1
|
Heredia-Torres TG, Alvarado-Martínez V, Rincón-Sánchez AR, Lozano-Sepúlveda SA, Galán-Huerta KA, Arellanos-Soto D, Rivas-Estilla AM. Hepatitis C virus NS5A and core protein induce fibrosis-related genes regulation on Huh7 cells through activation of LX2 cells. Ann Hepatol 2024; 29:101517. [PMID: 38852781 DOI: 10.1016/j.aohep.2024.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION AND OBJECTIVES Liver fibrosis remains a complication derived from a chronic Hepatitis C Virus (HCV) infection even when it is resolved, and no liver antifibrotic drug has been approved. Molecular mechanisms on hepatocytes and activation of hepatic stellate cells (HSCs) play a central role in liver fibrogenesis. To elucidate molecular mechanisms, it is important to analyze pathway regulation during HSC activation and HCV infection. MATERIALS AND METHODS We evaluate the fibrosis-associated molecular mechanisms during a co-culture of human HSCs (LX2), with human hepatocytes (Huh7) that express HCV NS5A or Core protein. We evaluated LX2 activation induced by HCV NS5A or Core expression in Huh7 cells during co-culture. We determined a fibrosis-associated gene expression profile in Huh7 that expresses NS5A or Core proteins during the co-culture with LX2. RESULTS We observed that NS5A induced 8.3-, 6.7- and 4-fold changes and that Core induced 6.5-, 1.8-, and 6.2-fold changes in the collagen1, TGFβ1, and timp1 gene expression, respectively, in LX2 co-cultured with transfected Huh7. In addition, NS5A induced the expression of 30 genes while Core induced 41 genes and reduced the expression of 30 genes related to fibrosis in Huh7 cells during the co-culture with LX2, compared to control. The molecular pathways enriched from the gene expression profile were involved in TGFB signaling and the organization of extracellular matrix. CONCLUSIONS We demonstrated that HCV NS5A and Core protein expression regulate LX2 activation. NS5A and Core-induced LX2 activation, in turn, regulates diverse fibrosis-related gene expression at different levels in Huh7, which can be further analyzed as potential antifibrotic targets during HCV infection.
Collapse
Affiliation(s)
- Tania G Heredia-Torres
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - Veronica Alvarado-Martínez
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - Ana R Rincón-Sánchez
- IBMMTG, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Sonia A Lozano-Sepúlveda
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - Kame A Galán-Huerta
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - Daniel Arellanos-Soto
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - Ana M Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
2
|
Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, Ruokolainen J, Kesari KK. Role of Immunological Cells in Hepatocellular Carcinoma Disease and Associated Pathways. ACS Pharmacol Transl Sci 2023; 6:1801-1816. [PMID: 38093838 PMCID: PMC10714437 DOI: 10.1021/acsptsci.3c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.
Collapse
Affiliation(s)
- Ram Aasarey
- Department
of Laboratory Medicine, All India Institute
of Medical Science, New Delhi-11029, India
| | - Kajal Yadav
- Department
of Biotechnology, All India Institute of
Medical Science, New Delhi-11029, India
| | - Brijendra Kumar Kashyap
- Department
of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi-284128, Uttar Pradesh, India
| | - Sarit Prabha
- Department
of Biological Science and Engineering, Maulana
Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh,India
| | - Pramod Kumar
- Indian
Council of Medical Research, National Institute
of Cancer Prevention and Research (NICPR), l-7, Sector-39, Noida-201301, National Capital Region, India
| | - Anil Kumar
- Department
of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke-835222, Ranchi, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara-144411, Punjab, India
| |
Collapse
|
3
|
Tamayo-Trujillo R, Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Zambrano AK. Human virome: Implications in cancer. Heliyon 2023; 9:e14086. [PMID: 36873548 PMCID: PMC9957661 DOI: 10.1016/j.heliyon.2023.e14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
In recent years, the human virome has gained importance, especially after the SARS-CoV-2 pandemic, due to its possible involvement in autoimmune, inflammatory diseases, and cancer. Characterization of the human virome can be carried out by shotgun next-generation sequencing (metagenomics), which allows the identification of all viral communities in an environmental sample and the discovery of new viral families not previously described. Variations in viral quantity and diversity have been associated with disease development, mainly due to their effect on gut bacterial microbiota. Phages can regulate bacterial flora through lysogeny; this is associated with increased susceptibility to infections, chronic inflammation, or cancer. The virome characterization in different human body ecological niches could help elucidate these particles' role in disease. Hence, it is important to understand the virome's influence on human health and disease. The present review highlights the significance of the human virome and how it is associated with disease, focusing on virome composition, characterization, and its association with cancer.
Collapse
|
4
|
Abdelhamed W, El-Kassas M. Hepatocellular carcinoma and hepatitis C virus treatments: The bold and the beautiful. J Viral Hepat 2023; 30:148-159. [PMID: 36461645 DOI: 10.1111/jvh.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
The occurrence of hepatocellular carcinoma (HCC) is one of the most serious complications of hepatitis C virus (HCV) infection. Recently, effective antiviral medications have made sustained viral response (SVR) or cure a realistic therapeutic goal for most chronic HCV patients. Given HCV's tumorigenic propensity, it is not surprising that achieving SVR is helpful in preventing HCC. This review briefly summarizes and discusses the existing evidence on the relationship between hepatic carcinogenesis and viral eradication by antivirals, which is mainly divided into interferon-based and direct-acting antivirals (DAAs) based therapy. DAAs have changed the treatment landscape of chronic HCV, reaching high rates of SVR even in patients with advanced cirrhosis, with few contraindications and little side effects. Although some early reports suggested that DAA treatment increased the chance of HCC occurrence, more subsequent observational studies have refuted this theory. The probability of HCC recurrence after HCV eradication appears to be decreasing over time following SVR. Despite virological suppression/cure, individuals with liver cirrhosis are still at risk of HCC and should be monitored. There is a considerable need for markers/scores to predict the long-term risk of HCC in patients with HCV-related liver disease who attain SVR with direct-acting antivirals.
Collapse
Affiliation(s)
- Walaa Abdelhamed
- Endemic Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Ferreira J, Oliveira M, Bicho M, Serejo F. Role of Inflammatory/Immune Response and Cytokine Polymorphisms in the Severity of Chronic Hepatitis C (CHC) before and after Direct Acting Antiviral (DAAs) Treatment. Int J Mol Sci 2023; 24:1380. [PMID: 36674897 PMCID: PMC9865726 DOI: 10.3390/ijms24021380] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Host regulatory immune response is involved in the hepatic inflammatory process caused by the hepatitis C virus (HCV). We aimed to determine if HCV clearance with direct-acting antivirals (DAAs) changes the hepatic fibrosis stage, biochemical parameters of liver injury, and inflammatory/immune responses. Sample: 329 chronic hepatitis C (CHC) patients, 134 of them treated with DAAs. Liver fibrosis was evaluated by transient elastography (FibroScan), biochemical and cellular parameters were determined by standard methods, cytokine concentration by enzyme-linked immunoabsorbent assay (ELISA), and genetic polymorphisms by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) or endpoint genotyping. Before DAA treatment, severe fibrosis or cirrhosis (F3/4) was associated with higher values of tumor necrosis factor-alpha (TNF-α) and genotypes transforming growth factor-beta-509 C/T_CC (TGF-β-509 C/T_CC), interleukine-10-1082 T/C_CC (IL-10-1082 T/C_CC), and IL-10-592 G/T_GT. After DAA treatment, fewer F3/4 patients and lower values of TNF-α were found. Patients with TNF-α-308 G/A_GG and IL-10-592 G/T_GT were at risk for F3/4. Lack of improvement of liver fibrosis was associated with lower baseline values of platelet count for genotypes TNF-α-308 G/A_GG and haplotype TT/GG of IL-10-1082 T/C and IL-10-592 G/T. Our study showed decreased liver fibrosis/inflammation and normalization of liver injury biomarkers after DAA treatment. It also points to the importance of suppressing the pro-inflammatory response by DAAs in the resolution of hepatitis C, contributing to the improvement of liver damage evaluated by transient elastography.
Collapse
Affiliation(s)
- Joana Ferreira
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
- ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mariana Oliveira
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
- ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Manuel Bicho
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
- ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Fátima Serejo
- ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Gastroenterology and Hepatology Department, Hospital de Santa Maria, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Badshah Y, Shabbir M, Khan K, Fatima M, Majoka I, Aslam L, Munawar H. Manipulation of Interleukin-6 (IL-6) and Transforming Growth Factor Beta-1(TGFβ-1) towards viral induced liver cancer pathogenesis. PLoS One 2022; 17:e0275834. [PMID: 36215278 PMCID: PMC9550071 DOI: 10.1371/journal.pone.0275834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy. Early diagnosis of HCC has always been challenging. This study aims to assess the pathogenicity and the prevalence of IL-6 -174G/C (rs1800795) and TGFβ-1 +29C/T (rs1800470) polymorphisms in HCV-infected HCC patients. Experimental strategies are integrated with computational approaches to analyse the pathogenicity of the TGFβ-1 +29C/T and IL-6-174 G/C polymorphisms in HCV-induced HCC. AliBaba2 was used to predict the effect of IL-6-174 G/C on transcription factor binding site in IL-6 gene. Structural changes in the mutant TGFβ-1 structure were determined through project HOPE. To assess the polymorphic prevalence of IL-6 -174G/C and TGFβ-1 +29C/T genotypes in HCC and control subjects, amplification refractory mutation system PCR (ARMS-PCR) was performed on 213 HCC and 216 control samples. GraphPad Prism version 8.0 was used for the statistical analysis of the results. In-silico analysis revealed the regulatory nature of both IL-6 -174G/C and TGFβ-1 +29C/T polymorphisms. ARMS-PCR results revealed that the individuals carrying TT genotype for TGFβ-1 gene have an increased risk of developing HCC (p<0.0001, OR = 5.403, RR = 2.062) as compared to individuals with CT and CC genotype. Similarly, GC genotype carriers for IL-6 gene exhibit an increased risk of HCC susceptibility (p<0.0001, OR = 2.276, RR = 1.512) as compared to the people carrying the GG genotype. Genotype TT of TGFβ-1 gene and genotype GC of IL-6 gene are found to be associated with HCV-induced HCC. IL-6 polymorphism may alter its transcription that leads to its pathogenicity. TGFβ-1 polymorphism may alter protein structure stability.
