1
|
Mašek J, Filipovic I, Van Hul N, Belicová L, Jiroušková M, Oliveira DV, Frontino AM, Hankeova S, He J, Turetti F, Iqbal A, Červenka I, Sarnová L, Verboven E, Brabec T, Björkström NK, Gregor M, Dobeš J, Andersson ER. Jag1 insufficiency alters liver fibrosis via T cell and hepatocyte differentiation defects. EMBO Mol Med 2024; 16:2946-2975. [PMID: 39358604 PMCID: PMC11554675 DOI: 10.1038/s44321-024-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Belicová
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Markéta Jiroušková
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Daniel V Oliveira
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Anna Maria Frontino
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Fabio Turetti
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Igor Červenka
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Sarnová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| |
Collapse
|
2
|
Chen C, Wang H, Xu L, Guo Z, Fu M, Xia H, He Q, Zhang R, He J. MAPK signaling pathway induced LOX-1 + polymorphonuclear myeloid-derived suppressor cells in biliary atresia. Clin Immunol 2024; 268:110355. [PMID: 39237078 DOI: 10.1016/j.clim.2024.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Biliary atresia (BA) is a severe pediatric liver disease characterized by progressive bile duct destruction and fibrosis, leading to significant liver damage and frequently necessitating liver transplantation. This study elucidates the role of LOX-1+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in BA pathogenesis and assesses their potential as non-invasive early diagnostic biomarkers. Using flow cytometry, immunofluorescence, and molecular profiling, we analyzed the expression and activity of these cells in peripheral blood and liver tissues from BA patients and controls. Our findings reveal a significant increase in the frequencies and function of LOX-1+PMN-MDSCs in BA patients, along with MAPK signaling pathway upregulation, indicating their involvement in disease mechanisms. Additionally, the frequencies of LOX-1+PMN-MDSC in peripheral blood significantly positively correlate with liver function parameters in BA patients, demonstrating diagnostic performance comparable to traditional serum markers. These findings suggest that LOX-1+PMN-MDSCs contribute to the immunosuppressive environment in BA and could serve as potential diagnostic targets.
Collapse
Affiliation(s)
- Cheng Chen
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Hezhen Wang
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lili Xu
- Clinical Laboratory, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Zhipeng Guo
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Fu
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huimin Xia
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou 545000, China; Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ruizhong Zhang
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Juan He
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
3
|
Xiao MH, Ma D, Wu S, Huang Z, Liang P, Chen H, Zhong Z, Li W, Wang F, Tang Y, Liu J, Jiang H, Feng X, Luo Z. Integrative single-cell and spatial transcriptomic analyses identify a pathogenic cholangiocyte niche and TNFRSF12A as therapeutic target for biliary atresia. Hepatology 2024:01515467-990000000-00999. [PMID: 39178365 DOI: 10.1097/hep.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND AND AIMS Biliary atresia (BA) is a devastating fibroinflammatory biliary disease that is the leading indication for pediatric liver transplants worldwide. Although cholangiocytes are the primary target cells, the pathogenic mechanisms involving cholangiocytes remain elusive. Here, we aimed to characterize the pathogenic role of cholangiocytes in BA. APPROACH AND RESULTS Integration of single-cell RNA sequencing of 12 liver tissues (from 9 BA and 3 controls) and the spatial transcriptome of another four liver sections (from 2 BA and 2 controls) provided a comprehensive spatial liver cell atlas of BA. In particular, we identified a cholangiocyte-enriched spatial niche with infiltration of activated HSCs, activated portal fibroblasts, macrovascular endothelial cells, and TREM2 + macrophages that were elevated in the portal triad of BA. This niche was positively correlated with bile duct profiles, liver fibrosis, and poor survival in 2 independent cohorts of patients with BA. Using integrative bioinformatics analyses to mine the cell-cell communication and regulatory network in BA cholangiocytes, we uncovered the fibroinflammatory phenotype of cholangiocytes with TNFSF12-TNFRSF12A as a significant signal. Genetic ablation or blockade of TNFRSF12A suppresses liver injury, inflammation, and bile duct profiles in a mouse model of disease. Using human biliary organoids, we revealed that BA organoids expressed higher levels of CCL2 in response to TNFSF12 stimulation and promoted monocyte chemotaxis via the CCL2-CCR2 axis. CONCLUSIONS Pathogenic cholangiocytes-enriched niche identifies TNFRSF12A as a potential therapeutic target for BA.
Collapse
Affiliation(s)
- Man-Huan Xiao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Ma
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Wu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zaoli Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peishi Liang
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihai Zhong
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juncheng Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuyang Feng
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenhua Luo
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Russi AE, Shivakumar P, Luo Z, Bezerra J. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 2023; 78:1035-1049. [PMID: 37078450 PMCID: PMC10524120 DOI: 10.1097/hep.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND AIMS Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.
Collapse
Affiliation(s)
- Abigail E Russi
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jorge Bezerra
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children’s Health of Dallas, TX, USA
| |
Collapse
|
6
|
Chusilp S, Balsamo F, Li B, Vejchapipat P, Pierro A. Development of liver inflammatory injury in biliary atresia: from basic to clinical research. Pediatr Surg Int 2023; 39:207. [PMID: 37249714 DOI: 10.1007/s00383-023-05489-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Biliary atresia (BA) is a severe cholangiopathy in infants. It is characterized by inflammatory fibro-obliteration of the intra- and extrahepatic bile ducts. Although the restoration of bile flow can be successful after Kasai operation, the rapid progression of liver fibrosis can continue, leading to cirrhosis. It is believed that the progression of liver fibrosis in BA is exacerbated by complicated mechanisms other than the consequence of bile duct obstruction. The fibrogenic cascade in BA liver can be divided into three stages, including liver inflammatory injury, myofibroblast activation, and fibrous scar formation. Recent studies have revealed that the activation of an immune response following bile duct injury plays an important role in promoting the inflammatory process, the releasing of inflammatory cytokines, and the development of fibrogenesis in BA liver. In this article, we summarized the evidence regarding liver inflammatory injury and the possible mechanisms that explain the rapid progression of liver fibrosis in BA.
Collapse
Affiliation(s)
- Sinobol Chusilp
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Felicia Balsamo
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paisarn Vejchapipat
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
7
|
Shi T, Malik A, Yang vom Hofe A, Matuschek L, Mullen M, Lages CS, Kudira R, Singh R, Zhang W, Setchell KD, Hildeman D, Pasare C, Wagner B, Miethke AG. Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Sci Transl Med 2022; 14:eabi4354. [PMID: 36516265 PMCID: PMC9999117 DOI: 10.1126/scitranslmed.abi4354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune-mediated bile duct epithelial injury and toxicity of retained hydrophobic bile acids drive disease progression in fibrosing cholangiopathies such as biliary atresia or primary sclerosing cholangitis. Emerging therapies include pharmacological agonists to farnesoid X receptor (FXR), the master regulator of hepatic synthesis, excretion, and intestinal reuptake of bile acids. Unraveling the mechanisms of action of pharmacological FXR agonists in the treatment of sclerosing cholangitis (SC), we found that intestinally restricted FXR activation effectively reduced bile acid pool size but did not improve the SC phenotype in MDR2-/- mice. In contrast, systemic FXR activation not only lowered bile acid synthesis but also suppressed proinflammatory cytokine production by liver-infiltrating inflammatory cells and blocked progression of hepatobiliary injury. The hepatoprotective activity was linked to suppressed production of IL1β and TNFα by hepatic macrophages and inhibition of TH1/TH17 lymphocyte polarization. Deletion of FXR in myeloid cells caused aberrant TH1 and TH17 lymphocyte responses in diethoxycarbonyl-1,4-dihydrocollidine-induced SC and rendered these mice resistant to the anti-inflammatory and liver protective effects of systemic FXR agonist treatment. Pharmacological FXR activation reduced IL1β and IFNγ production by liver- and blood-derived mononuclear cells from patients with fibrosing cholangiopathies. In conclusion, we demonstrate FXR to control the macrophage-TH1/17 axis, which is critically important for the progression of SC. Hepatic macrophages are cellular targets of systemic FXR agonist therapy for cholestatic liver disease.
