RO, Potter SS, Vella LA, Terry NA, Ghanem LR, Kennedy BC, Helbig I, Sullivan KE, Castelo-Soccio L, Kreigstein A, Herse F, Nawijn MC, Koppelman GH, Haendel M, Harris NL, Rokita JL, Zhang Y, Regev A, Rozenblatt-Rosen O, Rood JE, Tickle TL, Vento-Tormo R, Alimohamed S, Lek M, Mar JC, Loomes KM, Barrett DM, Uapinyoying P, Beggs AH, Agrawal PB, Chen YW, Muir AB, Garmire LX, Snapper SB, Nazarian J, Seeholzer SH, Fazelinia H, Singh LN, Faryabi RB, Raman P, Dawany N, Xie HM, Devkota B, Diskin SJ, Anderson SA, Rappaport EF, Peranteau W, Wikenheiser-Brokamp KA, Teichmann S, Wallace D, Peng T, Ding YY, Kim MS, Xing Y, Kong SW, Bönnemann CG, Mandl KD, White PS. The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Dev Cell 2019; 49:10-29. [PMID: 30930166 PMCID: PMC6616346 DOI: 10.1016/j.devcel.2019.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan.
Collapse
Affiliation(s)
- Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Bruce J Aronow
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA.
| | - Kai Tan
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Kathrin Bernt
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Salomonis
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA 19102, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina Frolova
- Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Kyiv 03143, Ukraine
| | - Sarah E Henrickson
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Institute for Immunology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Wells
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Liming Pei
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jyoti K Jaiswal
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Jeffrey Whitsett
- Cincinnati Children's Hospital Medical Center, Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sonya A MacParland
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert O Heuckeroth
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Steven Potter
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura A Vella
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie A Terry
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Louis R Ghanem
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Department of Surgery, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Institute for Immunology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leslie Castelo-Soccio
- Department of Pediatrics, Section of Dermatology, The Children's Hospital of Philadelphia and University of Pennsylvania Perleman School of Medicine, Philadelphia, PA 19104, USA
| | - Arnold Kreigstein
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Melissa Haendel
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Nomi L Harris
- Environmental Genomics and Systems Biology Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institure of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer E Rood
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Timothy L Tickle
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK
| | - Saif Alimohamed
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Prech Uapinyoying
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Divisions of Newborn Medicine and of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Wen Chen
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lana X Garmire
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javad Nazarian
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noor Dawany
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongbo Michael Xie
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batsal Devkota
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon J Diskin
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Rappaport
- Nucleic Acid PCR Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - William Peranteau
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Divisions of Pathology & Laboratory Medicine and Pulmonary Biology in the Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK; European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK; Cavendish Laboratory, Theory of Condensed Matter, 19 JJ Thomson Ave, Cambridge CB3 1SA, UK
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tao Peng
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yang-Yang Ding
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Man S Kim
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Departments of Biomedical Informatics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kenneth D Mandl
- Computational Health Informatics Program, Boston Children's Hospital, Departments of Biomedical Informatics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter S White
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| |
Collapse
|
29
|
Delayed Death Due to Saddle Pulmonary Thromboembolus in Child With Nephrotic Syndrome Induced by Focal Segmental Glomerulosclerosis. Am J Forensic Med Pathol 2018; 39:370-374. [PMID: 30234547 DOI: 10.1097/paf.0000000000000432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While the characteristic features of nephrotic syndrome (ie, proteinuria, hypoalbuminemia, peripheral edema, and hyperlipidemia) are well known, the association of nephrotic syndrome and the risk of thromboembolic events is not as often appreciated and may be overlooked. This report describes a 10-year-old boy with focal segmental glomerulosclerosis who died following a saddle pulmonary thromboembolus, with near-complete occlusion of the left and right pulmonary arteries. The gross appearance of the thrombus suggested organization and histologic changes within the wall of the pulmonary artery indicated a period of at least 3 or more hours to a few days since the event occurred. Pulmonary thromboemboli in children are rare, and the number of cases in the medical literature discussing the occurrence of pulmonary thromboemboli in the background of renal disease in children is relatively small, and none apparently clearly describe saddle thromboemboli with a delay from time of occurrence until death. This case report serves as a good reminder for forensic pathologists to consider renal disease as an underlying etiology for pulmonary thromboembolus and how histologic features of the pulmonary artery may help determine a time frame for the event.
Collapse
|
30
|
Trachtman H, Nelson P, Adler S, Campbell KN, Chaudhuri A, Derebail VK, Gambaro G, Gesualdo L, Gipson DS, Hogan J, Lieberman K, Marder B, Meyers KE, Mustafa E, Radhakrishnan J, Srivastava T, Stepanians M, Tesar V, Zhdanova O, Komers R. DUET: A Phase 2 Study Evaluating the Efficacy and Safety of Sparsentan in Patients with FSGS. J Am Soc Nephrol 2018; 29:2745-2754. [PMID: 30361325 PMCID: PMC6218860 DOI: 10.1681/asn.2018010091] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We evaluated and compared the effects of sparsentan, a dual endothelin type A (ETA) and angiotensin II type 1 receptor antagonist, with those of the angiotensin II type 1 receptor antagonist irbesartan in patients with primary FSGS. METHODS In this phase 2, randomized, double-blind, active-control Efficacy and Safety of Sparsentan (RE-021), a Dual Endothelin Receptor and Angiotensin Receptor Blocker, in Patients with Focal Segmental Glomerulosclerosis (FSGS): A Randomized, Double-blind, Active-Control, Dose-Escalation Study (DUET), patients aged 8-75 years with biopsy-proven FSGS, eGFR>30 ml/min per 1.73 m2, and urinary protein-to-creatinine ratio (UP/C) ≥1.0 g/g received sparsentan (200, 400, or 800 mg/d) or irbesartan (300 mg/d) for 8 weeks, followed by open-label sparsentan only. End points at week 8 were reduction from baseline in UP/C (primary) and proportion of patients achieving FSGS partial remission end point (FPRE) (UP/C: ≤1.5 g/g and >40% reduction [secondary]). RESULTS Of 109 patients randomized, 96 received study drugs and had baseline and week 8 UP/C measurements. Sparsentan-treated patients had greater reductions in UP/C than irbesartan-treated patients did when all doses (45% versus 19%; P=0.006) or the 400 and 800 mg doses (47% versus 19%; P=0.01) were pooled for analysis. The FSGS partial remission end point was achieved in 28% of sparsentan-treated and 9% of irbesartan-treated patients (P=0.04). After 8 weeks of treatment, BP was reduced with sparsentan but not irbesartan, and eGFR was stable with both treatments. Overall, the incidence of adverse events was similar between groups. Hypotension and edema were more common among sparsentan-treated patients but did not result in study withdrawals. CONCLUSIONS Patients with FSGS achieved significantly greater reductions in proteinuria after 8 weeks of sparsentan versus irbesartan. Sparsentan was safe and well tolerated.