Collapse
Affiliation(s)
- Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maha Fatima
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqra Majoka
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Laiba Aslam
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Huda Munawar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
7
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
8
|
Gs T, Aa A, Lr T, D CL, Oc M, Rs A, Mc W, Em DS. Suppression of TGF-β/Smad2 signaling by GW788388 enhances DENV-2 clearance in macrophages. J Med Virol 2022; 94:4359-4368. [PMID: 35596058 PMCID: PMC9544077 DOI: 10.1002/jmv.27879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022]
Abstract
Dengue fever, caused by the dengue virus (DENV‐1, −2, −3, and −4), affects millions of people in the tropical and subtropical regions worldwide. Severe dengue is correlated with high viraemia and cytokine storm, such as high levels of transforming growth factor‐β1 (TGF‐β1) in the patient's serum. Here, the TGF‐β1 signaling was investigated in the context of in vitro viral clearance. Macrophages were infected with DENV‐2 at MOI 5 and treated with the TGF‐β receptor 1 and 2 inhibitor, GW788388. TGF‐β1 expression, signal transduction and viral load were evaluated 48 h after DENV‐2 infection by enzyme‐linked immunoassay, immunofluorescence, and RT‐qPCR assays. Total TGF‐β1 level was reduced in 15% after DENV‐2 infection, but the secretion of its biologically active form increased threefold during infection, which was followed by the phosphorylation of Smad2 protein. Phosphorylation of Smad2 was reduced by treatment with GW788388 and it was correlated with reduced cytokine production. Importantly, treatment led to a dose‐dependent reduction in viral load, ranging from 6.6 × 105 RNA copies/ml in untreated cultures to 2.3 × 103 RNA copies/ml in cultures treated with 2 ng/ml of GW788388. The anti‐TGF‐β1 antibody treatment also induced a significant reduction in viral load to 1.6 × 103 RNA copies/ml. On the other hand, the addition of recombinant TGF‐β1 in infected cultures promoted an increase in viral load to 7.0 × 106 RNA copies/ml. These results support that TGF‐β1 plays a significant role in DENV‐2 replication into macrophages and suggest that targeting TGF‐β1 may represent an alternative therapeutic strategy to be explored in dengue infection.
Collapse
Affiliation(s)
- Teixeira Gs
- Laboratório de Morfologia e Morfogênese Viral
| | | | | | - Couto-Lima D
- Laboratório de Mosquitos Transmissores de Hematozoário
| | - Moreira Oc
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular e Doenças Endêmicas
| | - Abreu Rs
- Laboratório de Genômica Funcional e Bioinformática; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Waghabi Mc
- Laboratório de Genômica Funcional e Bioinformática; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - de Souza Em
- Laboratório de Morfologia e Morfogênese Viral.,Laboratório de Virologia Molecular
| |
Collapse
|
9
|
Reungoat E, Grigorov B, Zoulim F, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers (Basel) 2021; 13:cancers13092270. [PMID: 34065048 PMCID: PMC8125929 DOI: 10.3390/cancers13092270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the era of direct-acting antivirals against the hepatitis C virus (HCV), curing chronic hepatitis C has become a reality. However, while replicating chronically, HCV creates a peculiar state of inflammation and oxidative stress in the infected liver, which fuels DNA damage at the onset of HCV-induced hepatocellular carcinoma (HCC). This cancer, the second leading cause of death by cancer, remains of bad prognosis when diagnosed. This review aims to decipher how HCV durably alters elements of the extracellular matrix that compose the liver microenvironment, directly through its viral proteins or indirectly through the induction of cytokine secretion, thereby leading to liver fibrosis, cirrhosis, and, ultimately, HCC. Abstract Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.
Collapse
|
10
|
Mostafa A, Ibrahim NES, Sabry D, Fathy W, Elkazaz AY. Insulin-like Growth Factor Initiates Hepatocellular Carcinoma in Chronic Hepatitis C Virus Patients through Induction of Long Non-coding Ribonucleic Acids AF085935. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
HCV is the most commonly occurring hepatic infection worldwide. Chronic HCV infection usually complicated with cirrhosis and even HCC with significant morbidity and mortality. The aim of this study to clarify the molecular mechanism by which HCV can induce HCC and identify a new diagnostic marker for early detection of HCC. Methods: 180 participating subject were divided in to three groups. Group 1: 60 healthy individuals (controls). Group 2: 60 HCV infected patients. Group 3: 60 HCV patients developed HCC. Serum IGF, FOXO and LncRNA AF085935 were evaluated. Results: Serum IGF was significantly elevated in HCV and HCC patients, while FOXO and LncRNA AF085935 were significantly up regulated in HCC. IGF significantly correlated with and LncRNA AF085935. Conclusion: HCV can induce IGF with subsequent induction of LncRNA AF085935 and FOXO.
Key word: HCV, HCC, IGF, FOXO and LncRNA AF085935.
Collapse
|
11
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
12
|
Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. BIOLOGY 2021; 10:biology10010055. [PMID: 33451143 PMCID: PMC7828638 DOI: 10.3390/biology10010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Gut microbiota alteration is linked to many health disorders including hepatitis C virus (HCV) infection. This dysbiosis in turn impacts the coordination between the gut and the liver that is known as the gut–liver-axis. Here, we discuss the latest findings regarding the changes in gut microbiota structure and functionality post HCV infection and its treatment regimens. In addition, we underline the contribution of the microbiota alterations to HCV associated liver complications. Abstract The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection.
Collapse
|
13
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
14
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 581] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
15
|
Negro F. Natural History of Hepatic and Extrahepatic Hepatitis C Virus Diseases and Impact of Interferon-Free HCV Therapy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036921. [PMID: 31636094 DOI: 10.1101/cshperspect.a036921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hepatitis C virus (HCV) infects 71.1 million persons and causes 400,000 deaths annually worldwide. HCV mostly infects the liver, causing acute and chronic necroinflammatory damage, which may progress toward cirrhosis and hepatocellular carcinoma. In addition, HCV has been associated with several extrahepatic manifestations. The advent of safe and effective direct-acting antivirals (DAAs) has made the dream of eliminating this public health scourge feasible in the medium term. Prospective studies using DAA-based regimens have shown the benefit of HCV clearance in terms of both liver- and non-liver-related mortality.
Collapse
Affiliation(s)
- Francesco Negro
- Divisions of Clinical Pathology and of Gastroenterology and Hepatology, University Hospital, 1211 Genève 4, Switzerland
| |
Collapse
|
16
|
Chan KM, Wu TH, Cheng CH, Lee CF, Wu TJ, Chou HS, Lee WC. Inferior Outcomes Associated with the Coexistence of Hepatocellular Carcinoma Recurrence and Hepatic Virus Reinfection After Living Donor Liver Transplantation. J Gastrointest Surg 2020; 24:353-360. [PMID: 30719678 DOI: 10.1007/s11605-019-04116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/08/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic viral hepatitis remains a major etiology of liver cirrhosis and hepatocellular carcinoma. Liver transplantation has been considered an effective treatment for this condition. This study aims to analyze living donor liver transplantation for patients with hepatocellular carcinoma and its relationship with hepatitis virus status. METHODS A retrospective analysis of 268 patients who received living donor liver transplantation for hepatocellular carcinoma was performed. Patients were analyzed according to their serologic status of hepatitis virus; clinicopathologic features, operative parameters, and outcomes were also assessed and compared. RESULTS Twenty-three patients (8.6%) had hepatocellular carcinoma recurrence following liver transplantation; the most common pattern of recurrence was systemic spreading (n = 10). Hepatitis B virus relapse was encountered in 41 out of 188 patients (21.8%) with hepatitis B virus-positive, and hepatitis C virus reactivation was noted in 48 (60.8%) patients among 79 hepatitis C virus-positive patients. Incidence of hepatitis C virus reactivation was significantly higher than that of hepatitis B virus relapse (p < 0.0001). Hepatocellular carcinoma recurrence and overall survival were not significantly different in relation to hepatitis virus; however, patients who had hepatocellular carcinoma recurrence combined with hepatitis virus reinfection had the significantly lowest survival rate compared with other groups (p < 0.0001). CONCLUSION Living donor liver transplantation based on expanded hepatocellular carcinoma criteria achieved a satisfactory result, but reinfection of hepatic virus remains a great concern particularly in patient with hepatitis C. Moreover, hepatocellular carcinoma recurrence accompanied with reinfection of hepatic virus after liver transplantation is associated with inferior outcomes.
Collapse
Affiliation(s)
- Kun-Ming Chan
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan.
| | - Tsung-Han Wu
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan
| | - Chih-Hsien Cheng
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan
| | - Chen-Fang Lee
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan
| | - Ting-Jung Wu
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan
| | - Hong-Shiue Chou
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan
| | - Wei-Chen Lee
- Department of General Surgery & Department of Organs Transplantation Institute, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5 Fu-Hsing Street, Kwei-Shan District, Taoyuan City, 33305, Taiwan
| |
Collapse
|
17
|
Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells 2019; 8:cells8111410. [PMID: 31717433 PMCID: PMC6912740 DOI: 10.3390/cells8111410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) mainly infects liver hepatocytes and replicates its single-stranded plus strand RNA genome exclusively in the cytoplasm. Viral proteins and RNA interfere with the host cell immune response, allowing the virus to continue replication. Therefore, in about 70% of cases, the viral infection cannot be cleared by the immune system, but a chronic infection is established, often resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Induction of cancer in the host cells can be regarded to provide further advantages for ongoing virus replication. One adaptation in cancer cells is the enhancement of cellular carbohydrate flux in glycolysis with a reduction of the activity of the citric acid cycle and aerobic oxidative phosphorylation. To this end, HCV downregulates the expression of mitochondrial oxidative phosphorylation complex core subunits quite early after infection. This so-called aerobic glycolysis is known as the “Warburg Effect” and serves to provide more anabolic metabolites upstream of the citric acid cycle, such as amino acids, pentoses and NADPH for cancer cell growth. In addition, HCV deregulates signaling pathways like those of TNF-β and MAPK by direct and indirect mechanisms, which can lead to fibrosis and HCC.