Collapse
Affiliation(s)
- Tiffany Shi
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Astha Malik
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Annika Yang vom Hofe
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Louis Matuschek
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mary Mullen
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Celine S. Lages
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ramesh Kudira
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ruchi Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth D.R. Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chandrashekhar Pasare
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Alexander G. Miethke
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Janowska M, Bierła JB, Kaleta M, Wierzbicka-Rucińska A, Czubkowski P, Kanarek E, Cukrowska B, Pawłowska J, Cielecka-Kuszyk J. The Impact of a CMV Infection on the Expression of Selected Immunological Parameters in Liver Tissue in Children with Biliary Atresia. J Clin Med 2022; 11:jcm11247269. [PMID: 36555887 PMCID: PMC9781492 DOI: 10.3390/jcm11247269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of biliary atresia (BA) is still not clear. The aim of this study was to evaluate the expression of selected immunological parameters in liver tissue in BA children based on CMV/EBV infection status. Eight of thirty-one children with newly diagnosed BA were included in this prospective study and assigned to two groups (I with active infection, II without active or past infection). All studies were performed on surgical liver biopsies. To visualize CD8+ T cells and CD56 expression, immunohistochemical staining was performed. The viral genetic material in the studied groups was not found, but CMV infection significantly affected the number of CD8+ lymphocytes in both the portal area and the bile ducts. The average number of CD8+ cells per mm2 of portal area in Groups I and II was 335 and 200 (p = 0.002). The average number of these cellsthat infiltrated the epithelium of the bile duct per mm2 in Group I and II was 0.73 and 0.37 (p = 0.0003), respectively. Expression of CD56 in the bile ducts corresponded to the intensity of the inflammatory infiltrate of CD8+ cells. Our results suggest that active CMV infection induces an increased infiltration of CD8+ lymphocytes, which could play a role in BA immunopathogenesis. Increased CD56 expression can be a sign of a newly formed bile structure often without lumen, suggesting inhibition of the maturation process in BA.
Collapse
Affiliation(s)
- Maria Janowska
- Department of Pediatric Surgery and Organ Transplantation, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
- Correspondence:
| | - Joanna B. Bierła
- Department of Pathomorphology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Magdalena Kaleta
- Department of Pathomorphology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
- Teva Pharmaceuticals, 00-113 Warsaw, Poland
| | - Aldona Wierzbicka-Rucińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Ewelina Kanarek
- Histocompatibility Laboratory, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Joanna Cielecka-Kuszyk
- Department of Pathomorphology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| |
Collapse
|
9
|
Abstract
This article discusses current standard of care in neonatal biliary disease, particularly management of biliary atresia and choledochal cysts. It highlights surgical considerations, guidelines for adjuvant therapies, and promising therapeutic options that are under investigation.
Collapse
Affiliation(s)
- Sarah Mohamedaly
- Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, San Francisco, CA 94143-0570, USA
| | - Amar Nijagal
- Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, San Francisco, CA 94143-0570, USA; The Liver Center, University of California, San Francisco, CA, USA; The Pediatric Liver Center at UCSF Benioff Childrens' Hospitals, San Francisco, CA, USA.
| |
Collapse
|
10
|
He L, Chung PHY, Lui VCH, Tang CSM, Tam PKH. Current Understanding in the Clinical Characteristics and Molecular Mechanisms in Different Subtypes of Biliary Atresia. Int J Mol Sci 2022; 23:ijms23094841. [PMID: 35563229 PMCID: PMC9103665 DOI: 10.3390/ijms23094841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Biliary atresia is a severe obliterative cholangiopathy in early infancy that is by far the most common cause of surgical jaundice and the most common indicator for liver transplantation in children. With the advanced knowledge gained from different clinical trials and the development of research models, a more precise clinical classification of BA (i.e., isolated BA (IBA), cystic BA (CBA), syndromic BA (SBA), and cytomegalovirus-associated BA (CMVBA)) is proposed. Different BA subtypes have similar yet distinguishable clinical manifestations. The clinical and etiological heterogeneity leads to dramatically different prognoses; hence, treatment needs to be specific. In this study, we reviewed the clinical characteristics of different BA subtypes and revealed the molecular mechanisms of their developmental contributors. We aimed to highlight the differences among these various subtypes of BA which ultimately contribute to the development of a specific management protocol for each subtype.
Collapse
Affiliation(s)
- Lin He
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China;
| | - Patrick Ho Yu Chung
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
- Correspondence: ; Tel.: +852-22554850; Fax: +852-28173155
| | - Vincent Chi Hang Lui
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
| | - Clara Sze Man Tang
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
| | - Paul Kwong Hang Tam
- Division of Paediatric Surgery, Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (V.C.H.L.); (C.S.M.T.); (P.K.H.T.)
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| |
Collapse
|
11
|
Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2022; 27:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
12
|
Jee JJ, Yang L, Shivakumar P, Xu PP, Mourya R, Thanekar U, Yu P, Zhu Y, Pan Y, Wang H, Duan X, Ye Y, Wang B, Jin Z, Liu Y, Cao Z, Watanabe-Chailland M, Romick-Rosendale LE, Wagner M, Fei L, Luo Z, Ollberding NJ, Tang ST, Bezerra JA. Maternal regulation of biliary disease in neonates via gut microbial metabolites. Nat Commun 2022; 13:18. [PMID: 35013245 PMCID: PMC8748778 DOI: 10.1038/s41467-021-27689-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal seeding of the microbiome in neonates promotes a long-lasting biological footprint, but how it impacts disease susceptibility in early life remains unknown. We hypothesized that feeding butyrate to pregnant mice influences the newborn’s susceptibility to biliary atresia, a severe cholangiopathy of neonates. Here, we show that butyrate administration to mothers renders newborn mice resistant to inflammation and injury of bile ducts and improves survival. The prevention of hepatic immune cell activation and survival trait is linked to fecal signatures of Bacteroidetes and Clostridia and increases glutamate/glutamine and hypoxanthine in stool metabolites of newborn mice. In human neonates with biliary atresia, the fecal microbiome signature of these bacteria is under-represented, with suppression of glutamate/glutamine and increased hypoxanthine pathways. The direct administration of butyrate or glutamine to newborn mice attenuates the disease phenotype, but only glutamine renders bile duct epithelial cells resistant to cytotoxicity by natural killer cells. Thus, maternal intake of butyrate influences the fecal microbial population and metabolites in newborn mice and the phenotypic expression of experimental biliary atresia, with glutamine promoting survival of bile duct epithelial cells. The pathogenesis of biliary atresia remains poorly understood. Here, the authors report that maternal butyrate treatment alters the gut microbiome and glutamine/hypoxanthine metabolites similar to human subjects, and suppresses biliary atresia in newborn mice.
Collapse
Affiliation(s)
- Jai Junbae Jee
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Li Yang
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pranavkumar Shivakumar
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Pei-Pei Xu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
| | - Reena Mourya
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Unmesha Thanekar
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Pu Yu
- Department of Neonatal Surgery, Xi'an Children's Hospital, 710003, Xi'an, Shaanxi, China
| | - Yu Zhu
- Department of Pediatrics, Western China Second Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yongkang Pan
- Department of Neonatal Surgery, Xi'an Children's Hospital, 710003, Xi'an, Shaanxi, China
| | - Haibin Wang
- Department of Pediatric Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430015, Wuhan, Hubei, China
| | - Xufei Duan
- Department of Pediatric Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430015, Wuhan, Hubei, China
| | - Yongqin Ye
- Department of General Surgery, Shenzhen Children's Hospital, 518038, Shenzhen, Guangdong, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, 518038, Shenzhen, Guangdong, China
| | - Zhu Jin
- Department of Pediatric General Thoracic and Urology Surgery, The Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yuanmei Liu
- Department of Pediatric General Thoracic and Urology Surgery, The Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Zhiqing Cao
- Department of Pediatric Surgery, Jiangmen Maternity and Child Health Care Hospital, 529000, Jiangmen, Guangdong, China
| | - Miki Watanabe-Chailland
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Michael Wagner
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lin Fei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Zhenhua Luo
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou City, Guangdong, China
| | - Nicholas J Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Rehabilitation, Exercise, and Nutrition Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Shao-Tao Tang
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA.