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Pediatric Nephrology, Department of Pediatrics, New York University School of Medicine, Langone Medical Center, New York, New York;
| | - Peter Nelson
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington
| | - Sharon Adler
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Abanti Chaudhuri
- Division of Pediatric Nephrology, Stanford University, Palo Alto, California
| | - Vimal Kumar Derebail
- Division of Nephrology and Hypertension, University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Loreto Gesualdo
- Nephrology Unit, Department of Emergency and Organ Transplantation (DETO), Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Debbie S Gipson
- Division of Pediatric Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Jonathan Hogan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth Lieberman
- Department of Pediatric Nephrology, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey
- Seton Hall-Hackensack Meridian School of Medicine, Hackensack, New Jersey
| | - Brad Marder
- Division of Transplant Research, Colorado Kidney Care, Denver, Colorado
| | - Kevin Edward Meyers
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Esmat Mustafa
- Department of Nephrology and Research Division, Arizona Kidney Disease and Hypertension Center, Phoenix, Arizona
| | | | - Tarak Srivastava
- Children's Mercy Hospital, Kansas City, Missouri
- University of Missouri School of Medicine, Kansas City, Missouri
| | | | - Vladimír Tesar
- Department of Nephrology, Charles University, Prague, Czech Republic
- General University Hospital, Prague, Czech Republic
| | - Olga Zhdanova
- Division of Nephrology, New York University School of Medicine, New York, New York; and
| | - Radko Komers
- Department of Research & Development, Retrophin, Inc., San Diego, California
| |
Collapse
|
31
|
Rider SA, Bruton FA, Collins RG, Conway BR, Mullins JJ. The Efficacy of Puromycin and Adriamycin for Induction of Glomerular Failure in Larval Zebrafish Validated by an Assay of Glomerular Permeability Dynamics. Zebrafish 2018; 15:234-242. [PMID: 29480793 PMCID: PMC5985910 DOI: 10.1089/zeb.2017.1527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Defects in the glomerular filtration barrier (GFB) play a major role in the onset of human renal diseases. Highly ramified glomerular cells named podocytes are a critical component of the GFB. Injury to podocytes results in abnormal excretion of plasma proteins, which can lead to chronic kidney disease. The conserved paired nephron of larval zebrafish is an excellent model for assessing glomerular function and injury. The efficacy of two known podocyte toxins was tested to refine models of acute podocyte injury in larval zebrafish. The validated compound was then used to test a novel assay of the dynamics of abnormal protein excretion. Injected adriamycin was found to be unsuitable for induction of glomerular injury due to off-target cardiovascular toxicity. In contrast, puromycin treatment resulted in a loss of discriminative filtration, measured by excretion of 70 kDa dextran, and podocyte effacement confirmed by electron microscopy. The dynamics of dextran excretion during puromycin injury modeled the onset of glomerular damage within 24 hours postinjection. These data validate puromycin for induction of acute podocyte injury in zebrafish larvae and describe a semihigh-throughput assay for quantifying the dynamics of abnormal protein excretion.
Collapse
Affiliation(s)
- Sebastien Andrew Rider
- 1 Univeristy/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh , Edinburgh, United Kingdom
| | - Finnius Austin Bruton
- 1 Univeristy/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh , Edinburgh, United Kingdom
| | | | - Bryan Ronald Conway
- 1 Univeristy/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh , Edinburgh, United Kingdom
| | - John James Mullins
- 1 Univeristy/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
32
|
Sim JJ, Bhandari SK, Batech M, Hever A, Harrison TN, Shu YH, Kujubu DA, Jonelis TY, Kanter MH, Jacobsen SJ. End-Stage Renal Disease and Mortality Outcomes Across Different Glomerulonephropathies in a Large Diverse US Population. Mayo Clin Proc 2018; 93:167-178. [PMID: 29395351 DOI: 10.1016/j.mayocp.2017.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare renal function decline, incident end-stage renal disease (ESRD), and mortality among patients with 5 common glomerular diseases in a large diverse population. PATIENTS AND METHODS A retrospective cohort study (between January 1, 2000, and December 31, 2011) of patients with glomerulonephropathy using the electronic health record of an integrated health system was performed. Estimated glomerular filtration rate (eGFR) change, incident ESRD, and mortality were compared among patients with biopsy-proven focal segmental glomerulosclerosis (FSGS), membranous glomerulonephritis (MN), minimal change disease (MCD), immunoglobulin A nephropathy (IgAN), and lupus nephritis (LN). Competing risk models were used to estimate hazard ratios for different glomerulonephropathies for incident ESRD, with mortality as a competing outcome after adjusting for potential confounders. RESULTS Of the 2350 patients with glomerulonephropathy (208 patients [9%] younger than 18 years) with a mean follow-up of 4.5±3.6 years, 497 (21%) progressed to ESRD and 195 (8%) died before ESRD. The median eGFR decline was 1.0 mL/min per 1.73 m2 per year but varied across different glomerulonephropathies (P<.001). The highest ESRD incidence (per 100 person-years) was observed in FSGS 8.72 (95% CI, 3.93-16.72) followed by IgAN (4.54; 95% CI, 1.37-11.02), LN (2.38; 95% CI, 0.37-7.82), MN (2.15; 95% CI, 0.29-7.46), and MCD (1.67; 95% CI, 0.15-6.69). Compared with MCD, hazard ratios (95% CIs) for incident ESRD were 3.43 (2.32-5.08) and 2.35 (1.46-3.81), 1.28 (0.79-2.07), and 1.02 (0.62-1.68) for FSGS, IgAN, LN, and MN, respectively. No significant association between glomerulonephropathy types and mortality was detected (P=.24). CONCLUSION Our findings from a real-world clinical environment revealed significant differences in eGFR decline and ESRD risk among patients with 5 glomerulonephropathies. These variations in presentation and outcomes warrant different management strategies and expectations.