Collapse
|
18
|
Khatun M, Ray RB. Mechanisms Underlying Hepatitis C Virus-Associated Hepatic Fibrosis. Cells 2019; 8:E1249. [PMID: 31615075 PMCID: PMC6829586 DOI: 10.3390/cells8101249] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection often causes liver diseases, including fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Liver fibrosis is the outcome of the wound healing response to tissue damage caused by chronic HCV infection. This process is characterized by the excessive accumulation of extracellular matrix (ECM) proteins, such as collagen fibers secreted by activated hepatic stellate cells (HSCs). Activation of HSCs from the quiescent stage is mediated by different mechanisms, including pro-inflammatory cytokines and chemokines released from HCV-infected hepatocytes and liver macrophages. HCV infection modulates the expression of different microRNAs that can be transported and delivered to the HSCs via exosomes released from infected cells, also leading to the development of advanced disease pathogenesis. Although recent advancements in direct-acting antiviral (DAA) treatment can efficiently control viremia, there are very few treatment strategies available that can be effective at preventing pathogenesis in advanced liver fibrosis or cirrhosis in patients. Assessment of fibrosis is considered to be the major part of proper patient care and decision making in clinical practice. In this review, we highlighted the current knowledge of molecular mechanisms responsible for the progression of liver fibrosis in chronically HCV-infected patients, and currently available methods for evaluation of fibrosis in patients. A detailed understanding of these aspects at the molecular level may contribute to the development of new therapies targeting HCV-related liver fibrosis.
Collapse
Affiliation(s)
- Mousumi Khatun
- Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104, USA.
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
19
|
Marsella M, Ricchi P. Thalassemia and hepatocellular carcinoma: links and risks. J Blood Med 2019; 10:323-334. [PMID: 31572038 PMCID: PMC6756274 DOI: 10.2147/jbm.s186362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/22/2019] [Indexed: 01/19/2023] Open
Abstract
The increased survival and lifespan of thalassemia patients, in the setting of better iron overload monitoring and chelation, have also however increased the incidence of diseases and complications, which were less likely to develop. Among these, one of the most worrying in recent years is hepatocellular carcinoma (HCC). Due to blood transfusions, many patients with thalassemia are or have been infected with hepatitis C virus (HCV) or hepatitis B virus (HBV), especially those born before the 1990s or in countries in which universal HBV vaccination and safe blood programs are still not completely implemented. However, HCC has also been described in nontransfused patients and in those who are HCV- and HBV-negative. Therefore, other risk factors are involved in hepatocarcinogenesis in thalassemia. The following review analyzes recent literature on the role of different risk factors in the progression of liver disease in thalassemia as well as the importance of surveillance. Treatment of HCC in thalassemia is still highly debated and requires further studies.
Collapse
Affiliation(s)
- Maria Marsella
- Department of Woman and Child, Pediatric Unit, San Giuseppe Moscati Hospital, Avellino, Italy
| | - Paolo Ricchi
- Unità Operativa Semplice Dipartimentale (UOSD) Malattie Rare Del Globulo Rosso, Dipartimento di oncoematologia, Azienda Ospedaliera Di Rilievo Nazionale “A. Cardarelli”, Napoli, Italy
| |
Collapse
|
20
|
Rigoli L, Petrungaro A, Di Bella C, Caruso R. Iron overload and malignancies in patients with haemoglobinopathies: A single center experience. Transfus Apher Sci 2019; 58:647-651. [PMID: 31519524 DOI: 10.1016/j.transci.2019.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022]
Abstract
Thalassemias and sickle cell disease are a group of inherited blood disorders caused by alterations of the synthesis or of the structure of hemoglobin chains. It results in variable outcomes ranging from severe anemia to clinically asymptomatic individuals. Hemolysis and transfusions therapies lead to iron overload and, thus, to an high production of reactive oxygen species (ROS). Recently, it was found an increasing frequency of tumors in patients with hemoglobinopathies and it was underlined the probable role of iron overload in the carcinogenesis. Here, we describe five patients with hemoglobinopathies affected by different types of cancers and we discuss the role of ROS in the carcinogenesis.
Collapse
Affiliation(s)
- Luciana Rigoli
- Department of Human Pathology, University Hospital "G.Martino", Messina, Italy
| | - Annamaria Petrungaro
- Unit of Transfusional Medicine, Department of Services, University Hospital "G.Martino", Messina, Italy.
| | - Chiara Di Bella
- Department of Human Pathology, University Hospital "G.Martino", Messina, Italy
| | - Rosario Caruso
- Department of Human Pathology, University Hospital "G.Martino", Messina, Italy
| |
Collapse
|
21
|
Fibrogenic Gene Expression in Hepatic Stellate Cells Induced by HCV and HIV Replication in a Three Cell Co-Culture Model System. Sci Rep 2019; 9:568. [PMID: 30679661 PMCID: PMC6345841 DOI: 10.1038/s41598-018-37071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Retrospective studies indicate that co-infection of hepatitis C virus (HCV) and human immunodeficiency virus (HIV) accelerates hepatic fibrosis progression. We have developed a co-culture system (MLH) comprising primary macrophages, hepatic stellate cells (HSC, LX-2), and hepatocytes (Huh-7), permissive for active replication of HCV and HIV, and assessed the effect of these viral infections on the phenotypic changes and fibrogenic gene expression in LX-2 cells. We detected distinct morphological changes in LX-2 cells within 24 hr post-infection with HCV, HIV or HCV/HIV in MLH co-cultures, with migration enhancement phenotypes. Human fibrosis microarrays conducted using LX-2 cell RNA derived from MLH co-culture conditions, with or without HCV and HIV infection, revealed novel insights regarding the roles of these viral infections on fibrogenic gene expression in LX-2 cells. We found that HIV mono-infection in MLH co-culture had no impact on fibrogenic gene expression in LX-2 cells. HCV infection of MLH co-culture resulted in upregulation (>1.9x) of five fibrogenic genes including CCL2, IL1A, IL1B, IL13RA2 and MMP1. These genes were upregulated by HCV/HIV co-infection but in a greater magnitude. Conclusion: Our results indicate that HIV-infected macrophages accelerate hepatic fibrosis during HCV/HIV co-infection by amplifying the expression of HCV-dependent fibrogenic genes in HSC.
Collapse
|
22
|
Li H, Huang MH, Jiang JD, Peng ZG. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J Gastroenterol 2018; 24:5297-5311. [PMID: 30598575 PMCID: PMC6305530 DOI: 10.3748/wjg.v24.i47.5297] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection commonly causes progressive liver diseases that deteriorate from chronic inflammation to fibrosis, cirrhosis and even to hepatocellular carcinoma. A long-term, persistent and uncontrolled inflammatory response is a hallmark of these diseases and further leads to hepatic injury and more severe disease progression. The levels of inflammatory cytokines and chemokines change with the states of infection and treatment, and therefore, they may serve as candidate biomarkers for disease progression and therapeutic effects. The mechanisms of HCV-induced inflammation involve classic pathogen pattern recognition, inflammasome activation, intrahepatic inflammatory cascade response, and oxidative and endoplasmic reticulum stress. Direct-acting antivirals (DAAs) are the first-choice therapy for effectively eliminating HCV, but DAAs alone are not sufficient to block the uncontrolled inflammation and severe liver injury in HCV-infected individuals. Some patients who achieve a sustained virologic response after DAA therapy are still at a long-term risk for progression to liver cirrhosis and hepatocellular carcinoma. Therefore, coupling with anti-inflammatory/hepatoprotective agents with anti-HCV effects is a promising therapeutic regimen for these patients during or after treatment with DAAs. In this review, we discuss the relationship between inflammatory mediators and HCV infection, summarize the mechanisms of HCV-induced inflammation, and describe the potential roles of anti-inflammatory/hepatoprotective drugs with anti-HCV activity in the treatment of advanced HCV infection.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Hao Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Finianos A, Matar CF, Taher A. Hepatocellular Carcinoma in β-Thalassemia Patients: Review of the Literature with Molecular Insight into Liver Carcinogenesis. Int J Mol Sci 2018; 19:ijms19124070. [PMID: 30562917 PMCID: PMC6321074 DOI: 10.3390/ijms19124070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
With the continuing progress in managing patients with thalassemia, especially in the setting of iron overload and iron chelation, the life span of these patients is increasing, while concomitantly increasing incidences of many diseases that were less likely to show when survival was rather limited. Hepatocellular carcinoma (HCC) is a major life-threatening cancer that is becoming more frequently identified in this population of patients. The two established risk factors for the development of HCC in thalassemia include iron overload and viral hepatitis with or without cirrhosis. Increased iron burden is becoming a major HCC risk factor in this patient population, especially in those in the older age group. As such, screening thalassemia patients using liver iron concentration (LIC) measurement by means of magnetic resonance imaging (MRI) and liver ultrasound is strongly recommended for the early detection of iron overload and for implementation of early iron chelation in an attempt to prevent organ-damaging iron overload and possibly HCC. There remain lacking data on HCC treatment outcomes in patients who have thalassemia. However, a personalized approach tailored to each patient’s comorbidities is essential to treatment success. Multicenter studies investigating the long-term outcomes of currently available therapeutic options in the thalassemia realm, in addition to novel HCC therapeutic targets, are needed to further improve the prognosis of these patients.