| | - Jorge A Bezerra
- Divisions of Gastroenterology, Hepatology and Nutrition and The Liver Care Center at Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
13
|
Mohanty SK, Donnelly B, Temple H, Bondoc A, McNeal M, Tiao G. T-Bet Deficiency Attenuates Bile Duct Injury in Experimental Biliary Atresia. Cells 2021; 10:3461. [PMID: 34943969 PMCID: PMC8700492 DOI: 10.3390/cells10123461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
Biliary atresia (BA) is an obstructive neonatal cholangiopathy leading to liver cirrhosis and end stage liver disease. A Kasai portoenterostomy may restore biliary drainage, but most patients ultimately require liver transplantation for survival. At diagnosis, immune cells within the liver of patients with BA demonstrate a T-helper 1 (Th1) inflammatory profile similar to rhesus rotavirus (RRV)-infected mice livers developing BA. The transcription factor Tbx21 (T-bet) is essential for induction of a Th1 immune response in both the adaptive and innate immune system. Here we used animals with targeted deletion of the T-bet gene to determine its role in the progression of BA. Infection of newborn T-bet knockout (KO) pups with RRV resulted in a decreased Th1 inflammatory chemokine/cytokine profile when compared to infected wild-type mice. Analysis of the mononuclear cells profile from T-bet KO mice revealed both a significant decrease in the total number of CD3, CD4, and CD8 T cells and their effector molecules granzyme A, perforin, and FasL. Even though the percentage of T-bet KO mice displaying symptoms of an obstructive cholangiopathy and overall mortality rate was not different compared to wild-type mice, the extrahepatic bile ducts of T-bet KO mice remained patent.
Collapse
Affiliation(s)
- Sujit K. Mohanty
- Endemic Poultry Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA 30605, USA;
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.D.); (H.T.); (A.B.)
| | - Haley Temple
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.D.); (H.T.); (A.B.)
| | - Alexander Bondoc
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.D.); (H.T.); (A.B.)
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.D.); (H.T.); (A.B.)
| |
Collapse
|
14
|
Yang L, Shivakumar P, Kinder J, Way SS, Donnelly B, Mourya R, Luo Z, Bezerra JA. Regulation of bile duct epithelial injury by hepatic CD71+ erythroid cells. JCI Insight 2020; 5:135751. [PMID: 32407296 PMCID: PMC7308060 DOI: 10.1172/jci.insight.135751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Extramedullary hematopoietic cells are present in the liver of normal neonates in the first few days of life and persist in infants with biliary atresia. Based on a previous report that liver genes are enriched by erythroid pathways, we examined the liver gene expression pattern at diagnosis and found the top 5 enriched pathways are related to erythrocyte pathobiology in children who survived with the native liver beyond 2 years of age. Using immunostaining, anti-CD71 antibodies identified CD71+ erythroid cells among extramedullary hematopoietic cells in the livers at the time of diagnosis. In mechanistic experiments, the preemptive antibody depletion of hepatic CD71+ erythroid cells in neonatal mice rendered them resistant to rhesus rotavirus-induced (RRV-induced) biliary atresia. The depletion of CD71+ erythroid cells increased the number of effector lymphocytes and delayed the RRV infection of livers and extrahepatic bile ducts. In coculture experiments, CD71+ erythroid cells suppressed the activation of hepatic mononuclear cells. These data uncover an immunoregulatory role for CD71+ erythroid cells in the neonatal liver.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeremy Kinder
- Division of Infectious Diseases and Perinatal Institute and
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute and
| | - Bryan Donnelly
- Division of Pediatric and Thoracic Surgery, CCHMC, Ohio, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zhenhua Luo
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou City, Guangdong, China
| | - Jorge A. Bezerra
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Ly6c Lo non-classical monocytes promote resolution of rhesus rotavirus-mediated perinatal hepatic inflammation. Sci Rep 2020; 10:7165. [PMID: 32346042 PMCID: PMC7188847 DOI: 10.1038/s41598-020-64158-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/11/2020] [Indexed: 12/02/2022] Open
Abstract
Perinatal hepatic inflammation can have devastating consequences. Monocytes play an important role in the initiation and resolution of inflammation, and their diverse functions can be attributed to specific cellular subsets: pro-inflammatory or classical monocytes (Ly6cHi) and pro-reparative or non-classical monocytes (Ly6cLo). We hypothesized that inherent differences in Ly6cHi classical monocytes and Ly6cLo non-classical monocytes determine susceptibility to perinatal hepatic inflammation in late gestation fetuses and neonates. We found an anti-inflammatory transcriptional profile expressed by Ly6cLo non-classical monocytes, and a physiologic abundance of these cells in the late gestation fetal liver. Unlike neonatal pups, late gestation fetuses proved to be resistant to rhesus rotavirus (RRV) mediated liver inflammation. Furthermore, neonatal pups were rendered resistant to RRV-mediated liver injury when Ly6cLo non-classical monocytes were expanded. Pharmacologic inhibition of Ly6cLo non-classical monocytes in this setting restored susceptibility to RRV-mediated disease. These data demonstrate that Ly6cLo monocytes promote resolution of perinatal liver inflammation in the late gestation fetus, where there is a physiologic expansion of non-classical monocytes, and in the neonatal liver upon experimental expansion of these cells. Therapeutic strategies directed towards enhancing Ly6cLo non-classical monocyte function may mitigate the detrimental effects of perinatal liver inflammation.
Collapse
|
16
|
Ayyanar P, Mahalik SK, Pati AB, Mitra S. The Presence of Pericholedochal Hyaline Cartilage in Biliary Atresia: A Report and A Review. Fetal Pediatr Pathol 2020; 39:156-162. [PMID: 31314631 DOI: 10.1080/15513815.2019.1639091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: The presence of cartilage in extra hepatic biliary tree is an unusual finding. An isolated presence of the cartilage is possibly heterotopic or occurs as a metaplastic response to the inflammatory insult.Material and methods: We had examined the liver biopsy and the resected specimen of a biliary atresia (BA) after Kasai procedure.Results: There was hyaline cartilage around the common hepatic and common bile duct in a 3-months-old male infant with distal obstructive cholangiopathy on liver biopsy and had positive serum IgM for cytomegalovirus (CMV). Similar findings could not be documented in the pericholedochal tissue of any of the 25 other pediatric cases operated for BA or choledochal cyst and three neonatal autopsies performed for liver-related deaths.Conclusion: Peri-bile duct cartilage is a unique finding and could represent an unusual form of heterotopia or connective tissue metaplasia.
Collapse
Affiliation(s)
- Pavithra Ayyanar
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, India
| | - Santosh Kumar Mahalik
- Department of Pediatric Surgery, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, India
| | - Akash Bihari Pati
- Department of Pediatric Surgery, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, India
| | - Suvradeep Mitra
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
17
|
Ortiz-Perez A, Donnelly B, Temple H, Tiao G, Bansal R, Mohanty SK. Innate Immunity and Pathogenesis of Biliary Atresia. Front Immunol 2020; 11:329. [PMID: 32161597 PMCID: PMC7052372 DOI: 10.3389/fimmu.2020.00329] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary atresia (BA) is a devastating fibro-inflammatory disease characterized by the obstruction of extrahepatic and intrahepatic bile ducts in infants that can have fatal consequences, when not treated in a timely manner. It is the most common indication of pediatric liver transplantation worldwide and the development of new therapies, to alleviate the need of surgical intervention, has been hindered due to its complexity and lack of understanding of the disease pathogenesis. For that reason, significant efforts have been made toward the development of experimental models and strategies to understand the etiology and disease mechanisms and to identify novel therapeutic targets. The only characterized model of BA, using a Rhesus Rotavirus Type A infection of newborn BALB/c mice, has enabled the identification of key cellular and molecular targets involved in epithelial injury and duct obstruction. However, the establishment of an unleashed chronic inflammation followed by a progressive pathological wound healing process remains poorly understood. Like T cells, macrophages can adopt different functional programs [pro-inflammatory (M1) and resolutive (M2) macrophages] and influence the surrounding cytokine environment and the cell response to injury. In this review, we provide an overview of the immunopathogenesis of BA, discuss the implication of innate immunity in the disease pathogenesis and highlight their suitability as therapeutic targets.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Haley Temple
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Sujit Kumar Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
18
|
Wu JF, Jeng YM, Chen HL, Ni YH, Hsu HY, Chang MH. Quantification of Serum Matrix Metallopeptide 7 Levels May Assist in the Diagnosis and Predict the Outcome for Patients with Biliary Atresia. J Pediatr 2019; 208:30-37.e1. [PMID: 30853207 DOI: 10.1016/j.jpeds.2018.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the diagnostic and prognostic usefulness of the serum matrix metallopeptidase-7 (MMP-7) level for biliary atresia in infants with cholestasis after hepatoportoenterostomy. STUDY DESIGN We enrolled 100 infants with cholestasis (age, 43.56 ± 1.97 days; 62 males) with a direct bilirubin level of >1 mg/dL, of whom 36 (36%) were diagnosed with biliary atresisa. The MMP-7 levels in serum samples collected during the cholestasis workup and 6 months after hepatoportoenterostomy were assessed by enzyme-linked immunosorbent assay. We quantified liver fibrosis by Picro Sirius red staining of collagen in specimens from the 81 infants with cholestasis. RESULTS Infants with biliary atresisa had a significantly higher serum MMP-7 level than that of non-biliary atresisa infants with cholestasis of equivalent age (P < .0001). Receiver operating characteristic analysis showed that a serum MMP-7 level of >1.43 ng/mL was predictive of biliary atresisa in infants with cholestasis (diagnostic accuracy, 88%). There was a positive correlation between the serum MMP-7 level and the severity of liver fibrosis (P = .0002). Survival analysis showed that the frequency of liver transplantation was significantly higher in infants with biliary atresisa with a serum MMP-7 level of >10.30 ng/mL compared with a serum MMP-7 level of ≤10.30 ng/mL after hepatoportoenterostomy (hazard ratio, 4.22; P = .02). CONCLUSIONS The serum MMP-7 level, which reflects the severity of liver fibrosis and can be determined noninvasively, may facilitate the diagnosis of biliary atresisa among infants with cholestasis. Moreover, the serum MMP-7 level after hepatoportoenterostomy is associated with a need for liver transplantation in infants with biliary atresisa.