Collapse
Affiliation(s)
- John J Sim
- Division of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA.
| | - Simran K Bhandari
- Division of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA
| | - Michael Batech
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Aviv Hever
- Department of Renal Pathology, Kaiser Permanente Southern California, Pasadena, CA
| | - Teresa N Harrison
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Yu-Hsiang Shu
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Dean A Kujubu
- Division of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA
| | - Tracy Y Jonelis
- Division of Nephrology and Hypertension, Kaiser Permanente San Francisco Medical Center, San Francisco, CA
| | - Michael H Kanter
- Regional Quality and Clinical Analysis, Southern California Permanente Medical Group, Kaiser Permanente Southern California, Pasadena, CA
| | - Steven J Jacobsen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| |
Collapse
|
33
|
Nie X, Chanley MA, Pengal R, Thomas DB, Agrawal S, Smoyer WE. Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. Am J Physiol Renal Physiol 2017; 314:F602-F613. [PMID: 29187369 DOI: 10.1152/ajprenal.00207.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nie X, Chanley MA, Pengal R, Thomas DB, Agrawal S, Smoyer WE. Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. Am J Physiol Renal Physiol 314: F602-F613, 2018. First published November 29, 2017; doi: 10.1152/ajprenal.00207.2017 .-The p38 MAPK pathway plays a crucial role in various glomerulopathies, with activation being associated with disease and inhibition being associated with disease amelioration. We hypothesized that the downstream targets of p38 MAPK, MAPK-activated protein kinase 2 and/or 3 (MK2 and/or MK3), play an important role in mediating injury in experimental nephrotic syndrome via their actions on their downstream substrates heat shock protein B1 (HSPB1) and cyclooxygenase-2 (COX-2). To test this hypothesis, the effects of both pharmacological and genetic inhibition of MK2 and MK3 were examined in mouse adriamycin (ADR) and rat puromycin aminonucleoside (PAN) nephropathy models. MK2-/-, MK3-/-, and MK2-/-MK3-/- mice were generated in the Sv129 background and subjected to ADR-induced nephropathy. MK2 and MK3 protein expression was completely abrogated in the respective knockout genotypes, and massive proteinuria and renal histopathological changes developed after ADR treatment. Furthermore, renal cortical HSPB1 was induced in all four genotypes by day 21, but HSPB1 was activated only in the wild-type and MK3-/- mice. Expression of the stress proteins HSPB8 and glucose-regulated protein 78 (GRP78) remained unaltered across all genotypes. Finally, while MK2 and/or MK3-knockout downregulated the proinflammatory enzyme COX-2, ADR significantly induced renal cortical COX-2 only in MK2-/- mice. Additionally, pharmacological MK2 inhibition with PF-318 during PAN-induced nephropathy did not result in significant proteinuria reduction in rats. Together, these data suggest that while the inhibition of MK2 and/or MK3 regulates the renal stress response, our currently available approaches are not yet able to safely and effectively reduce proteinuria in experimental nephrotic syndrome and that other p38MAPK downstream targets should also be considered to improve the future treatment of glomerular disease.
Collapse
Affiliation(s)
- Xiaojing Nie
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, Fuzhou Dongfang Hospital, Xiamen University , Fuzhou , China
| | - Melinda A Chanley
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Ruma Pengal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - David B Thomas
- University of Miami Miller School of Medicine , Miami, Florida
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University , Columbus, Ohio
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University , Columbus, Ohio
| |
Collapse
|
34
|
Compound effects of aging and experimental FSGS on glomerular epithelial cells. Aging (Albany NY) 2017; 9:524-546. [PMID: 28222042 PMCID: PMC5361679 DOI: 10.18632/aging.101176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022]
Abstract
Advanced age portends a poorer prognosis in FSGS. To understand the impact of age on glomerular podocytes and parietal epithelial cells (PECs), experimental FSGS was induced in 3m-old mice (20-year old human age) and 27m-old mice (78-year old human age) by abruptly depleting podocytes with a cytopathic anti-podocyte antibody. Despite similar binding of the disease-inducing antibody, podocyte density was lower in aged FSGS mice compared to young FSGS mice. Activated PEC density was higher in aged versus young FSGS mice, as was the percentage of total activated PECs. Additionally, the percentage of glomeruli containing PECs with evidence of phosphorylated ERK and EMT was higher in aged FSGS mice. Extracellular matrix, measured by collagen IV and silver staining, was higher in aged FSGS mice along Bowman's capsule. However, collagen IV accumulation in the glomerular tufts alone and in glomeruli with both tuft and Bowman's capsule accumulation were similar in young FSGS and aged FSGS mice. Thus, the major difference in collagen IV staining in FSGS was along Bowman's capsule in aged mice. The significant differences in podocytes, PECs and extracellular matrixaccumulation between young mice and old mice with FSGS might explain the differences in outcomes in FSGS based on age.