Collapse
Affiliation(s)
- Antoine Finianos
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon.
| | - Charbel F Matar
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon.
| | - Ali Taher
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon.
| |
Collapse
|
24
|
Jamhiri I, Shahin K, Khodabandeh Z, Kalantar K, Sarvari J, Atapour A, Mina F, Ahmadnejad A, Hosseini SY. Recombinant NS3 Protein Induced Expression of Immune Modulatory Elements in Hepatic Stellate Cells During Its Fibrotic Activity. Viral Immunol 2018; 31:575-582. [PMID: 30281404 DOI: 10.1089/vim.2018.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing body of studies that show the important role of NS3 protein from hepatitis C virus in fibrosis. However, mechanisms of the effects of this protein on immune modulation of stellate cells remain to be investigated. Herein, the effect of NS3 protein on the expression level of suppressor of cytokine signaling (SOCS)1/3 and interleukin-24 (IL-24)-related genes was investigated in hepatic stellate cell (HSC), LX-2. Recombinant NS3 protein was added to LX-2 HSC culture. Leptin and standard medium treatments were also included in experiments as positive and negative controls, respectively. Total RNA was extracted from each well at 6, 12, and 24 h after NS3 addition. The expression levels of the fibrotic (transforming growth factor beta 1 [TGF-β], alpha-smooth muscle actin [α-SMA], and COL1A1), inflammatory (IL-6 and IL-24), IL-20R, IL-22R, and immunosuppressive genes (SOCS1 and SOCS3) were evaluated by real-time polymerase chain reaction (PCR). Recombinant NS3 protein induced activated phenotypes of LX-2 with a significant increase in the expression level of α-SMA COL1A1 (p < 0.0001) and TGF-β. Moreover, this exposure led to a meaningful elevation in the expression of IL-6. Furthermore, compared with leptin (control), after the stellate cell treatment with NS3, SOCS1 and SOCS3 gene expression induced at a comparable level. Compared with the control sample, the NS3 protein significantly increased the expression level of IL-24 and its related receptors, IL-20R and IL-22R. This study not only confirmed the previously proved inflammatory and fibrotic effect of this protein but also indicated that high expression levels of SOCS1, SOCS3, and IL-24 have a significant effect on HSC activation. Therefore, these two molecules can be used as a potential therapeutic target candidate.
Collapse
Affiliation(s)
- Iman Jamhiri
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Khashayar Shahin
- 2 Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan, Iran
| | - Zahra Khodabandeh
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Kurosh Kalantar
- 3 Department of Immunology, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Jamal Sarvari
- 4 Gastroenterohepatology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Amir Atapour
- 6 Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Fatemeh Mina
- 5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Asma Ahmadnejad
- 5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Seyed Younes Hosseini
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
25
|
Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine 2018; 124:154542. [PMID: 30241896 DOI: 10.1016/j.cyto.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
In their quiescent state, Hepatic stellate cells (HSCs), are present in the sub-endothelial space of Disse and have minimal interaction with immune cells. However, upon activation following injury, HSCs directly or indirectly interact with various immune cells that enter the space of Disse and thereby regulate diverse hepatic function and immune physiology. Other than the normal physiological functions of HSCs such as hepatic homeostasis, maturation and differentiation, they also participate in hepatic inflammation by releasing a battery of inflammatory cytokines and chemokines and interacting with other liver cells. Here, we have reviewed the role of HSC in the pathogenesis of liver inflammation and some infectious diseases in order to understand how the interplay between immune cells and HSCs regulates the overall outcome and disease pathology.
Collapse
|
26
|
Axley P, Ahmed Z, Ravi S, Singal AK. Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J Clin Transl Hepatol 2018; 6:79-84. [PMID: 29607308 PMCID: PMC5863002 DOI: 10.14218/jcth.2017.00067] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of liver-related death worldwide. Hepatitis C virus (HCV) infection is a major cause of advanced hepatic fibrosis and cirrhosis, with significantly increased risk for development of HCC. The morbidity and mortality of HCV-related HCC remains high, as rates of HCV cirrhosis continue to increase. The long-term goal of antiviral therapy for chronic HCV is to reduce complications from cirrhosis, including HCC. The advent of new direct-acting antivirals with high rates of virological clearance has revolutionized cure of HCV infection. While the development of HCC in HCV patients who achieve disease sustained virologic response is reduced, these patients remain at risk for HCC, particularly those patients with advanced fibrosis and cirrhosis. This review outlines the epidemiology of HCC in chronic HCV, various mechanisms, risk factors and pathophysiology that contribute to this disease process, screening recommendations, and the available data on the impact of new direct-acting antiviral treatment on the development on HCC.
Collapse
Affiliation(s)
- Page Axley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zunirah Ahmed
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sujan Ravi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwani K. Singal
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
27
|
Benbow JH, Elam AD, Bossi KL, Massengill DL, Brandon-Warner E, Anderson WE, Culberson CR, Russo MW, deLemos AS, Schrum LW. Analysis of Plasma Tenascin-C in Post-HCV Cirrhosis: A Prospective Study. Dig Dis Sci 2018; 63:653-664. [PMID: 29330728 DOI: 10.1007/s10620-017-4860-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/19/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Hepatitis C virus (HCV)-related cirrhosis, one of the most common etiologies of liver cirrhosis in the Western world, is a risk factor for hepatocellular carcinoma. To confirm and improve current effectiveness of screening and prognosis of patients with established cirrhosis, a credible, simple plasma biomarker is needed. Hepatic stellate cell activation, a pivotal event in cirrhosis development, results in increased secretion of extracellular matrix proteins, including tenascin-C (TnC). Herein, we tested TnC as a simple biomarker to identify cirrhotic patients with active HCV infection from those with HCV eradication. METHODS A prospective study of subjects with HCV-related cirrhosis, stratified into two groups, HCV or virologic cure, was conducted. Plasma TnC expression was measured by ELISA and Western blots. TnC values were correlated with markers of liver injury and ROC analyses performed between groups. RESULTS The HCV cirrhotic cohort, consisting mostly of men (56%), Caucasians (76%), and genotype 1a or 1b (84%), was compared to healthy controls (HCs). Plasma TnC was significantly higher in HCV cirrhotic patients with active infection compared to HCs (P < 0.0001) and virologic cure (P < 0.0001). TnC concentrations in virologic cure subjects were not statistically different from HCs. TnC levels correlated with AST, platelets, MELD, APRI, FIB-4, and Child-Pugh score. TnC and AST together were significantly better indicators of cirrhosis in patients with active HCV infection than other markers tested. CONCLUSIONS TnC and AST provided the best model for discriminating HCV cirrhotics with active infection from HC and virologic cure cohorts over current liver injury markers, suggesting TnC as a potential indicator of ongoing hepatic injury and inflammation.
Collapse
Affiliation(s)
- Jennifer H Benbow
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - April D Elam
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA.,Center for Liver Diseases and Liver Transplant, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Krista L Bossi
- Center for Liver Diseases and Liver Transplant, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Danae L Massengill
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA.,Center for Liver Diseases and Liver Transplant, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Elizabeth Brandon-Warner
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - William E Anderson
- Center for Outcomes Research and Evaluation, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Catherine R Culberson
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Mark W Russo
- Center for Liver Diseases and Liver Transplant, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Andrew S deLemos
- Center for Liver Diseases and Liver Transplant, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA
| | - Laura W Schrum
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, 28203, USA.
| |
Collapse
|
28
|
Helal TESA, Ehsan NA, Radwan NA, Abdelsameea E. Relationship between hepatic progenitor cells and stellate cells in chronic hepatitis C genotype 4. APMIS 2017; 126:14-20. [PMID: 29155473 DOI: 10.1111/apm.12787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection represents a major health problem in many areas of the world, especially Egypt. Hepatic progenitor cells (HPCs) and hepatic stellate cells (HSCs) have been implicated in fibrosis progression in chronic HCV. The aim of this study was to investigate the role of HPCs and HSCs in chronic HCV infection and the relationship between both cell types. This retrospective study was conducted on 100 chronic HCV patients. Immunohistochemistry was performed on liver tissue sections for cytokeratin 19 (progenitor cell markers), smooth muscle actin (stellate cell markers), matrix metalloproteinase-9 (MMP-9), and transforming growth factor beta (TGF-ß). The necroinflammatory activity was significantly related to the number of isolated HPCs and TGF-ß expression (p = 0.003 and p = 0.001 respectively). Advanced stages of fibrosis showed significantly increase number of HPCs (p = 0.001), higher ratio of HSCs (p = 0.004), more expression of TGF-ß (p = 0.001) and MMP-9 (p = 0.001). There was a significant direct correlation between immunoexpression of HPCs and HSCs for isolated cells (r = 0.569, p = 0.001) and ductular reaction (r = 0.519, p = 0.001). Hepatic progenitor cells and stellate cells play a significant role in the development and progression of fibrosis in chronic HCV. More interestingly, the significant direct correlation between HPCs and HSCs suggests a synergistic interrelation.
Collapse
Affiliation(s)
| | - Nermine Ahmed Ehsan
- Department of Pathology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Nehal Ahmed Radwan
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Abdelsameea
- Department of Hepatology, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
29
|
Sajjad EA, Radkowski M, Perkowska-Ptasińska A, Pacholczyk M, Durlik M, Fedorowicz M, Pietrzak R, Ziarkiewicz-Wróblewska B, Włodarski P, Malejczyk J. Negative Correlation Between Hepatitis C Virus (HCV) and Let-7 MicroRNA Family in Transplanted Livers: The Role of rs868 Single-Nucleotide Polymorphism. Ann Transplant 2017; 22:638-645. [PMID: 29061957 PMCID: PMC6248281 DOI: 10.12659/aot.905540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Genetic alterations of TGF-β pathway members, including its transmembrane receptor, TGFBR1, may influence the course of HCV infection. Rs868 is a single-nucleotide polymorphism of the 3′UTR region of TGFBR1, located in a binding site for the conserved let-7/miR98 microRNA family. Previously, we demonstrated a favorable course of hepatitis C recurrence after liver transplantation in rs868 AG genotype of the transplanted liver when compared to rs868 AA. The aim of the present study was to confirm the biological effect of rs868. Material/Methods HepG2 cell line was transfected with luciferase vectors cloned with 3′UTR of TGFBR1 gene encompassing different rs868 alleles. Post-transplant liver biopsies from 61 patients with HCV-related end-stage liver disease were evaluated histopathologically and analyzed for the expression of TGFBR1 mRNA, let-7/miR98 microRNAs, HCV RNA load, and rs868 genotype. Results Luciferase expression was significantly lower in the A allele-containing vector. TGFBR1 mRNA and HCV RNA load were correlated negatively with let-7/miR98 microRNAs and this correlation was significantly stronger for rs868 AG compared to AA genotype. A strong positive correlation was demonstrated between TGFBR1 and HCV in both genotypes. In AG heterozygotes, let-7/miR98 microRNAs showed a strong negative correlation with periportal or periseptal interface hepatitis (Ishak A score). Conclusions There is a negative correlation between let-7/miR98 microRNAs and HCV viral load and TGFBR1 mRNA after liver transplantation. In the rs868 AG heterozygotes, this correlation was stronger and there was a negative correlation between let-7/miR98 and Ishak A score, which is in concordance with the previously demonstrated protective role of this genotype in post-transplant hepatitis C recurrence.