Collapse
Affiliation(s)
- Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong-Yuan Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
A Phase I/IIa Trial of Intravenous Immunoglobulin Following Portoenterostomy in Biliary Atresia. J Pediatr Gastroenterol Nutr 2019; 68:495-501. [PMID: 30664564 PMCID: PMC6428610 DOI: 10.1097/mpg.0000000000002256] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Biliary atresia (BA) is a progressive neonatal fibroinflammatory cholangiopathy. We hypothesized that intravenous immunoglobulin (IVIg) would be safe, feasible, acceptable, and efficacious for the treatment of BA. The primary objective of this study was to establish the feasibility, acceptability, and safety profile of IVIg administration after hepatoportoenterostomy (HPE) in BA. The secondary objective was to determine the treatment efficacy of IVIg based on good bile drainage and survival with the native liver. METHODS A multicenter, prospective, open-labeled, phase I/IIA trial of IVIg was conducted, with 1 g/kg/dose of IVIg infused at 3-5, 30, and 60 days post-HPE, and subjects followed for 360 days post-HPE. Twenty-nine participants completed the study. RESULTS Administration of IVIg infusions was feasible and acceptable in 79%. None of the serious adverse events (SAEs) were directly related to IVIg infusions; however, 90% of participants had an SAE. Compared with a historical placebo-arm group, there was no significant increase in the proportion of IVIg participants with a serum total bilirubin <1.5 mg/dL at 90, 180, or 360 days post-HPE. Survival with the native liver in the IVIg participants showed no significant benefit over the historical placebo arm, with a difference at 360 days of -11.9% (IVIg: 58.6%, placebo: 70.5%; 90% UCB: 2.1%; P > 0.05). CONCLUSIONS Although IVIg infusions in infants with BA post-HPE were feasible, acceptable and safe, there was no trend to lower bilirubin levels or improved 360-day survival with the native liver. CLINICAL TRIAL Safety Study of Intravenous Immunoglobulin Post-Portoenterostomy in Biliary Atresia; #NCT01854827.
Collapse
|
20
|
Abstract
BACKGROUND Biliary atresia (BA) is the most common cause of obstructive jaundice in infants. Although the Kasai procedure has greatly improved the prognosis, most patients still need liver transplantation (LT) for long-term survival. The pathogenesis of BA has not been fully clarified, and liver fibrosis in BA is far beyond biliary obstructive cirrhosis. DATA SOURCES Literature reviews were underwent through PubMed. Persistent inflammation, immune response, biliary epithelial-mesenchymal transition, matrix deposition, decompensated angiogenesis, and unique biliary structure development all contribute to the fibrosis process. Observed evidences in such fields have been collected and form the backbone of this review. RESULTS Interactions of the multiple pathways accelerate this process. CONCLUSIONS Understanding the mechanisms of the liver fibrosis in BA may pave the way to improved survival after the Kasai procedure.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Min Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
21
|
Kim S, Moore J, Alonso E, Bednarek J, Bezerra JA, Goodhue C, Karpen SJ, Loomes KM, Magee JC, Ng VL, Sherker AH, Smith C, Spino C, Venkat V, Wang K, Sokol RJ, Mack CL. Correlation of Immune Markers With Outcomes in Biliary Atresia Following Intravenous Immunoglobulin Therapy. Hepatol Commun 2019; 3:685-696. [PMID: 31061956 PMCID: PMC6492477 DOI: 10.1002/hep4.1332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a progressive fibroinflammatory cholangiopathy of infancy that is associated with activation of innate and adaptive immune responses targeting bile ducts. A recently completed multicenter phase I/IIA trial of intravenous immunoglobulin in biliary atresia did not improve serum total bilirubin levels at 90 days after hepatoportoenterostomy or survival with the native liver at 1 year. A mechanistic aim of this trial was to determine if the peripheral blood immunophenotype was associated with clinical outcomes. Flow cytometry of peripheral blood cell markers (natural killer [NK], macrophage subsets, T‐ and B‐cell subsets, regulatory T cells), neutrophils, and activation markers (clusters of differentiation [CD]38, CD69, CD86, human leukocyte antigen‐DR isotype [HLA‐DR]) was performed on 29 patients with biliary atresia at baseline and at 60, 90, 180, and 360 days after hepatoportoenterostomy. Plasma cytokines and neutrophil products were also measured. Spearman correlations of change of an immune marker from baseline to day 90 with change in serum bilirubin revealed that an increase in total bilirubin correlated with 1) increased percentage of HLA‐DR+CD38+ NK cells and expression of NK cell activation markers CD69 and HLA‐DR, 2) decreased percentage of regulatory T cells, and 3) increased interleukin (IL)‐8 and associated neutrophil products (elastase and neutrophil extracellular traps). Cox modeling revealed that the change from baseline to day 60 of the percentage of HLA‐DR+CD38+ NK cells and plasma IL‐8 levels was associated with an increased risk of transplant or death by day 360. Conclusion: Poor outcomes in biliary atresia correlated with higher peripheral blood NK cells and IL‐8 and lower regulatory T cells. Future studies should include immunotherapies targeting these pathways in order to protect the biliary tree from ongoing damage.
Collapse
Affiliation(s)
| | | | - Estella Alonso
- Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | | | | | | | | | | | | | - Vicky L Ng
- The Hospital for Sick Children, University of Toronto Toronto Canada
| | - Averell H Sherker
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD
| | | | | | | | - Kasper Wang
- Children's Hospital Los Angeles Los Angeles CA
| | - Ronald J Sokol
- Children's Hospital Colorado, University of Colorado School of Medicine Aurora CO
| | - Cara L Mack
- Children's Hospital Colorado, University of Colorado School of Medicine Aurora CO
| | | |
Collapse
|
22
|
Bednarek J, Traxinger B, Brigham D, Roach J, Orlicky D, Wang D, Pelanda R, Mack CL. Cytokine-Producing B Cells Promote Immune-Mediated Bile Duct Injury in Murine Biliary Atresia. Hepatology 2018; 68:1890-1904. [PMID: 29679373 PMCID: PMC6195851 DOI: 10.1002/hep.30051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/02/2018] [Accepted: 04/14/2018] [Indexed: 12/13/2022]
Abstract
Biliary atresia (BA) is a neonatal T cell-mediated, inflammatory, sclerosing cholangiopathy. In the rhesus rotavirus (RRV)-induced neonatal mouse model of BA (murine BA), mice lacking B cells do not develop BA, and the lack of B cells is associated with loss of T-cell and macrophage activation. The aim of this study was to determine the mechanism of B cell-mediated immune activation (antigen presentation versus cytokine production) in murine BA. Normal neonatal B cells in the liver are predominantly at pro-B and pre-B cellular development. However, BA mice exhibit a significant increase in the number and activation status of mature liver B cells. Adoptively transferred B cells into RRV-infected, B cell-deficient mice were able to reinstate T-cell and macrophage infiltration and biliary injury. Nonetheless, neonatal liver B cells were incompetent at antigen presentation to T cells. Moreover, 3-83 immunoglobulin transgenic mice, in which B cells only present an irrelevant antigen, developed BA, indicating a B-cell antigen-independent mechanism. B cells from BA mice produced a variety of innate and adaptive immune cytokines associated with immune activation. In vitro trans-well studies revealed that BA B cells secreted cytokines that activated T cells based on increased expression of T-cell activation marker cluster of differentiation 69. Conclusion: Neonatal liver B cells are highly activated in murine BA and contribute to immune activation through production of numerous cytokines involved in innate and adaptive immunity; this work provides increased knowledge on the capacity of neonatal B cells to contribute to an inflammatory disease through cytokine-mediated mechanisms, and future studies should focus on targeting B cells as a therapeutic intervention in human BA.