Collapse
|
35
|
Never make assumptions: the complicated role of complement in urinary tract infections. Kidney Int 2017; 90:469-71. [PMID: 27521106 DOI: 10.1016/j.kint.2016.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/21/2022]
Abstract
Complement activation can cause tissue inflammation and injury, and complement-inhibitory drugs are effective treatments for several inflammatory diseases. The complement cascade is part of the body's defense against bacteria and other pathogens, however, and a major concern regarding inhibition of this system is that it may increase the risk for infection. Now, a study by Choudhry et al. demonstrates that blockade of signaling at one of the C5a receptors (C5a receptor 1 [C5aR1]) reduces renal fibrosis in a mouse model of urinary tract infection with Escherichia coli. Surprisingly, C5aR1 blockade was also associated with faster clearance of the infection. The results of this study demonstrate that C5a-a highly proinflammatory molecule-reduces bacterial killing by macrophages. Other recent studies have also shown that C5a impairs the elimination of tumor cells by the immune system. These data indicate that complement inhibition may have some unexpected benefits. These results also demonstrate, however, that the complement cascade probably has physiologic functions that have yet to be discovered.
Collapse
|
36
|
Chiou YY, Lee YC, Chen MJ. Cyclosporine-based immunosuppressive therapy for patients with steroid-resistant focal segmental glomerulosclerosis: a meta-analysis. Curr Med Res Opin 2017; 33:1389-1399. [PMID: 28436233 DOI: 10.1080/03007995.2017.1322567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Focal segmental glomerulosclerosis (FSGS) is a leading cause of end-stage kidney disease that requires immunosuppressive treatment as therapy. Few studies have been specifically designed to assess the efficacy of cyclosporine (CSA) in patients with steroid-resistant FSGS. This study investigated the efficacy of CSA-based therapy in steroid-resistant FSGS. METHODS Medline, Cochrane, EMBASE, and Google Scholar databases were searched through April 30, 2014 using the keywords "cyclosporine", "steroid-resistant", "focal segmental glomerulosclerosis", and "FSGS". Studies with an adult and children with steroid-resistant primary FSGS treated with CSA-based therapy with or without steroid use were included. Complete, partial, and overall remission were the primary outcomes. Change in proteinuria, serum creatinine, and estimated glomerular filtration rate (eGFR) following treatment were secondary outcomes. RESULTS Seven randomized controlled trials with a total of 373 patients were included. Five studies were included in the meta-analysis to assess complete, partial, and overall remission of FSGS. Compared with other treatments, CSA-based therapy resulted in a significantly greater partial remission rate (p = .018), but complete (p = .226) or overall remission rate (p = .050). CSA-based therapy also resulted in similar change in proteinuria (p = .084), serum creatinine (p = .772), and eGFR (p = .155) compared with other therapy. Study limitations included small sample size and heterogeneity in age and comparative treatments across the studies. CONCLUSIONS Cyclosporin-based treatments provided a significantly better partial remission rate as compared with other therapies.
Collapse
Affiliation(s)
- Yuan-Yow Chiou
- a Department of Pediatrics, Institute of Clinical Medicine, College of Medicine , National Cheng Kung University , No.1, Daxue Rd., East Dist. , Tainan City 701 , Taiwan , PR China
- b Division of Pediatric Nephrology, Department of Pediatrics , National Cheng Kung University Hospital , No.138, Shengli Rd., North Dist. , Tainan City 704 , Taiwan , PR China
| | - Yi-Che Lee
- c Division of Nephrology, Department of Internal Medicine , E-DA Hospital/I-Shou University , No.1, Yida Rd., Yanchao Dist. , Kaohsiung City 824 , Taiwan , PR China
| | - Mei-Ju Chen
- d Department of Long Term Care , Chung Hwa University of Medical Technology , No.89, Wenhua 1st St., Rende Dist. , Tainan City 717 , Taiwan
| |
Collapse
|
37
|
Abstract
Since first performed in 1954, kidney transplantation has evolved as the preferred long-term treatment of children with end stage renal disease (ESRD). The etiology of chronic kidney disease (CKD) and ESRD in children is broad and can be quite complicated, necessitating a multidisciplinary team to adequately care for these patients and their myriad needs. Precise surgical techniques and modern protocols for immunosuppression provide excellent long-term patient and graft survival. This article reviews the many etiologies of renal failure in the pediatric population focusing on those most commonly leading to the need for kidney transplantation. The processes of evaluation, kidney transplantation, short-term and long-term complications, as well as long-term outcomes are also reviewed.
Collapse
Affiliation(s)
- Jonathan P Roach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Colorado, University of Colorado School of Medicine, 3123 East 16th Ave, Aurora, Colorado 80045.
| | - Margret E Bock
- Section of Nephrology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Jens Goebel
- Section of Nephrology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
38
|
Trachtman H. Investigational drugs in development for focal segmental glomerulosclerosis. Expert Opin Investig Drugs 2017; 26:945-952. [PMID: 28707483 DOI: 10.1080/13543784.2017.1351544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Focal segmental glomerulosclerosis is an important cause of end stage kidney disease and is a paradigm for the study of glomerular scarring. There are no FDA approved treatments for this condition. Current therapies, assessed based on reduction in proteinuria, are generally effective in a subset of patients which suggests that FSGS is a heterogeneous group of glomerular disorders or podocytopathies that converge on a common histopathological phenotype. Areas covered: We searched for investigational drugs agents that target different pathophysiological pathways using the key words 'FSGS' and 'podocyte' in American and European clinical trial registers (clinicaltrials.gov; clinicaltrialsregister.eu). Published articles were searched in PubMed, Medline, the Web of Science and the Cochrane Central Register of Controlled Trials Library. Expert opinion: Progress is being made in defining the mechanism of action of subtypes of FSGS. Current and investigational therapies for FSGS target these different pathways of injury. It is anticipated that advances in systems biology will further refine the classification of FSGS by subdividing the disease based on the primary mechanism of glomerular injury, identify biomarkers to discriminate between different subtypes, and enable appropriate selection of appropriate therapy for each individual in accordance with the goals of precision medicine.