Collapse
Affiliation(s)
- Emir Ahmed Sajjad
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Perkowska-Ptasińska
- Department of Transplantology, Nephrology and Internal Medicine, Medical University of Warsaw, Transplantation Institute, Warsaw, Poland
| | - Marek Pacholczyk
- Department of General Surgery and Transplantology, Medical University of Warsaw, Transplantation Institute, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantology, Nephrology and Internal Medicine, Medical University of Warsaw, Transplantation Institute, Warsaw, Poland
| | - Mikołaj Fedorowicz
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Renata Pietrzak
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | | | - Paweł Włodarski
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Cheng JC, Tseng CP, Liao MH, Peng CY, Yu JS, Chuang PH, Huang JT, Chen JJW. Activation of hepatic stellate cells by the ubiquitin C-terminal hydrolase 1 protein secreted from hepatitis C virus-infected hepatocytes. Sci Rep 2017; 7:4448. [PMID: 28667290 PMCID: PMC5493679 DOI: 10.1038/s41598-017-04259-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection of hepatocytes promotes liver fibrosis by activation of hepatic stellate cells (HSCs) and excessive deposition of extracellular matrix in liver tissue. Whether or not host factors released from the HCV-infected hepatocytes play role in HSCs activation is unclear. In this study, HSCs were activated by the conditioned medium derived from HCV replicon cells. Secretomic profiling of HCV replicon cells and the parental Huh7 cells revealed ubiquitin carboxy-terminal hydrolase L1 (UCHL1) as a novel secreted protein from HCV-infected hepatocytes. UCHL1 expression in hepatocytes was induced by HCV infection. UCHL1 was expressed in the liver and found in the plasma of patients with chronic hepatitis C. Molecular analysis by use of the anti-UCHL1 neutralization antibody and purified UCHL1 protein showed that secreted UCHL1 protein was bound to the cell surface of HSCs and activated JNK signaling leading to overexpression of alpha-smooth muscle actin and the activation of HSCs. These results provide further for understanding the underlying mechanism in HCV-mediated hepatic fibrogenesis.
Collapse
Affiliation(s)
- Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan.
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302, Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan
| | - Mei-Huei Liao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40402, Taiwan
| | - Cheng-Yuan Peng
- Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, 33302, Taiwan
| | - Po-Heng Chuang
- Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jing-Tang Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40402, Taiwan
| |
Collapse
|
31
|
Zamor PJ, deLemos AS, Russo MW. Viral hepatitis and hepatocellular carcinoma: etiology and management. J Gastrointest Oncol 2017; 8:229-242. [PMID: 28480063 DOI: 10.21037/jgo.2017.03.14] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) and chronic hepatitis C virus (HCV) are associated with hepatic fibrosis and development of hepatocellular carcinoma (HCC). There are differences and variation with the incidence of HCC worldwide. Additionally, HCC develops via different pathways with these viral hepatitides. This review outlines the various mechanisms and pathophysiology that contributes to this process. There will also be a review on the recommended screening for HCC. Treatment considerations, which are different for these viruses, will be outlined in this review.
Collapse
Affiliation(s)
- Philippe J Zamor
- Division of Hepatology, Carolinas Medical Center, Charlotte, USA
| | - Andrew S deLemos
- Division of Hepatology, Carolinas Medical Center, Charlotte, USA
| | - Mark W Russo
- Division of Hepatology, Carolinas Medical Center, Charlotte, USA
| |
Collapse
|
32
|
Diagnostic accuracy of APRI and FIB-4 for predicting hepatitis B virus-related liver fibrosis accompanied with hepatocellular carcinoma. Dig Liver Dis 2016; 48:1220-6. [PMID: 27599803 DOI: 10.1016/j.dld.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/21/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aspartate aminotransferase to platelet ratio index (APRI) and the fibrosis index based on four factors (FIB-4) are the two most focused non-invasive models to assess liver fibrosis. AIMS We aimed to examine the validity of these two models for predicting hepatitis B virus (HBV)-related liver fibrosis accompanied with hepatocellular carcinoma (HCC). METHODS We enrolled HBV-infected patients with liver cancer who had received hepatectomy. The accuracy of APRI and FIB-4 for diagnosing liver fibrosis was assessed based on their sensitivity, specificity, diagnostic efficiency, positive predictive value (PPV), negative predictive value (NPV), kappa (κ) value and area under the receiver-operating characteristic curve (AUC). RESULTS Finally 2176 patients were included, with 1682 retrospective subjects and 494 prospective subjects. APRI (rs=0.310) and FIB-4 (rs=0.278) were positively correlated with liver fibrosis. And χ(2) analysis demonstrated that APRI and FIB-4 values correlated with different levels of liver fibrosis with all P values less than 0.01. The AUC values for APRI and FIB-4 were 0.685 and 0.626 (P=0.73) for predicting significant fibrosis, 0.681 and 0.648 (P=0.81) for differentiation of advanced fibrosis and 0.676 and 0.652 (P=0.77) for diagnosing cirrhosis. CONCLUSION APRI and FIB-4 correlate with liver fibrosis. However these two models have low accuracy for predicting HBV-related liver fibrosis in HCC patients.
Collapse
|
33
|
Niu X, Fu N, Du J, Wang R, Wang Y, Zhao S, Du H, Wang B, Zhang Y, Sun D, Nan Y. miR-1273g-3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV-related liver fibrosis. FEBS Lett 2016; 590:2709-24. [PMID: 27423040 DOI: 10.1002/1873-3468.12309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/13/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022]
Abstract
MicroRNA (miRNA) play a pivotal role in the development of liver fibrosis. However, the functions of miRNA in hepatitis C virus (HCV)-related liver fibrosis remain unclear. In this study, we systematically analyzed the microarray data of the serum miRNA in patients with HCV-induced hepatic fibrosis. Among 41 dysregulated miRNA, miR-1273g-3p was the most significantly upregulated miRNA and correlated with the stage of liver fibrosis. Overexpression of miR-1273g-3p could inhibit translation of PTEN, increase the expression of α-SMA, Col1A1, and reduce apoptosis in HSCs. Hence, we conclude that miR-1273g-3p might affect the activation and apoptosis of HSCs by directly targeting PTEN in HCV-related liver fibrosis.
Collapse
Affiliation(s)
- Xuemin Niu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Fu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijuan Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoyu Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuguo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dianxing Sun
- Department of Liver Disease, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Stelmakh VV, Kozlov VK, Ivanova VF, Samusenko IA. [Efficacy of the infusion hepatotropic drug remaxol in the pathogenetic therapy for cirrhotic stage chronic viral hepatitides]. TERAPEVT ARKH 2016; 87:67-72. [PMID: 26824818 DOI: 10.17116/terarkh201587867-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To investigate the impact of therapy with the infusion hepatoprotector remaxol on liver function in cirrhosis in the outcome of chronic viral hepatitides (CVH): HCV, HBV, HCV+HBV, and HBV+HDV. SUBJECTS AND METHODS Sixty-five patients aged 26 to 76 years, who had been diagnosed as having liver cirrhosis (LC) in the outcome of CVH: HCV, HBV, HCV+HBV, and HBV+HDV were examined. During infusion therapy, every day 32 cirrhotic patients in the outcome of CVH B or C received intravenous remaxol 400 ml in a jetwise manner once daily for 11 days. A comparison group comprised 33 patients with the similar condition who had intravenous ademetionine 400 mg in a jetwise fashion during infusion therapy with crystalloids (400 ml of isotonic sodium chloride solution, Ringer's solution) for 11 days. RESULTS After an infusion therapy cycle, the study group patients were recorded to have more significantly reduced cytolytic and cholestatic parameters. The pronounced hepatotropic effect of the drug was confirmed by the rate of a decline in the average concentrations of alanine aminotransferase, aspartate aminotransferase, and total bilirubin. In the study group patients, the relative values of a decrease in the levels of these biochemical parameters were 29, 29, and 40% versus 15, 20, and 9% in the control patients. CONCLUSION Infusion therapy with remaxol in the combination treatment of the patients with viral LC not only improves liver function (reduces the degree of cytolysis, cholestasis), but also exerts a cytoprotective effect on peripheral blood cells (leukocytes, lymphocytes, platelets).