Collapse
Affiliation(s)
- Joseph Bednarek
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine
| | - Brianna Traxinger
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine
| | - Dania Brigham
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine
| | - Jonathan Roach
- Department of Surgery, University of Colorado School of Medicine
| | - David Orlicky
- Department of Pathology, University of Colorado School of Medicine
| | - Dong Wang
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Cara L. Mack
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine
| |
Collapse
|
23
|
Taylor AE, Carey AN, Kudira R, Lages CS, Shi T, Lam S, Karns R, Simmons J, Shanmukhappa K, Almanan M, Chougnet CA, Miethke AG. Interleukin 2 Promotes Hepatic Regulatory T Cell Responses and Protects From Biliary Fibrosis in Murine Sclerosing Cholangitis. Hepatology 2018; 68:1905-1921. [PMID: 29698570 PMCID: PMC6203671 DOI: 10.1002/hep.30061] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/14/2018] [Indexed: 12/25/2022]
Abstract
In the multidrug resistance protein 2 (Mdr2)-/- mouse model, low phospholipid bile instigates biliary epithelial injury, sterile inflammation, and fibrosis, thereby recapitulating disease mechanisms implicated in biliary atresia (BA) and primary sclerosing cholangitis. We hypothesize that T lymphocytes contribute to the biliary injury and fibrosis in murine sclerosing cholangitis (SC) and that they are susceptible to suppression by regulatory T cells (Tregs). In juvenile Mdr2-/- mice, intrahepatic CD8+ lymphocytes were expanded, and contraction of intrahepatic Tregs coincided with rising serum alanine transferase and alkaline phosphatase (ALP) levels between days 14-30 of life. Antibody-mediated depletion of intrahepatic CD8+ lymphocytes during that time reduced ALP levels and the expression of osteopontin (Opn), a pro-fibrogenic cytokine. Depletion of intrahepatic Tregs with anti-CD25 antibody between days 7-30 increased intrahepatic CD8+ T cells, Opn expression, and fibrosis. Conversely, expansion of intrahepatic Tregs with interleukin 2/anti-interleukin 2 immune complexes (IL-2c) downregulated hepatic expression of Opn and Tnf, reduced frequency of intrahepatic CD8+ lymphocytes, and diminished biliary injury and fibrosis. Treatment with IL-2c upregulated hepatic Treg expression of CD39, an ectonucleotidase capable of hydrolyzing pro-inflammatory adenosine triphosphate. In vitro, Tregs expressing CD39 suppressed the proliferation of hepatic CD8+ lymphocytes from Mdr2-/- mice more efficiently than those lacking CD39. In infants with BA, infiltration of interlobular bile ducts with CD8+ cells was associated with biliary expression of Opn and its transcription was negatively correlated with mRNA expression of Treg-associated genes. Conclusion: Hepatic CD8+ T lymphocytes drive biliary injury and fibrosis in murine SC. Their proliferation is controlled by hepatic Tregs through the purinergic pathway, which is responsive to IL-2c, suggesting that Treg-directed low-dose Il-2 treatment may be considered as therapy for SC.
Collapse
Affiliation(s)
- Amy E. Taylor
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexandra N. Carey
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ramesh Kudira
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Celine S. Lages
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Tiffany Shi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Simon Lam
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Calgary, Calgary, AB
| | - Rebekah Karns
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Julia Simmons
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kumar Shanmukhappa
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Maha Almanan
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Alexander G. Miethke
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH,Corresponding author: Alexander G Miethke, MD, Mail location 2010, 3333 Burnet Avenue, Cincinnati, Ohio, 45229-3026, Tel: 1-513-636-9078, Fax: 1-513-636-7805;
| |
Collapse
|
24
|
Yang L, Mizuochi T, Shivakumar P, Mourya R, Luo Z, Gutta S, Bezerra JA. Regulation of epithelial injury and bile duct obstruction by NLRP3, IL-1R1 in experimental biliary atresia. J Hepatol 2018; 69:1136-1144. [PMID: 29886157 PMCID: PMC6314850 DOI: 10.1016/j.jhep.2018.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/04/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) results from a neonatal inflammatory and fibrosing obstruction of bile ducts of unknown etiology. Although the innate immune system has been linked to the virally induced mechanism of disease, the role of inflammasome-mediated epithelial injury remains largely undefined. Here, we hypothesized that disruption of the inflammasome suppresses the neonatal proinflammatory response and prevents experimental BA. METHODS We determined the expression of key inflammasome-related genes in livers from infants at diagnosis of BA and in extrahepatic bile ducts (EHBDs) of neonatal mice after infection with rotavirus (RRV) immediately after birth. Then, we determined the impact of the wholesale inactivation of the genes encoding IL-1R1 (Il1r1-/-), NLRP3 (Nlrp3-/-) or caspase-1 (Casp1-/-) on epithelial injury and bile duct obstruction. RESULTS IL1R1, NLRP3 and CASP1 mRNA increased significantly in human livers at the time of diagnosis, and in EHBDs of RRV-infected mice. In Il1r1-/- mice, the epithelial injury of EHBDs induced by RRV was suppressed, with dendritic cells unable to activate natural killer cells. A similar protection was observed in Nlrp3-/- mice, with decreased injury and inflammation of livers and EHBDs. Long-term survival was also improved. In contrast, the inactivation of the Casp1 gene had no impact on tissue injury, and all mice died. Tissue analyses in Il1r1-/- and Nlrp3-/- mice showed decreased populations of dendritic cells and natural killer cells and suppressed expression of type-1 cytokines and chemokines. CONCLUSIONS Genes of the inflammasome are overexpressed at diagnosis of BA in humans and in the BA mouse model. In the experimental model, the targeted loss of IL-1R1 or NLRP3, but not of caspase-1, protected neonatal mice against RRV-induced bile duct obstruction. LAY SUMMARY Biliary atresia is a severe inflammatory and obstructive disease of bile ducts occurring in infancy. Although the cause is unknown, activation of the innate and adaptive immune systems injures the bile duct epithelium. In this study we found that patients' livers had increased expression of inflammasome genes. Using mice engineered to inactivate individual inflammasome genes, the epithelial injury and bile duct obstruction were prevented by the loss of Il1r1 or Nlrp3, with a decreased activation of natural killer cells and expression of cytokines and chemokines. In contrast, the loss of Casp1 did not change the disease phenotype. Combined, the findings point to a differential role of inflammasome gene products in the pathogenic mechanisms of biliary atresia.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA; Division of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tatsuki Mizuochi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA; Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Zhenhua Luo
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Sridevi Gutta
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Jorge A Bezerra
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
25
|
Fu M, Lin Z, Lin H, Tong Y, Wang H, Chen H, Chen Y, Zhang R. A Silver Nanoparticle Method for Ameliorating Biliary Atresia Syndrome in Mice. J Vis Exp 2018. [PMID: 30371664 DOI: 10.3791/58158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Biliary atresia (BA) is a severe type of cholangitis with high mortality in children of which the etiology is still not fully understood. Viral infections may be one possible cause. The typical animal model used for studying BA is established by inoculating a neonatal mouse with a rhesus rotavirus. Silver nanoparticles have been shown to exert antibacterial and antiviral effects; their function in the BA mouse model is evaluated in this study. Currently, in BA animal experiments, the methods used to improve the symptoms of BA mice are generally symptomatic treatments given via food or other drugs. The aim of this study is to demonstrate a new method for ameliorating BA syndrome in mice by the intraperitoneal injection of silver nanoparticles and to provide detailed methods for preparing the silver nanoparticle gel formulation. This method is simple and widely applicable and can be used to research the mechanism of BA, as well as in clinical treatments. Based on the BA mouse model, when the mice exhibit jaundice, the prepared silver nanoparticle gel is injected intraperitoneally to the surface of the lower liver. The survival status is observed, and biochemical indicators and liver histopathology are examined. This method allows a more intuitive understanding of both the establishment of the BA model and novel BA treatments.