Collapse
Affiliation(s)
- Howard Trachtman
- a Department of Pediatrics, Division of Nephrology , NYU Langone Medical Center , New York , NY , USA
| |
Collapse
|
39
|
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading cause of kidney disease worldwide. The presumed etiology of primary FSGS is a plasma factor with responsiveness to immunosuppressive therapy and a risk of recurrence after kidney transplant-important disease characteristics. In contrast, adaptive FSGS is associated with excessive nephron workload due to increased body size, reduced nephron capacity, or single glomerular hyperfiltration associated with certain diseases. Additional etiologies are now recognized as drivers of FSGS: high-penetrance genetic FSGS due to mutations in one of nearly 40 genes, virus-associated FSGS, and medication-associated FSGS. Emerging data support the identification of a sixth category: APOL1 risk allele-associated FSGS in individuals with sub-Saharan ancestry. The classification of a particular patient with FSGS relies on integration of findings from clinical history, laboratory testing, kidney biopsy, and in some patients, genetic testing. The kidney biopsy can be helpful, with clues provided by features on light microscopy (e.g, glomerular size, histologic variant of FSGS, microcystic tubular changes, and tubular hypertrophy), immunofluorescence (e.g, to rule out other primary glomerulopathies), and electron microscopy (e.g., extent of podocyte foot process effacement, podocyte microvillous transformation, and tubuloreticular inclusions). A complete assessment of renal histology is important for establishing the parenchymal setting of segmental glomerulosclerosis, distinguishing FSGS associated with one of many other glomerular diseases from the clinical-pathologic syndrome of FSGS. Genetic testing is beneficial in particular clinical settings. Identifying the etiology of FSGS guides selection of therapy and provides prognostic insight. Much progress has been made in our understanding of FSGS, but important outstanding issues remain, including the identity of the plasma factor believed to be responsible for primary FSGS, the value of routine implementation of genetic testing, and the identification of more effective and less toxic therapeutic interventions for FSGS.
Collapse
Affiliation(s)
- Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey B. Kopp
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Efficacy and Safety of Sparsentan Compared With Irbesartan in Patients With Primary Focal Segmental Glomerulosclerosis: Randomized, Controlled Trial Design (DUET). Kidney Int Rep 2017; 2:654-664. [PMID: 29142983 PMCID: PMC5678638 DOI: 10.1016/j.ekir.2017.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/05/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Primary focal segmental glomerulosclerosis (FSGS) is a leading cause of nephrotic syndrome and end-stage renal disease. There are no US Food and Drug Administration−approved therapies for FSGS, and treatment often fails to reduce proteinuria. Endothelin is an important factor in the pathophysiology of podocyte disorders, including FSGS. Sparsentan is a first-in-class, orally active, dual-acting angiotensin receptor blocker (ARB) and highly selective endothelin Type A receptor antagonist. This study is designed to evaluate whether sparsentan lowers proteinuria compared with an ARB alone and has a favorable safety profile in patients with FSGS. Methods DUET is a phase 2, randomized, active-control, dose-escalation study with an 8-week, fixed-dose, double-blind period followed by 136 weeks of open-label sparsentan treatment. Patients aged 8 to 75 years with primary FSGS will be randomized to treatment with sparsentan or irbesartan for 8 weeks. Results The primary efficacy objective is to test the hypothesis that sparsentan over the dose range (200 mg, 400 mg, or 800 mg daily) is superior to irbesartan (300 mg daily) in decreasing the urinary protein-to-creatinine ratio (UPC) from baseline to 8 weeks postrandomization. As secondary objectives, the trial will evaluate the proportion of patients who achieve prespecified targets of UPC reduction, changes in laboratory and quality-of-life indices, and detailed safety analysis. Analyses will be conducted at the end of the double-blind (week 8) and open-label (week 144) periods. Discussion This study will provide important evidence on whether dual ARB and endothelin blockade may be an effective therapeutic strategy for FSGS and may provide the rationale for next-phase trials.
Collapse
|
41
|
Saeed B, Mazloum H. Recurrent Nephrotic Syndrome After Renal Transplant in Children. EXP CLIN TRANSPLANT 2016. [PMID: 27934559 DOI: 10.6002/ect.2016.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Recurrent disease occurs in around 30% of children transplanted for steroid-resistant nephrotic syndrome. Its precipitating risk factors have rarely been studied in the Middle East. The aim of our study was to determine what characterizes posttransplant recurrence of nephrotic syndrome in Syrian children. MATERIALS AND METHODS We performed a retrospective analysis of 12 nephrotic children who received 1 renal allograft at the Kidney Hospital in Damascus from 2002 to 2013. RESULTS Native kidney biopsy results showed focal segmental glomerulosclerosis in 9 of 10 patients. Four patients had 1 or more sibling affected with nephrotic syndrome, and the remaining patients were labeled as having sporadic disease. Genetic screening for NPHS2, NPHS1, and Wilms tumor gene (WT1) mutations were done for 6 patients, and 1 novel homozygous NPHS2 mutation was identified in 1 patient. All patients received transplants from living donors. Four patients had recurrence of initial disease after transplant (overall recurrence rate of 33%). However, 1 patient showed complete and spontaneous remission 20 months after transplant; As expected, the patient with NPSH2 mutation had no recurrence. Patients with sporadic disease showed risk of recurrence 5 times higher than patients with familial disease (P = .24). Interestingly, all recurrent cases had received a kidney from a related donor and were initially classified as having sporadic disease. Although not statistically significant, the risk of recurrence from related donor grafts was 6.75 times higher than from unrelated donors (P = .16). To the best of our knowledge, this observation, the first of its kind, has never been investigated or pointed out in the literature. CONCLUSIONS Further research is needed to confidently determine whether living related donor grafts are associated with increased incidence of recurrence of nephrotic syndrome.