Collapse
Affiliation(s)
- V V Stelmakh
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - V K Kozlov
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia; Yaroslavl-the-Wise Novgorod State University, Veliky Novgorod, Russia; Saint Petersburg State University, Saint Petersburg, Russia
| | - V F Ivanova
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - I A Samusenko
- A.M. Nikiforov All-Russian Center of Emergency and Radiation Medicine, Russian Ministry for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, Saint Petersburg, Russia
| |
Collapse
|
35
|
Jung GS, Jeon JH, Choi YK, Jang SY, Park SY, Kim MK, Shin EC, Jeong WI, Lee IK, Kang YN, Park KG. Small heterodimer partner attenuates profibrogenic features of hepatitis C virus-infected cells. Liver Int 2015; 35:2233-45. [PMID: 25976932 DOI: 10.1111/liv.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/08/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS An atypical orphan nuclear receptor small heterodimer partner (SHP) is known to be regulated by AMP-activated protein kinase (AMPK). Both of them inhibit TGF-β and Smad signalling and exhibit antifibrotic activity in the liver. However, little is known about the protective effects of SHP and AMPK against hepatitis c virus (HCV)-induced hepatic fibrosis. METHODS Levels of SHP, p-AMPK and fibrotic markers in HCV-infected human liver and in Huh-7.5 cells infected with HCV genotype 2a (JFH-1) were investigated. The effect of adenovirus-mediated overexpression of SHP (Ad-SHP) and AMPK activation via metformin and 5-amino-1-b-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) on fibrotic gene expression was evaluated in HCV-infected cells. Finally, we examined the effect of Ad-SHP and AMPK activators on invasion and activation of LX2 human HSCs induced by conditioned media from HCV-infected hepatocyte (CM). RESULTS In HCV-infected human livers and Huh-7.5 cells infected with HCV, SHP mRNA and protein levels were diminished compared with controls, whereas profibrotic factors were increased. Pharmacological AMPK activation recovered SHP expression, and Ad-SHP inhibited HCV-induced fibrotic gene expression. This finding was accompanied by inhibition of HCV-stimulated nuclear factor-kappa B, an inducer of TGF-β. Moreover, CytoSelect invasion assay revealed that enhanced activity and invasiveness of hepatic stellate cells induced by CM. CONCLUSION These results demonstrate that overexpression of SHP and activation of AMPK reverses profibrogenic features of HCV-infected cells by decreasing TGF-β and fibrotic gene expression. These findings provide a rationale for SHP as a possible therapeutic target against HCV-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Gwon-Soo Jung
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Se Young Jang
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Soo Young Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yu Na Kang
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
36
|
Abd El-Rehim El-Henawy A, Abdel-Razik A, Zakaria S, Elhammady D, Saudy N, Azab MS. Is toxoplasmosis a potential risk factor for liver cirrhosis? ASIAN PAC J TROP MED 2015; 8:784-91. [PMID: 26522292 DOI: 10.1016/j.apjtm.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To document Toxoplasma gondii (T. gondii) antibody status in patients with liver disease, blood samples were taken from 180 hepatic patients and 180 healthy controls. METHODS Toxoplasma IgG antibody was detected using enzyme-linked immunosorbent assay and histopathological assessment of liver biopsy METAVIR score was applied. RESULTS Anti-T. gondii IgG antibodies were found in 32.8% of patients and in 22.2% of controls (P = 0.02). Toxoplasma seropositivity was significantly associated with lymphadenopathy, history of blood transfusion and reflex impairment in patients. Chronic hepatitis C virus (HCV) and chronic HCV-related cirrhosis groups compared to chronic HBV and chronic HBV-related cirrhosis groups expressed significantly higher prevalence of T. gondii seropositivity (odds ratio (OR) = 4; 95% confidence interval (CI): 1.3-12.6; P = 0.013, OR = 4.8; 95% CI: 1.5-14.9; P = 0.006, respectively). Within the chronic HCV group, T. gondii seropositivity significantly associated disease evolution as regards to METAVIR histopathological system for fibrosis and inflammation (OR = 19.4; 95% CI: 2.3-165.2; P = 0.0008, OR = 0.29; 95% CI: 0.1-0.8; P = 0.01, respectively). Albumin, international normalized ratio (INR) and platelets count were the laboratory parameters significantly altered in Toxoplasma-positive chronic HCV patients (P = 0.001, 0.03, 0.04, respectively). Child-Pugh scoring for cirrhosis in chronic HCV group placed the majority of seropositive patient in class C with significant statistical difference compared to Child A reference group (OR = 0.08; 95% CI: 0.01-0.5; P = 0.003). CONCLUSIONS Toxoplasma seropositivity was high in patients with cirrhosis and associated higher grades of inflammation and necrosis signifying disease evolution, suggesting that cirrhotic patients may thus form a risk group for toxoplasmosis.
Collapse
Affiliation(s)
| | - Ahmed Abdel-Razik
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sahar Zakaria
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina Elhammady
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Niveen Saudy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manar Sobh Azab
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
37
|
Wong GLH, Tse YK, Wong VWS, Yip TCF, Tsoi KKF, Chan HLY. Long-term safety of oral nucleos(t)ide analogs for patients with chronic hepatitis B: A cohort study of 53,500 subjects. Hepatology 2015; 62:684-93. [PMID: 25973979 DOI: 10.1002/hep.27894] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Widespread and long-term use of oral nucleos(t)ide analogs (NAs) to treat chronic hepatitis B (CHB) brings about safety data in a real-life setting. We aimed to determine the risks of renal and bone side effects in patients receiving or who have received NAs as CHB treatment. A territory-wide cohort study using the database from Hospital Authority, the major provider of medical services in Hong Kong, was conducted. We identified CHB patients by International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes, diagnosed between 2000 and 2012. The primary events were renal (incident renal failure and renal replacement therapy [RRT]) and bone events (incident hip, vertebral, and all fractures). A 3-year landmark analysis was used to evaluate the relative risk of primary outcome in patients with or without NA treatment. A total of 53,500 CHB patients (46,454 untreated and 7,046 treated), who were event free for 3 years, were included in the analysis. At a median follow-up of 4.9 years, chronic renal failure, RRT, all fractures, hip fractures, and vertebral fractures occurred in 0.6%, 0.2%, 0.7%, 0.1%, and 0.1% of untreated subjects and 1.4%, 0.7%, 1.3%, 0.2%, and 0.2% of treated subjects. After propensity score weighting, NA therapy did not increase the risk of any of the events (hazard ratios [HRs] ranged from 0.79 to 1.31; P = 0.225-0.887). Exposure to nucleotide analogues, compared with nucleoside analogs, increased the risk of hip fracture (HR = 5.69; 95% confidence interval: 1.98-16.39; P = 0.001), but not other events (HR = 0.58-1.44; P = 0.202-0.823). CONCLUSIONS NA treatment does not increase the risk of renal and bone events in general. Nucleotide analogs may increase the risk of hip fracture, but the overall event rate is low.
Collapse
Affiliation(s)
- Grace Lai-Hung Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Yee-Kit Tse
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | | | - Kelvin Kam-Fai Tsoi
- Big Data Decision Analytics Research Center, The Chinese University of Hong Kong, Hong Kong
| | - Henry Lik-Yuen Chan
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
38
|
Aoudjehane L, Bisch G, Scatton O, Granier C, Gaston J, Housset C, Roingeard P, Cosset FL, Perdigao F, Balladur P, Wakita T, Calmus Y, Conti F. Infection of Human Liver Myofibroblasts by Hepatitis C Virus: A Direct Mechanism of Liver Fibrosis in Hepatitis C. PLoS One 2015. [PMID: 26214688 PMCID: PMC4516308 DOI: 10.1371/journal.pone.0134141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Chronic hepatitis C is a major cause of liver fibrosis and cirrhosis. It is generally accepted that inflammation that occurs in response to hepatocyte infection by the hepatitis C virus (HCV) is the main mechanism that triggers myofibroblast differentiation and stimulation in chronic hepatitis C. The aim of this study was to determine if HCV might infect human liver myofibroblasts (HLMF) and directly stimulate their fibrogenic activities. Methods We evaluated the expression of the viral entry receptors, levels of HCV-RNA and HCV-protein and the expression of fibrosis markers in HLMF by using quantitative PCR, western blot and immunofluorescence analyses. Pseudoparticles (HCVpp) and cell culture–derived HCV (HCVcc) were used to study the ability of HLMF to support viral entry, replication and fibrosis induction. Results We showed that HLMF expressed all known molecules of the HCV receptor complex, i.e. CD81, LDL-R, scavenger receptor-BI, claudin-1 and occludin. These cells were also permissive to HCVpp entry. Inoculation with HCVcc caused short-term infection of these cells, as shown by their content in positive- and negative-strand HCV RNA, in core and NS3 viral proteins, and by their release of core protein levels in the culture supernatants. HCV infection stimulated myofibroblastic differentiation, proliferation and collagen production in these cells. In addition, evidence of in vivo infection was provided by the detection of positive- and negative-strand HCV RNA in preparations of HLMF obtained from HCV-infected patients. Conclusion These findings indicate that HCV infection of HLMF can occur and trigger extracellular matrix overproduction, thereby contributing to the development of HCV-related liver fibrosis.