Collapse
Affiliation(s)
- Ming Fu
- First Affiliated Hospital of Jinan University
| | - Zefeng Lin
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University
| | - Huiting Lin
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University
| | - Yanlu Tong
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University
| | - Hezhen Wang
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University
| | - Hongjiao Chen
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University
| | - Yan Chen
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Women & Children's Medical Center, Guangzhou Medical University;
| |
Collapse
|
26
|
Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle J, Doo E, Sokol RJ. Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology 2018; 68:1163-1173. [PMID: 29604222 PMCID: PMC6167205 DOI: 10.1002/hep.29905] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Biliary atresia (BA) is a fibroinflammatory disease of the intrahepatic and extrahepatic biliary tree. Surgical hepatic portoenterostomy (HPE) may restore bile drainage, but progression of the intrahepatic disease results in complications of portal hypertension and advanced cirrhosis in most children. Recognizing that further progress in the field is unlikely without a better understanding of the underlying cause(s) and pathogenesis of the disease, the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK) sponsored a research workshop focused on innovative and promising approaches and on identifying future areas of research. Investigators discussed recent advances using gestational ultrasound and results of newborn BA screening with serum direct (conjugated) bilirubin that support a prenatal onset of biliary injury. Experimental and human studies implicate the toxic properties of environmental toxins (e.g., biliatresone) and of viruses (e.g., cytomegalovirus) to the biliary system. Among host factors, sequence variants in genes related to biliary development and ciliopathies, a notable lack of a cholangiocyte glycocalyx and of submucosal collagen bundles in the neonatal extrahepatic bile ducts, and an innate proinflammatory bias of the neonatal immune system contribute to an increased susceptibility to damage and obstruction following epithelial injury. These advances form the foundation for a future research agenda focused on identifying the environmental and host factor(s) that cause BA, the potential use of population screening, studies of the mechanisms of prominent fibrosis in young infants, determinations of clinical surrogates of disease progression, and the design of clinical trials that target subgroups of patients with initial drainage following HPE. (Hepatology 2018; 00:000-000).
Collapse
Affiliation(s)
- Jorge A. Bezerra
- Liver Care Center of Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca G. Wells
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cara L. Mack
- Pediatric Liver Center, Children’s Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Saul J. Karpen
- Emory University School of Medicine and Children’s Healthcare of Atlanta, GA, USA
| | - Jay Hoofnagle
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Edward Doo
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Ronald J. Sokol
- Pediatric Liver Center, Children’s Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
27
|
Wu JF, Lee CS, Lin WH, Jeng YM, Chen HL, Ni YH, Hsu HY, Chang MH. Transient elastography is useful in diagnosing biliary atresia and predicting prognosis after hepatoportoenterostomy. Hepatology 2018; 68:616-624. [PMID: 29486516 DOI: 10.1002/hep.29856] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022]
Abstract
UNLABELLED We investigated the utility of transient elastography (TE) for diagnosing biliary atresia (BA) in cholestatic infants and predicting the outcome of BA. Forty-eight cholestatic infants (9-87 days of age) with direct bilirubin level >1 mg/dL were enrolled. Liver stiffness measurement (LSM) by TE was performed during the cholestasis workup, and 15 subjects were diagnosed as BA. We assessed liver histology using liver biopsies from 36 subjects and graded fibrosis status using the METAVIR score. BA infants had significantly higher LSM values and METAVIR scores than non-BA cholestatic infants. A receiver operating characteristic (ROC) curve analysis showed that an LSM >7.7 kPa was predictive of BA among cholestatic infants (sensitivity = 80%; specificity = 97%; area under the curve [AUC] = 85.3%; P = 0.0001). Cholestatic infants with an LSM >7.7 kPa were more likely to be diagnosed with BA (odds ratio [OR] = 128; P < 0.001). Very early measurement of LSM after hepatoportoenterostomy (HPE) is associated with occurrence of thrombocytopenia, splenomegaly, and esophageal varices 6 months post-HPE. Five of the BA subjects were awaiting or had received liver transplantation (LT), and they had a significantly higher LSM measured 1 week post-HPE than that in the other BA subjects (26.0 vs. 10.8 kPa; P = 0.006). A Cox proportional analysis demonstrated that the need for LT was significantly higher in BA subjects with LSM >16 kPa measured 1 week post-HPE than other BA subjects (hazard ratio [HR] = 10.16; P = 0.04). CONCLUSION LSM assessment during the workup of cholestatic infants may facilitate the diagnosis of BA. LSM post-HPE may predict complications and the need for early LT in infants with BA. (Hepatology 2018).
Collapse
Affiliation(s)
- Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chee-Seng Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Hsi Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Hong-Yuan Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| |
Collapse
|
28
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
29
|
Kilgore A, Mack CL. Update on investigations pertaining to the pathogenesis of biliary atresia. Pediatr Surg Int 2017; 33:1233-1241. [PMID: 29063959 PMCID: PMC5894874 DOI: 10.1007/s00383-017-4172-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Biliary atresia is a devastating biliary disease of neonates that results in liver transplantation for the vast majority. The etiology of biliary atresia is unknown and is likely multifactorial, with components of genetic predisposition, environmental trigger and autoimmunity contributing to disease pathogenesis. This review highlights recent work related to investigations of disease pathogenesis in biliary atresia.
Collapse
Affiliation(s)
- Alexandra Kilgore
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Cara L. Mack
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Huang W, Rainbow DB, Wu Y, Adams D, Shivakumar P, Kottyan L, Karns R, Aronow B, Bezerra J, Gershwin ME, Peterson LB, Wicker LS, Ridgway WM. A Novel Pkhd1 Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:147-162. [PMID: 29158418 DOI: 10.4049/jimmunol.1701087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.
Collapse
Affiliation(s)
- Wenting Huang
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Pranavkumar Shivakumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leah Kottyan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge Bezerra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616; and
| | | | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
31
|
Carey AN, Zhang W, Setchell KD, Simmons JE, Shi T, Lages CS, Mullen M, Carroll K, Karns R, Bessho K, Sheridan R, Zhao X, Weber SN, Miethke AG. Hepatic MDR3 expression impacts lipid homeostasis and susceptibility to inflammatory bile duct obstruction in neonates. Pediatr Res 2017; 82:122-132. [PMID: 28355206 PMCID: PMC5509537 DOI: 10.1038/pr.2017.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
BackgroundHeterozygous mutations in the gene ABCB4, encoding the phospholipid floppase MDR3 (Mdr2 in mice), are associated with various chronic liver diseases. Here we hypothesize that reduced ABCB4 expression predisposes to extrahepatic biliary atresia (EHBA).MethodsLivers from neonatal wild-type (wt) and heterozygous Mdr2-deficient mice were subjected to mass spectrometry-based lipidomics and RNA sequencing studies. Following postnatal infection with rhesus rotavirus (RRV), liver immune responses and EHBA phenotype were assessed. Hepatic microarray data from 40 infants with EHBA were mined for expression levels of ABCB4.ResultsPhosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased, whereas the PC/PE ratio was decreased in neonatal Mdr2+/- mice compared with wt mice. Following RRV challenge, hepatic expression of IFNγ and infiltration with CD8+ and NK+ lymphocytes were increased in Mdr2+/- mice. Plasma total bilirubin levels and prevalence of complete ductal obstruction were higher in these mice. In infants with EHBA, hepatic gene expression of ABCB4 was downregulated in those with an inflammatory compared with a fibrosing molecular phenotype.ConclusionDecreased expression of ABCB4 causes dysregulation in (phospho)lipid homeostasis, and predisposes to aberrant pro-inflammatory lymphocyte responses and an aggravated phenotype of EHBA in neonatal mice. Downregulated ABCB4 is associated with an inflammatory transcriptome signature in infants with EHBA.