Collapse
Affiliation(s)
- Bassam Saeed
- From the Pediatric Nephrology Department, Kidney Hospital, Damascus, Syria
| | | |
Collapse
|
42
|
Amaral S, Sayed BA, Kutner N, Patzer RE. Preemptive kidney transplantation is associated with survival benefits among pediatric patients with end-stage renal disease. Kidney Int 2016; 90:1100-1108. [PMID: 27653837 PMCID: PMC5072842 DOI: 10.1016/j.kint.2016.07.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Kidney transplantation is the preferred treatment for pediatric end-stage renal disease (ESRD). Preemptive transplantation avoids the increased morbidity and mortality of dialysis. Yet, previous studies have not demonstrated significant graft or patient survival benefits for children undergoing transplantation preemptively versus nonpreemptively. These previous studies were limited by small samples sizes and low rates of adverse events. Here we compared graft failure and mortality rates using Kaplan-Meier methods and Cox regression among a large national cohort of children with ESRD undergoing preemptive versus nonpreemptive kidney transplantation between 2000 and 2012. Among 7527 pediatric kidney transplant recipients in the United States Renal Data System, 1668 underwent preemptive transplantation. Over a median 4.8 years follow-up, 1314 experienced graft failure, and over a median 5.2 years of follow-up, 334 died. Dialysis exposure versus preemptive transplantation conferred a higher risk of graft failure (hazard ratio 1.32; 95% confidence interval: 1.10-1.56) and a higher risk of death (hazard ratio 1.69; 95% confidence interval: 1.22-2.33) in multivariable analysis. Compared with children undergoing preemptive transplantation, children on dialysis for >1 year had a 52% higher risk of graft failure and those on dialysis >18 months had an 89% higher risk of death, regardless of donor source. Thus, preemptive transplantation is associated with substantial benefits in allograft and patient survival among children with ESRD, particularly when compared with children who receive dialysis for >1 year. These findings support policies to promote early access to transplantation and avoidance of dialysis for children with ESRD whenever feasible.
Collapse
Affiliation(s)
- Sandra Amaral
- Division of Nephrology, The Children's Hospital of Philadelphia, Departments of Pediatrics and Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Blayne A Sayed
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nancy Kutner
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rachel E Patzer
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Trachtman R, Sran SS, Trachtman H. Recurrent focal segmental glomerulosclerosis after kidney transplantation. Pediatr Nephrol 2015; 30:1793-802. [PMID: 25690943 DOI: 10.1007/s00467-015-3062-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is an important cause of glomerular disease in children and adolescents and nearly 50 % of affected patients will progress to end-stage kidney disease over a 5 to 10-year period. Unfortunately, there is no established treatment for disease in the native kidney. Moreover, up to 55 % of patients develop recurrent disease after receiving a kidney transplant, with a substantially higher risk in patients who have already experienced recurrent disease in a prior transplant. A number of clinical and laboratory factors have been identified as risk factors for this complication. In addition, new investigations into podocyte biology and circulating permeability factors have shed light on the cause of recurrent the disease. While a number of novel therapeutic agents have been applied in the management of this problem, there still is no proven treatment. In this review, we summarize recent advances in the epidemiology, pathophysiology, and treatment of recurrent FSGS in pediatric patients who have received a kidney transplant.
Collapse
Affiliation(s)
- Rebecca Trachtman
- Division of Pediatric Nephrology, NYU Langone Medical Center, CTSI, Room #733 227 E 30th Street, New York, NY, 10016, USA
| | | | | |
Collapse
|
44
|
Thurman JM, Wong M, Renner B, Frazer-Abel A, Giclas PC, Joy MS, Jalal D, Radeva MK, Gassman J, Gipson DS, Kaskel F, Friedman A, Trachtman H. Complement Activation in Patients with Focal Segmental Glomerulosclerosis. PLoS One 2015; 10:e0136558. [PMID: 26335102 PMCID: PMC4559462 DOI: 10.1371/journal.pone.0136558] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023] Open
Abstract
Background Recent pre-clinical studies have shown that complement activation contributes to glomerular and tubular injury in experimental FSGS. Although complement proteins are detected in the glomeruli of some patients with FSGS, it is not known whether this is due to complement activation or whether the proteins are simply trapped in sclerotic glomeruli. We measured complement activation fragments in the plasma and urine of patients with primary FSGS to determine whether complement activation is part of the disease process. Study Design Plasma and urine samples from patients with biopsy-proven FSGS who participated in the FSGS Clinical Trial were analyzed. Setting and Participants We identified 19 patients for whom samples were available from weeks 0, 26, 52 and 78. The results for these FSGS patients were compared to results in samples from 10 healthy controls, 10 patients with chronic kidney disease (CKD), 20 patients with vasculitis, and 23 patients with lupus nephritis. Outcomes Longitudinal control of proteinuria and estimated glomerular filtration rate (eGFR). Measurements Levels of the complement fragments Ba, Bb, C4a, and sC5b-9 in plasma and urine. Results Plasma and urine Ba, C4a, sC5b-9 were significantly higher in FSGS patients at the time of diagnosis than in the control groups. Plasma Ba levels inversely correlated with the eGFR at the time of diagnosis and at the end of the study. Plasma and urine Ba levels at the end of the study positively correlated with the level of proteinuria, the primary outcome of the study. Limitations Limited number of patients with samples from all time-points. Conclusions The complement system is activated in patients with primary FSGS, and elevated levels of plasma Ba correlate with more severe disease. Measurement of complement fragments may identify a subset of patients in whom the complement system is activated. Further investigations are needed to confirm our findings and to determine the prognostic significance of complement activation in patients with FSGS.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Maria Wong