Collapse
Affiliation(s)
- Lynda Aoudjehane
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75005, Paris, France
- INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
- Human HepCell, Hôpital Saint-Antoine, F-75012 Paris, France
- * E-mail:
| | - Grégoire Bisch
- Human HepCell, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Olivier Scatton
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75005, Paris, France
- INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Unité de Transplantation Hépatique, F-75013, Paris, France
| | - Christelle Granier
- CIRI–International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Jesintha Gaston
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), INSERM U1016, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75005, Paris, France
- INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
| | | | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
- LabEx Ecofect, Université de Lyon, Lyon, France
| | - Fabiano Perdigao
- AP-HP, Hôpital Pitié-Salpêtrière, Unité de Transplantation Hépatique, F-75013, Paris, France
| | - Pierre Balladur
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75005, Paris, France
- INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
- AP-HP, Hôpital Saint Antoine, Département de la chirurgie digestive, F-75012, Paris, France
| | - Takaji Wakita
- National Institute of Infectious Diseases, Department of Virology II, Tokyo, Japan
| | - Yvon Calmus
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75005, Paris, France
- INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Unité de Transplantation Hépatique, F-75013, Paris, France
| | - Filomena Conti
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, F-75005, Paris, France
- INSERM, UMR_S 938, CDR Saint-Antoine, F-75012, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Unité de Transplantation Hépatique, F-75013, Paris, France
| |
Collapse
|
39
|
Florimond A, Chouteau P, Bruscella P, Le Seyec J, Mérour E, Ahnou N, Mallat A, Lotersztajn S, Pawlotsky JM. Human hepatic stellate cells are not permissive for hepatitis C virus entry and replication. Gut 2015; 64:957-65. [PMID: 25063678 DOI: 10.1136/gutjnl-2013-305634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic HCV infection is associated with the development of hepatic fibrosis. The direct role of HCV in the fibrogenic process is unknown. Specifically, whether HCV is able to infect hepatic stellate cells (HSCs) is debated. OBJECTIVE To assess whether human HSCs are susceptible to HCV infection. DESIGN We combined a set of original HCV models, including the infectious genotype 2a JFH1 model (HCVcc), retroviral pseudoparticles expressing the folded HCV genotype 1b envelope glycoproteins (HCVpp) and a subgenomic genotype 1b HCV replicon, and two relevant cellular models, primary human HSCs from different patients and the LX-2 cell line, to assess whether HCV can infect/replicate in HSCs. RESULTS In contrast with the hepatocyte cell line Huh-7, neither infectious HCVcc nor HCVpp infected primary human HSCs or LX-2 cells. The cellular expression of host cellular factors required for HCV entry was high in Huh-7 cells but low in HSCs and LX-2 cells, with the exception of CD81. Finally, replication of a genotype 2a full-length RNA genome and a genotype 1b subgenomic replicon was impaired in primary human HSCs and LX-2 cells, which expressed low levels of cellular factors known to play a key role in the HCV life-cycle, suggesting that human HSCs are not permissive for HCV replication. CONCLUSIONS Human HSCs are refractory to HCV infection. Both HCV entry and replication are deficient in these cells, regardless of the HCV genotype and origin of the cells. Thus, HCV infection of HSCs does not play a role in liver fibrosis. These results do not rule out a direct role of HCV infection of hepatocytes in the fibrogenic process.
Collapse
Affiliation(s)
- Alexandre Florimond
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Philippe Chouteau
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Patrice Bruscella
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Jacques Le Seyec
- Inserm U1085, Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France Université de Rennes 1, Rennes, France Fédération de Recherche BIOSIT de Rennes, UMS 3480-US18, Rennes, France
| | - Emilie Mérour
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Nazim Ahnou
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Ariane Mallat
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Créteil, France
| | - Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation, Inserm UMR 1149-Université Paris Diderot, Paris, France
| | - Jean-Michel Pawlotsky
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France National Reference Center for Viral Hepatitis B, C, and Delta, Department of Virology, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
40
|
Bansal R, Frelin L, Brenndörfer ED, Storm G, Prakash J, Sällberg M. Hepatitis C Virus Nonstructural 3/4A Protein Dampens Inflammation and Contributes to Slow Fibrosis Progression during Chronic Fibrosis In Vivo. PLoS One 2015; 10:e0128466. [PMID: 26030283 PMCID: PMC4450868 DOI: 10.1371/journal.pone.0128466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
HCV infection typically induces liver injury and inflammation, which appears to be responsible for the associated fibrogenesis. To date, the mechanism underlying the different rates of disease progression remains unclear. The aim of the study is to understand the possible role of the HCV non-structural (NS) 3/4A protein in the fibrosis progression. We used NS3/4A-expressing transgenic mice (NS3/4A-Tg) to accomplish the goals of the study. Different stages of liver fibrosis were induced in wild-type and NS3/4A-Tg mice by single carbon tetrachloride (acute) or multiple injections for 4 (intermediate) or 8 (chronic) weeks. Fibrotic parameters, inflammatory responses and hepatocyte turnover were extensively examined. Hepatic expression of HCV NS3/4A did not induce spontaneous liver damage. However, NS3/4A expression exerted contrasting effects during acute and chronic liver damage. During early fibrogenesis and intermediate fibrosis (4 weeks), NS3/4A-Tg mice exhibited enhanced liver damage whereas reduced fibrosis was observed in NS3/4A-Tg during chronic liver fibrosis (8 weeks). Furthermore, attenuated inflammation was observed in NS3/4A-Tg during chronic fibrosis with increase in M2 macrophages, hepatocyte proliferation, decreased hepatocyte apoptosis and decreased ductular reaction. In conclusion, during early fibrogenesis, HCV NS3/4A contributes to liver damage. While, during chronic liver fibrosis, NS3/4A dampens inflammation and induces hepatocyte regeneration thereby contributing to slow fibrosis progression to promote its survival or persistence.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
- Targeted Therapeutics, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Erwin Daniel Brenndörfer
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Diagnostic performance of collagen IV and laminin for the prediction of fibrosis and cirrhosis in chronic hepatitis C patients: a multicenter study. Eur J Gastroenterol Hepatol 2015; 27:378-85. [PMID: 25874509 DOI: 10.1097/meg.0000000000000298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM To date, liver biopsy has been the gold standard used for the assessment of liver fibrosis in patients with chronic hepatitis C. Our aim was to evaluate the diagnostic performance of a panel of simple blood markers of liver fibrosis and the development a novel score to replace liver biopsy. PATIENTS AND METHODS Liver biochemical profile including transaminases, bilirubin, alkaline phosphatase, and albumin, in addition to platelet count, was evaluated using standard methods in 305 chronic hepatitis C patients. Serum type IV collagen and laminin were assayed using the ELISA technique. Liver biopsies were performed. Statistical analyses were carried out by logistic regression and receiver operating characteristic curves to assess and compare the diagnostic accuracy of blood markers. A stepwise combination algorithm was developed and validated in 317 additional patients. RESULTS The Fibrosis Discriminant Score (FDS) was developed combining collagen, laminin, aspartate aminotransferase/platelet ratio index, and albumin. FDS produced an area under receiver operating characteristic curve of 0.831 for significant fibrosis, 0.791 for advanced fibrosis, and 0.881 for cirrhosis. The FDS was correctly classified in 82% of patients with significant fibrosis with 79% sensitivity and 88% specificity at cut-off 0.66 or more. Similar results were obtained in a validation study in which, of 317 patients, liver biopsy could have been avoided in 81%. CONCLUSION A simple fibrosis index can be useful to select hepatitis C virus-infected patients with a very low risk of significant fibrosis in whom the protocol of liver biopsies may be avoided.
Collapse
|
42
|
Abstract
Chronic HCV infection is the leading indication for liver transplantation. However, as a result of HCV recurrence, patient and graft survival after liver transplantation are inferior compared with other indications for transplantation. HCV recurrence after liver transplantation is associated with considerable mortality and morbidity. The development of HCV-related fibrosis is accelerated after liver transplantation, which is influenced by a combination of factors related to the virus, donor, recipient, surgery and immunosuppression. Successful antiviral therapy is the only treatment that can attenuate fibrosis. The advent of direct-acting antiviral agents (DAAs) has changed the therapeutic landscape for the treatment of patients with HCV. DAAs have improved tolerability, and can potentially be used without PEG-IFN for a shorter time than previous therapies, which should result in better outcomes. In this Review, we describe the important risk factors that influence HCV recurrence after liver transplantation, highlighting the mechanisms of fibrosis and the integral role of hepatic stellate cells. Indirect and direct assessment of fibrosis, in addition to new antiviral therapies, are also discussed.
Collapse
|
43
|
Martín-Vílchez S, Rodríguez-Muñoz Y, López-Rodríguez R, Hernández-Bartolomé Á, Borque-Iñurrita MJ, Molina-Jiménez F, García-Buey L, Moreno-Otero R, Sanz-Cameno P. Inhibition of tyrosine kinase receptor Tie2 reverts HCV-induced hepatic stellate cell activation. PLoS One 2014; 9:e106958. [PMID: 25302785 PMCID: PMC4193738 DOI: 10.1371/journal.pone.0106958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/12/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of chronic liver disease (CLD) and is frequently linked to intrahepatic microvascular disorders. Activation of hepatic stellate cells (HSC) is a central event in liver damage, due to their contribution to hepatic renewal and to the development of fibrosis and hepatocarcinoma. During the progression of CLDs, HSC attempt to restore injured tissue by stimulating repair processes, such as fibrosis and angiogenesis. Because HSC express the key vascular receptor Tie2, among other angiogenic receptors and mediators, we analyzed its involvement in the development of CLD. Methods Tie2 expression was monitored in HSC cultures that were exposed to media from HCV-expressing cells (replicons). The effects of Tie2 blockade on HSC activation by either neutralizing antibody or specific signaling inhibitors were also examined. Results Media from HCV-replicons enhanced HSC activation and invasion and upregulated Tie2 expression. Notably, the blockade of Tie2 receptor (by a specific neutralizing antibody) or signaling (by selective AKT and MAPK inhibitors) significantly reduced alpha-smooth muscle actin (α-SMA) expression and the invasive potential of HCV-conditioned HSC. Conclusions These findings ascribe a novel profibrogenic function to Tie2 receptor in the progression of chronic hepatitis C, highlighting the significance of its dysregulation in the evolution of CLDs and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Samuel Martín-Vílchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yolanda Rodríguez-Muñoz
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosario López-Rodríguez
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángel Hernández-Bartolomé
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Jesús Borque-Iñurrita
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisca Molina-Jiménez
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Luisa García-Buey
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ricardo Moreno-Otero
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paloma Sanz-Cameno
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
44
|
Wong GLH. Prediction of fibrosis progression in chronic viral hepatitis. Clin Mol Hepatol 2014; 20:228-36. [PMID: 25320725 PMCID: PMC4197170 DOI: 10.3350/cmh.2014.20.3.228] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Prediction of liver fibrosis progression has a key role in the management of chronic viral hepatitis, as it will be translated into the future risk of cirrhosis and its various complications including hepatocellular carcinoma. Both hepatitis B and C viruses mainly lead to fibrogenesis induced by chronic inflammation and a continuous wound healing response. At the same time direct and indirect profibrogenic responses are also elicited by the viral infection. There are a handful of well-established risk factors for fibrosis progression including older age, male gender, alcohol use, high viral load and co-infection with other viruses. Metabolic syndrome is an evolving risk factor of fibrosis progression. The new notion of regression of advanced fibrosis or even cirrhosis is now strongly supported various clinical studies. Even liver biopsy retains its important role in the assessment of fibrosis progression, various non-invasive assessments have been adopted widely because of their non-invasiveness, which facilitates serial applications in large cohorts of subjects. Transient elastography is one of the most validated tools which has both diagnostic and prognostic role. As there is no single perfect test for liver fibrosis assessment, algorithms combining the most validated noninvasive methods should be considered as initial screening tools.