Collapse
Affiliation(s)
- Alexandra N. Carey
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | - Kenneth D.R. Setchell
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julia E. Simmons
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Tiffany Shi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Celine S. Lages
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Mary Mullen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | | | | | - Kazuhiko Bessho
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
| | - Rachel Sheridan
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, CCHMC, Cincinnati, Ohio
| | | | - Alexander G. Miethke
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
32
|
Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1041-1050. [DOI: 10.1016/j.nano.2016.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 11/22/2022]
|
33
|
Wen J, Zhou Y, Wang J, Chen J, Yan W, Wu J, Yan J, Zhou K, Xiao Y, Wang Y, Xia Q, Cai W. Interactions between Th1 cells and Tregs affect regulation of hepatic fibrosis in biliary atresia through the IFN-γ/STAT1 pathway. Cell Death Differ 2017; 24:997-1006. [PMID: 28304404 PMCID: PMC5442468 DOI: 10.1038/cdd.2017.31] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/07/2017] [Accepted: 02/17/2017] [Indexed: 01/17/2023] Open
Abstract
Regulatory T cells (Tregs) and CD4+ T helper (Th) cells have important roles in bile duct injury of biliary atresia (BA). However, their impacts on liver fibrosis are undefined. Between 2013 and 2016, 146 patients with various stages of BA were enrolled in this study. Peripheral blood, liver biopsy and lymph node samples were collected. Flow cytometry, magnetic cell sorting and immunostaining were used to characterize lymphocytes from BA patients. Deficiency of Tregs was observed along with increased Th1, Th2 and Th17 frequencies in the peripheral blood and livers of BA patients. The levels of peripheral and intrahepatic Th1 cells positively correlated with the stage of liver fibrosis. Furthermore, Th1 cells were located in close proximity to activated hepatic stellate cells (HSCs) and areas of fibrosis in BA livers. In culture, Th1 cells accelerated the proliferation and secretion of profibrogenic markers of HSCs through the IFN-γ/STAT1 pathway. Of note, Tregs blocked the Th1-stimulated effects on HSCs by inhibiting Th1-induced activation of STAT1. Consistent with the results of in vitro study, intrahepatic IFN-γ/STAT1 levels increased in relation to the severity of liver fibrosis in BA patients, and the altered balance between MMP2 and TIMP1 expressions in livers may contribute to increased deposition of extracellular matrix and fibrosis. Finally, to identify the effects of Th1 cells on Tregs, we demonstrated that Th1 cells upregulated the proportion of aTreg cells by secreting IFN-γ cytokine. Thus, aberrant Th1 immune responses in BA promote the proliferation and secretion of HSCs through the IFN-γ/STAT1 pathway. The regulation of HSCs by the interactions between Tregs and Th1 cells might be part of the mechanism underlying progressive liver fibrosis and may be a suitable target for therapy.
Collapse
Affiliation(s)
- Jie Wen
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbo Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Junkai Yan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Kejun Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yang Wang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
34
|
Shivakumar P, Mizuochi T, Mourya R, Gutta S, Yang L, Luo Z, Bezerra JA. Preferential TNF α signaling via TNFR2 regulates epithelial injury and duct obstruction in experimental biliary atresia. JCI Insight 2017; 2:e88747. [PMID: 28289704 DOI: 10.1172/jci.insight.88747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biliary atresia is an obstructive cholangiopathy of infancy that progresses to end-stage cirrhosis. Although the pathogenesis of the disease is not completely understood, previous reports link TNFα to apoptosis of the bile duct epithelium in the presence of IFNγ. Here, we investigate if TNFα signaling regulates pathogenic mechanisms of biliary atresia. First, we quantified the expression of TNFA and its receptors TNFR1 and TNFR2 in human livers and found an increased expression of the receptors at the time of diagnosis. In mechanistic experiments using a neonatal mouse model of rhesus rotavirus-induced (RRV-induced) biliary atresia, the expression of the ligand and both receptors increased 6- to 8-fold in hepatic DCs and NK lymphocytes above controls. The activation of tissue NK cells by RRV-primed DCs was independent of TNFα-TNFR signaling. Once activated, the expression of TNFα by NK cells induced lysis of 55% ± 2% of bile duct epithelial cells, which was completely prevented by blocking TNFα or TNFR2, but not TNFR1. More notably, antibody-mediated or genetic disruption of TNFα-TNFR2 signaling in vivo decreased apoptosis and epithelial injury; suppressed the infiltration of livers by T cells, DCs, and NK cells; prevented extrahepatic bile duct obstruction; and promoted long-term survival. These findings point to a key role for the TNFα/TNFR2 axis on pathogenesis of experimental biliary atresia and identify new therapeutic targets to suppress the disease phenotype.
Collapse
Affiliation(s)
- Pranavkumar Shivakumar
- Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Reena Mourya
- Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sridevi Gutta
- Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Li Yang
- Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zhenhua Luo
- Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jorge A Bezerra
- Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University Of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
35
|
Govindarajan KK. Biliary atresia: Where do we stand now? World J Hepatol 2016; 8:1593-1601. [PMID: 28083081 PMCID: PMC5192550 DOI: 10.4254/wjh.v8.i36.1593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/04/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
The pathway from clinical suspicion to establishing the diagnosis of biliary atresia in a child with jaundice is a daunting task. However, investigations available help to point towards the correct diagnosis in reasonable time frame. Imaging by Sonography has identified several parameters which can be of utility in the diagnostic work up. Comparison of Sonography with imaging by Nuclear medicine can bring out the significant differences and also help in appropriate imaging. The battery of Biochemical tests, available currently, enable better understanding of the line-up of investigations in a given child with neonatal cholestasis. Management protocols enable standardized care with optimal outcome. The place of surgical management in biliary atresia is undisputed, although Kasai procedure and primary liver transplantation have been pitted against each other. This article functions as a platform to bring forth the various dimensions of biliary atresia.
Collapse
|
36
|
Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB, Sokol RJ, Kelly DA, Ure B, Whitington PF, Samyn M, Petersen C. Biliary atresia and other cholestatic childhood diseases: Advances and future challenges. J Hepatol 2016; 65:631-42. [PMID: 27164551 DOI: 10.1016/j.jhep.2016.04.032] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
Biliary Atresia and other cholestatic childhood diseases are rare conditions affecting the function and/or anatomy along the canalicular-bile duct continuum, characterised by onset of persistent cholestatic jaundice during the neonatal period. Biliary atresia (BA) is the most common among these, but still has an incidence of only 1 in 10-19,000 in Europe and North America. Other diseases such as the genetic conditions, Alagille syndrome (ALGS) and Progressive Familial Intrahepatic Cholestasis (PFIC), are less common. Choledochal malformations are amenable to surgical correction and require a high index of suspicion. The low incidence of such diseases hinder patient-based studies that include large cohorts, while the limited numbers of animal models of disease that recapitulate the spectrum of disease phenotypes hinders both basic research and the development of new treatments. Despite their individual rarity, collectively BA and other cholestatic childhood diseases are the commonest indications for liver transplantation during childhood. Here, we review the recent advances in basic research and clinical progress in these diseases, as well as the research needs. For the various diseases, we formulate current key questions and controversies and identify top priorities to guide future research.
Collapse
Affiliation(s)
- Henkjan J Verkade
- Department of Paediatrics, University of Groningen, Beatrix Children's Hospital/University Medical Center, Groningen, The Netherlands.
| | - Jorge A Bezerra
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, Denmark Hill, London, UK
| | - Richard A Schreiber
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | - Georgina Mieli-Vergani
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital, London, UK
| | - Jan B Hulscher
- Department of Paediatric Surgery, University of Groningen, Beatrix Children's Hospital-University Medical Center, Groningen, The Netherlands
| | - Ronald J Sokol
- Section of Paediatric Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO, USA
| | - Deirdre A Kelly
- Liver Unit, Birmingham Children's Hospital NHS Trust, Birmingham, UK
| | - Benno Ure
- Department of Paediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Peter F Whitington
- Department of Paediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital, London, UK
| | - Claus Petersen
- Department of Paediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
37
|
Zhang RZ, Yu JK, Peng J, Wang FH, Liu HY, Lui VCH, Nicholls JM, Tam PKH, Lamb JR, Chen Y, Xia HM. Role of CD56-expressing immature biliary epithelial cells in biliary atresia. World J Gastroenterol 2016; 22:2545-2557. [PMID: 26937142 PMCID: PMC4768200 DOI: 10.3748/wjg.v22.i8.2545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/04/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the clinical and pathological parameters and expression of the neural cell adhesion molecule (CD56) in patients with biliary atresia (BA).