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Brandon Renner
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Ashley Frazer-Abel
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Patricia C. Giclas
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Melanie S. Joy
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Diana Jalal
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Milena K. Radeva
- Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Jennifer Gassman
- Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Debbie S. Gipson
- Department of Pediatrics, CS Mott Children’s Hospital, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Frederick Kaskel
- Department of Pediatrics, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aaron Friedman
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Howard Trachtman
- Department of Pediatrics, NYU Langone Medical Center, NYU School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Trachtman H, Vento S, Herreshoff E, Radeva M, Gassman J, Stein DT, Savin VJ, Sharma M, Reiser J, Wei C, Somers M, Srivastava T, Gipson DS. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol 2015; 16:111. [PMID: 26198842 PMCID: PMC4511259 DOI: 10.1186/s12882-015-0094-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with resistant focal segmental glomerulosclerosis (FSGS) who are unresponsive to corticosteroids and other immunosuppressive agents are at very high risk of progression to end stage kidney disease. In the absence of curative treatment, current therapy centers on renoprotective interventions that reduce proteinuria and fibrosis. The FONT (Novel Therapies for Resistant FSGS) Phase II clinical trial (NCT00814255, Registration date December 22, 2008) was designed to assess the efficacy of adalimumab and galactose compared to standard medical therapy which was comprised of lisinopril, losartan, and atorvastatin. METHODS Key eligibility criteria were biopsy confirmed primary FSGS or documentation of a causative genetic mutation, urine protein:creatinine ratio >1.0 g/g, and estimated glomerular filtration rate (eGFR) >40 ml/min/1.73 m(2). The experimental treatments - adalimumab, galactose, standard medical therapy-- were administered for 26 weeks. The primary endpoint was a 50 % reduction in proteinuria with stable eGFR. RESULTS Thirty-two subjects were screened and 21 were assigned to one of the three study arms. While none of the adalimumab-treated subjects achieved the primary outcome, 2 subjects in the galactose and 2 in the standard medical therapy arm had a 50 % reduction in proteinuria without a decline in eGFR. The proteinuria response did not correlate with serial changes in the serum glomerular permeability activity measured by the Palb assay or soluble urokinase plasminogen activator receptor (suPAR). There were no serious adverse effects related to treatments in the study. CONCLUSIONS Recruitment into this trial that addressed patients with resistant FSGS fell short of the enrollment goal. Our findings suggest that future studies of novel therapies for rare glomerular diseases such as FSGS may benefit from enrollment of patients earlier in the course of their disease. In addition, better identification of patients who are likely to respond to a new treatment based on biomarkers suggesting involvement of the disease pathway targeted by the experimental agent may reduce the required sample size and increase the likelihood of a favorable outcome.
Collapse
Affiliation(s)
- Howard Trachtman
- NYU Langone Medical Center, CTSI, Room #110, 227 E 30th Street, New York, NY, USA.
| | - Suzanne Vento
- NYU Langone Medical Center, CTSI, Room #110, 227 E 30th Street, New York, NY, USA.
| | | | | | | | | | - Virginia J Savin
- Kansas City Veteran's Administration Medical Center, Kansas City, MO, USA.
| | - Mukut Sharma
- Kansas City Veteran's Administration Medical Center, Kansas City, MO, USA.
| | | | - Changli Wei
- Rush University Medical Center, Chicago, IL, USA.
| | | | | | | |
Collapse
|
46
|
Sampson MG, Hodgin JB, Kretzler M. Defining nephrotic syndrome from an integrative genomics perspective. Pediatr Nephrol 2015; 30:51-63; quiz 59. [PMID: 24890338 PMCID: PMC4241380 DOI: 10.1007/s00467-014-2857-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Abstract
Nephrotic syndrome (NS) is a clinical condition with a high degree of morbidity and mortality, caused by failure of the glomerular filtration barrier, resulting in massive proteinuria. Our current diagnostic, prognostic and therapeutic decisions in NS are largely based upon clinical or histological patterns such as "focal segmental glomerulosclerosis" or "steroid sensitive". Yet these descriptive classifications lack the precision to explain the physiologic origins and clinical heterogeneity observed in this syndrome. A more precise definition of NS is required to identify mechanisms of disease and capture various clinical trajectories. An integrative genomics approach to NS applies bioinformatics and computational methods to comprehensive experimental, molecular and clinical data for holistic disease definition. A unique aspect is analysis of data together to discover NS-associated molecules, pathways, and networks. Integrating multidimensional datasets from the outset highlights how molecular lesions impact the entire individual. Data sets integrated range from genetic variation to gene expression, to histologic changes, to progression of chronic kidney disease (CKD). This review will introduce the tenets of integrative genomics and suggest how it can increase our understanding of NS from molecular and pathophysiological perspectives. A diverse group of genome-scale experiments are presented that have sought to define molecular signatures of NS. Finally, the Nephrotic Syndrome Study Network (NEPTUNE) will be introduced as an international, prospective cohort study of patients with NS that utilizes an integrated systems genomics approach from the outset. A major NEPTUNE goal is to achieve comprehensive disease definition from a genomics perspective and identify shared molecular drivers of disease.