Collapse
Affiliation(s)
- Grace Lai-Hung Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
Matharu Z, Patel D, Gao Y, Haque A, Zhou Q, Revzin A. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal Chem 2014; 86:8865-72. [PMID: 25105888 PMCID: PMC4151791 DOI: 10.1021/ac502383e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
We
developed a cell-culture/biosensor platform consisting of aptamer-modified
Au electrodes integrated with reconfigurable microfluidics for monitoring
of transforming growth factor-beta 1 (TGF-β1), an important
inflammatory and pro-fibrotic cytokine. Aptamers were thiolated, labeled
with redox reporters, and self-assembled on gold surfaces. The biosensor
was determined to be specific for TGF-β1 with an experimental
detection limit of 1 ng/mL and linear range extending to 250 ng/mL.
Upon determining figures of merit, aptasensor was miniaturized and
integrated with human hepatic stellate cells inside microfluidic devices.
Reconfigurable microfluidics were developed to ensure that seeding
of “sticky” stromal cells did not foul the electrode
and compromise sensor performance. This microsystem with integrated
aptasensors was used to monitor TGF-β1 release from activated
stellate cells over the course of 20 h. The electrochemical response
went down upon infusing anti-TGF-β1 antibodies into the microfluidic
devices containing activated stellate cells. To further validate aptasensor
responses, stellate cells were stained for markers of activation (e.g.,
alpha smooth muscle actin) and were also tested for presence of TGF-β1
using enzyme linked immunosorbent assay (ELISA). Given the importance
of TGF-β1 as a fibrogenic signal, a microsystem with integrated
biosensors for local and continuous detection of TGF-β1 may
prove to be an important tool to study fibrosis of the liver and other
organs.
Collapse
Affiliation(s)
- Zimple Matharu
- Department of Biomedical Engineering, University of California , Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
46
|
An interferon response gene signature is associated with the therapeutic response of hepatitis C patients. PLoS One 2014; 9:e104202. [PMID: 25111807 PMCID: PMC4128657 DOI: 10.1371/journal.pone.0104202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
Abstract
Infection with the hepatitis C virus (HCV) is a major cause of chronic liver diseases and hepatocellular carcinoma worldwide, and thus represents a significant public health problem. The type I interferon (IFN), IFNα, has been successful in treating HCV-infected patients, but current IFN-based treatment regimens for HCV have suboptimal efficacy, and relatively little is known about why IFN therapy eliminates the virus in some patients but not in others. Therefore, it is critical to understand the basic mechanisms that underlie the therapeutic resistance to IFN action in HCV-infected individuals, and there is an urgent need to identify those patients most likely to respond to IFN therapy for HCV. To characterize the response of HCV-infected patients to treatment with IFNα, the expression of an IFN-response gene signature comprised of IFN-stimulated genes and genes that play an important role in the innate immune response was examined in liver biopsies from HCV-infected patients enrolled in a clinical trial. In the present study we found that the expression of a subset of IFN-response genes was dysregulated in liver biopsy samples from nonresponsive hepatitis C patients as compared with virologic responders. Based on these findings, a statistical model was developed to help predict the response of patients to IFN therapy, and compared to results obtained to the IL28 mutation model, which is highly predictive of the response to IFN-based therapy in HCV-infected patients. We found that a model incorporating gene expression data can improve predictions of IFN responsiveness compared to IL28 mutation status alone.
Collapse
|
47
|
Quantification of portal-bridging fibrosis area more accurately reflects fibrosis stage and liver stiffness than whole fibrosis or perisinusoidal fibrosis areas in chronic hepatitis C. Mod Pathol 2014; 27:1035-45. [PMID: 24390214 DOI: 10.1038/modpathol.2013.225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/13/2013] [Indexed: 12/11/2022]
Abstract
Morphometry provides an objective evaluation of fibrosis in liver diseases. We developed an image analysis algorithm using automated thresholding and segmentation to separately quantify the areas and the fractal dimensions of portal-bridging fibrosis and perisinusoidal fibrosis in chronic hepatitis C liver biopsies. We studied 427 digitized liver biopsies and compared the automated measures of the different fibrosis compartments with (1) the Metavir F (fibrosis) and A (activity) histological scores, (2) the digitally assessed area of steatosis, and (3) the liver stiffness measured by elastography (Fibroscan). The perisinusoidal fibrosis area was higher than that of portal fibrosis in stages ≤F2; it reached its highest value in F2 stage and stabilized thereafter. The F3 stage was characterized by equal proportions of portal-bridging and perisinusoidal fibrosis, whereas portal-bridging area was predominant in cirrhosis. Measurement of portal-bridging fibrosis showed highly significantly different values between contiguous F stages; the ratio of portal-bridging fibrosis/perisinusoidal fibrosis displayed less overlap between Metavir stages than did the whole fibrosis area values. Fractal dimension showed that portal-bridging fibrosis tended to display a homogeneous surface-like spatial organization, whereas perisinusoidal fibrosis appeared more heterogeneous according to stage and curvilinear. The portal-bridging fibrosis area was low in cases with low Metavir activity and little steatosis, and became predominant with increasing activity and steatosis. Using stepwise multiple linear regression analysis, the liver stiffness was independently correlated to the portal-bridging fibrosis area (first step, P<0.001), the steatosis area (second step, P<0.001), and the Metavir A grade (third step, P=0.001), but not to the perisinusoidal fibrosis area. Automated quantification in a large cohort of chronic hepatitis C showed that perisinusoidal fibrosis progressively grew in early fibrosis stages but did not increase in septal or cirrhotic stages and that the portal-bridging fibrosis area appeared as a more accurate tool to assess fibrosis progression than the whole fibrosis area.
Collapse
|
48
|
Autophagy in hepatic fibrosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:436242. [PMID: 24779010 PMCID: PMC3980865 DOI: 10.1155/2014/436242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.
Collapse
|
49
|
Benzoubir N, Lejamtel C, Battaglia S, Testoni B, Benassi B, Gondeau C, Perrin-Cocon L, Desterke C, Thiers V, Samuel D, Levrero M, Bréchot C, Bourgeade MF. HCV core-mediated activation of latent TGF-β via thrombospondin drives the crosstalk between hepatocytes and stromal environment. J Hepatol 2013; 59:1160-8. [PMID: 23928402 DOI: 10.1016/j.jhep.2013.07.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The mechanisms by which fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) develop during chronic hepatitis C virus (HCV) infection are not fully understood. We previously observed that HCV core protein induced a TGF-β-dependent epithelial mesenchymal transition, a process contributing to the promotion of cell invasion and metastasis by impacting TGF-β1 signalling. Here we investigated HCV core capacity to drive increased expression of the active form of TGF-β1n transgenic mice and hepatoma cell lines. METHODS We used an in vivo model of HCV core expressing transgenic mice. RESULTS We observed that about 50% of genes deregulated by core protein expression were TGF-β1 target genes. Active TGF-β levels were increased in HCV core transgenic mouse livers. Overexpression of core protein in hepatoma cells increased active TGF-β levels in culture supernatants and induced Smad2/3 phosphorylation, thus reflecting activation of the TGF-β signaling pathway. Moreover, our data showed the implication of thrombospondin-1 in core-dependent TGF-β activation. Finally, hepatoma cells expressing HCV core could activate stellate cells in co-culture and this activation was TGF-β dependent. CONCLUSIONS Collectively, these data delineate a novel paradigm where HCV may be related to liver pathogenesis through its ability to induce a local, intrahepatic TGF-β activation. They argue for a dual impact of HCV core on liver fibrosis and liver carcinogenesis: HCV core could act both as autocrine and paracrine factor modulating TGF-β responses within hepatocytes and in stromal environment through TGF-β activation.
Collapse
Affiliation(s)
- Nassima Benzoubir
- INSERM U785, Villejuif F-94800, France; Univ Paris-Sud, UMR-S 785, Villejuif F-94800, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Li J, Wang X, Sang M, Ho W. Hepatic stellate cells, liver innate immunity, and hepatitis C virus. J Gastroenterol Hepatol 2013; 28 Suppl 1:112-5. [PMID: 23855305 PMCID: PMC3937257 DOI: 10.1111/jgh.12023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2012] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C virus (HCV) infection can cause liver damage, ranging from mild to more severe conditions, such as fibrosis and cirrhosis. Hepatic stellate cell (HSC) activation is a key event in HCV-induced liver fibrosis. HSCs express several HCV coreceptors that interact with HCV proteins, promoting liver fibrogenesis. In addition, HSCs have the ability to engulf apoptotic bodies of hepatocytes induced by HCV and trigger a profibrogenic response. Recent studies have suggested that HSCs may play a novel role in the liver innate immunity. HSCs enhanced differentiation and accumulation of regulatory T cells. HSCs-activated natural killer cells could produce γ-interferon that inhibits HCV replication. Importantly, HSCs possess functional Toll-like receptor-3 and retinoic acid-inducible gene I that can be activated by their ligands (poly I :C, 5'ppp-dsRNA), leading to the induction of interferon and inhibition of HCV replication in hepatocytes. These new observations highlight the importance of HSCs in liver immunity against HCV, which is the focus of this review paper.
Collapse
Affiliation(s)
- Yizhong Wang
- The Center for Animal Experiment and ABSL-3 Laboratory, Wuhan University School of Medicine, Hubei, China,Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Min Sang
- The Center for Animal Experiment and ABSL-3 Laboratory, Wuhan University School of Medicine, Hubei, China
| | - Wenzhe Ho
- The Center for Animal Experiment and ABSL-3 Laboratory, Wuhan University School of Medicine, Hubei, China,Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|