Collapse
Affiliation(s)
- Matthew G. Sampson
- Division of Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA,to whom correspondence should be addressed: Matthew Sampson, Division of Nephrology, University of Michigan School of Medicine, 8220D MSRB III, West Medical Center Drive, Ann Arbor, MI 48109, kidneyomics.org, , Telephone and Fax: 734-647-9361. Matthias Kretzler, Medicine/Nephrology and Computational Medicine and Bioinformatics, University of Michigan, 1560 MSRB II, 1150 W. Medical Center Dr.-SPC5676, Ann Arbor, MI 48109-5676, 734-615-5757, fax: 734-763-0982,
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA,to whom correspondence should be addressed: Matthew Sampson, Division of Nephrology, University of Michigan School of Medicine, 8220D MSRB III, West Medical Center Drive, Ann Arbor, MI 48109, kidneyomics.org, , Telephone and Fax: 734-647-9361. Matthias Kretzler, Medicine/Nephrology and Computational Medicine and Bioinformatics, University of Michigan, 1560 MSRB II, 1150 W. Medical Center Dr.-SPC5676, Ann Arbor, MI 48109-5676, 734-615-5757, fax: 734-763-0982,
| |
Collapse
|
47
|
Tenta M, Uchida HA, Nunoue T, Umebayashi R, Okuyama Y, Kitagawa M, Maeshima Y, Sugiyama H, Wada J. Successful treatment by mycophenolate mofetil in a patient with focal segmental glomerulosclerosis associated with posterior reversible encephalopathy syndrome. CEN Case Rep 2014; 4:190-195. [PMID: 28509096 DOI: 10.1007/s13730-014-0165-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/24/2014] [Indexed: 01/16/2023] Open
Abstract
It has been reported that cyclosporine A (CsA) treatment may be associated with posterior reversible encephalopathy syndrome. We report a 16-year-old man who exhibited nephrotic syndrome and posterior reversible encephalopathy syndrome. Intensive antihypertensive therapy restored him to consciousness. Renal biopsy revealed that he suffered from focal segmental glomerulosclerosis. Although he was treated with prednisolone and low-density lipoprotein apheresis therapy, his proteinuria remained at high level. Then, mycophenolate mofetil (MMF) with less influence on vessel endothelium compared with CsA and tacrolimus was administered. Soon after, he reached remission of nephrotic syndrome without recurrence of posterior reversible encephalopathy syndrome. This is the first case that a young patient of focal segmental glomerulosclerosis with posterior reversible encephalopathy syndrome achieved a complete remission by MMF treatment without recurrence of posterior reversible encephalopathy syndrome. MMF may be effective for young patients of focal segmental glomerulosclerosis especially with clinical condition of vascular endothelial damage such as posterior reversible encephalopathy syndrome.
Collapse
Affiliation(s)
- Masafumi Tenta
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Haruhito Adam Uchida
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan.
| | - Tomokazu Nunoue
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Ryoko Umebayashi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Yuka Okuyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Masashi Kitagawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Yohei Maeshima
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Hitoshi Sugiyama
- Department of Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
48
|
|
49
|
Yang SM, Chan YL, Hua KF, Chang JM, Chen HL, Tsai YJ, Hsu YJ, Chao LK, Feng-Ling Y, Tsai YL, Wu SH, Wang YF, Tsai CL, Chen A, Ka SM. Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis. Free Radic Biol Med 2014; 73:260-9. [PMID: 24858719 DOI: 10.1016/j.freeradbiomed.2014.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 01/06/2023]
Abstract
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the seeds of Cnidium monnieri, can inhibit reactive oxygen species generation, NF-κB activation, and cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. In this study, we further evaluated its renoprotective effect in a mouse model of accelerated FSGS (acFSGS), featuring early development of proteinuria, followed by impaired renal function, glomerular epithelial cell hyperplasia lesions (a sensitive sign that precedes the development of glomerular sclerosis), periglomerular inflammation, and glomerular hyalinosis/sclerosis. The results show that osthole significantly prevented the development of the acFSGS model in the treated group of mice. The mechanisms involved in the renoprotective effects of osthole on the acFSGS model were mainly a result of an activated Nrf2-mediated antioxidant pathway in the early stage (proteinuria and ischemic collapse of the glomeruli) of acFSGS, followed by a decrease in: (1) NF-κB activation and COX-2 expression as well as PGE2 production, (2) podocyte injury, and (3) apoptosis. Our data support that targeting the Nrf2 antioxidant pathway may justify osthole being established as a candidate renoprotective compound for FSGS.
Collapse
Affiliation(s)
- Shun-Min Yang
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yi-Lin Chan
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, Republic of China
| | - Jia-Ming Chang
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Hui-Ling Chen
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yung-Jen Tsai
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital; National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Louis Kuoping Chao
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan, Republic of China
| | - Yang Feng-Ling
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Ling Tsai
- Graduate Institute of Life Sciences; and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yih-Fuh Wang
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Change-Ling Tsai
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Ann Chen
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, School of Medicine; National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| |
Collapse
|
50
|
Dynamic changes of urinary proteins in a focal segmental glomerulosclerosis rat model. Proteome Sci 2014; 12:42. [PMID: 25061428 PMCID: PMC4109389 DOI: 10.1186/1477-5956-12-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Background In contrast to blood, which has mechanisms to maintain a homeostatic internal environment, urine is more likely to reflect changes in the body. As urine accumulates all types of changes, identifying the precise cause of changes in the urine proteome is challenging and crucial in biomarker discovery. To reduce the effects of both genetic and environmental factors on the urinary proteome, this study used a rat model of adriamycin-induced nephropathy resembling human focal segmental glomerulosclerosis (FSGS) development. Results Urine samples were collected at before adriamycin administration and day3, 7, 11, 15 and 23 after. Urinary proteins were profiled by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Of 23 changed proteins with disease development, 20 have human orthologs, and 13 proteins were identified as stable in normal human urine, meaning that changes in these proteins are more likely to reflect disease. Fifteen of the identified proteins have not been established to function in FSGS development. Seven proteins were selected for verification in ten more rats as markers closely associated with disease severity by western blot. Conclusion We identified proteins changed in different stages of FSGS in rat models, which may aid in biomarker development and the understanding of FSGS pathogenesis.
Collapse
|