METHODS: Established clinical laboratory markers of hepatic function, including enzyme activity, protein synthesis, and bilirubin metabolism, were evaluated in patients with BA and compared with those in patients with choledochal cysts and neonatal hepatitis. Pathological changes in tissue morphology and fibrosis were examined by histological and tissue collagen staining. Immunohistochemical staining for the biliary epithelial cell markers CD56 and CK19 together with the Notch signaling related molecules Notch1 and Notch2 was performed in the context of alterations in the structure of intrahepatic biliary ducts.
RESULTS: Differences in some clinical laboratory parameters among the three diseases examined were observed, but they did not correlate with the pathological classification of fibrosis in BA. Immunohistochemical staining showed the presence of CD56-positive immature bile ducts in most patients (74.5%) with BA but not in patients with choledochal cysts or neonatal hepatitis. The number of CD56-expressing cells correlated with disease severity, with more positive cells present in the later stages of liver damage (81.8% vs 18.2%). Furthermore, bile plugs were mainly found in CD56-positive immature biliary ducts. Notch signaling was a key regulatory pathway in biliary duct formation and played a role in tissue fibrosis. Notch1 was co-expressed in CD56-positive cells, whereas Notch2 was found exclusively in blood vessels in the portal area of patients with BA.
CONCLUSION: The maturation of biliary epithelial cells and the expression of Notch may play a role in the pathogenesis of BA.
Collapse
|
38
|
Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S, Zhao X, Sealy I, Kettleborough RN, Stemple DL, Windsor PA, Whittaker SJ, Porter JR, Wells RG, Pack M. Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 2016; 7:286ra67. [PMID: 25947162 DOI: 10.1126/scitranslmed.aaa1652] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biliary atresia (BA) is a rapidly progressive and destructive fibrotic disorder of unknown etiology affecting the extrahepatic biliary tree of neonates. Epidemiological studies suggest that an environmental factor, such as a virus or toxin, is the cause of the disease, although none have been definitively established. Several naturally occurring outbreaks of BA in Australian livestock have been associated with the ingestion of unusual plants by pregnant animals during drought conditions. We used a biliary secretion assay in zebrafish to isolate a previously undescribed isoflavonoid, biliatresone, from Dysphania species implicated in a recent BA outbreak. This compound caused selective destruction of the extrahepatic, but not intrahepatic, biliary system of larval zebrafish. A mutation that enhanced biliatresone toxicity mapped to a region of the zebrafish genome that has conserved synteny with an established human BA susceptibility locus. The toxin also caused loss of cilia in neonatal mouse extrahepatic cholangiocytes in culture and disrupted cell polarity and monolayer integrity in cholangiocyte spheroids. Together, these findings provide direct evidence that BA could be initiated by perinatal exposure to an environmental toxin.
Collapse
Affiliation(s)
- Kristin Lorent
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weilong Gong
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyung A Koo
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Orith Waisbourd-Zinman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sara Karjoo
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiao Zhao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian Sealy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ross N Kettleborough
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Peter A Windsor
- Faculty of Veterinary Science, University of Sydney, Camden, New South Wales 2570, Australia
| | - Stephen J Whittaker
- Hume Livestock Health and Pest Authority, Albury, New South Wales 2640, Australia
| | - John R Porter
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael Pack
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Walther A, Mohanty SK, Donnelly B, Coots A, Lages CS, Lobeck I, Dupree P, Meller J, McNeal M, Sestak K, Tiao G. Rhesus rotavirus VP4 sequence-specific activation of mononuclear cells is associated with cholangiopathy in murine biliary atresia. Am J Physiol Gastrointest Liver Physiol 2015. [PMID: 26206856 PMCID: PMC4572408 DOI: 10.1152/ajpgi.00079.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary atresia (BA), a neonatal obstructive cholangiopathy, remains the most common indication for pediatric liver transplantation in the United States. In the murine model of BA, Rhesus rotavirus (RRV) VP4 surface protein determines biliary duct tropism. In this study, we investigated how VP4 governs induction of murine BA. Newborn mice were injected with 16 strains of rotavirus and observed for clinical symptoms of BA and mortality. Cholangiograms were performed to confirm bile duct obstruction. Livers and bile ducts were harvested 7 days postinfection for virus titers and histology. Flow cytometry assessed mononuclear cell activation in harvested cell populations from the liver. Cytotoxic NK cell activity was determined by the ability of NK cells to kill noninfected cholangiocytes. Of the 16 strains investigated, the 6 with the highest homology to the RRV VP4 (>87%) were capable of infecting bile ducts in vivo. Although the strain Ro1845 replicated to a titer similar to RRV in vivo, it caused no symptoms or mortality. A Ro1845 reassortant containing the RRV VP4 induced all BA symptoms, with a mortality rate of 89%. Flow cytometry revealed that NK cell activation was significantly increased in the disease-inducing strains and these NK cells demonstrated a significantly higher percentage of cytotoxicity against noninfected cholangiocytes. Rotavirus strains with >87% homology to RRV's VP4 were capable of infecting murine bile ducts in vivo. Development of murine BA was mediated by RRV VP4-specific activation of mononuclear cells, independent of viral titers.
Collapse
Affiliation(s)
- Ashley Walther
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Sujit K. Mohanty
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Bryan Donnelly
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Abigail Coots
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Celine S. Lages
- 2Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Inna Lobeck
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Phylicia Dupree
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Jaroslaw Meller
- 3Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Monica McNeal
- 4Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Karol Sestak
- 5Tulane National Primate Research Center and Tulane University School of Medicine, Covington, Louisiana
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
40
|
Affiliation(s)
- Dong Zhao
- Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Dai Long
- Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Abstract
Biliary atresia is a severe cholangiopathy of early infancy that destroys extrahepatic bile ducts and disrupts bile flow. With a poorly defined disease pathogenesis, treatment consists of the surgical removal of duct remnants followed by hepatoportoenterostomy. Although this approach can improve the short-term outcome, the liver disease progresses to end-stage cirrhosis in most children. Further improvement in outcome will require a greater understanding of the mechanisms of biliary injury and fibrosis. Here, we review progress in the field, which has been fuelled by collaborative studies in larger patient cohorts and the development of cell culture and animal model systems to directly test hypotheses. Advances include the identification of phenotypic subgroups and stages of disease based on clinical, pathological and molecular features. Stronger evidence exists for viruses, toxins and gene sequence variations in the aetiology of biliary atresia, triggering a proinflammatory response that injures the duct epithelium and produces a rapidly progressive cholangiopathy. The immune response also activates the expression of type 2 cytokines that promote epithelial cell proliferation and extracellular matrix production by nonparenchymal cells. These advances provide insight into phenotype variability and might be relevant to the design of personalized trials to block progression of liver disease.
Collapse
|
42
|
Squires JE, Shivakumar P, Mourya R, Bessho K, Walters S, Bezerra JA. Natural killer cells promote long-term hepatobiliary inflammation in a low-dose rotavirus model of experimental biliary atresia. PLoS One 2015; 10:e0127191. [PMID: 25992581 PMCID: PMC4437784 DOI: 10.1371/journal.pone.0127191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/12/2015] [Indexed: 01/27/2023] Open
Abstract
Biliary atresia is a rapidly progressive obstructive cholangiopathy of infants. Mechanistic studies in the mouse model of Rhesus rotavirus (RRV)-induced biliary atresia have linked the importance of effector lymphocytes to the pathogenesis of extrahepatic bile duct (EHBD) injury and obstruction in experimental biliary atresia; however, studies of the progressive liver injury have been limited by early death of newborn mice. Here, we aimed to determine 1) if a lower inoculum of RRV induces obstruction of EHBDs while allowing for ongoing liver inflammation, and 2) if NK cells regulate intrahepatic injury. The administration of 0.25x106 fluorescence forming units of RRV induced an obstructive extrahepatic cholangiopathy, but allowed for restoration of the duct epithelium, increased survival, and the development of a progressive intrahepatic inflammatory injury with molecular and cellular signatures equivalent to the traditional infectious model. Investigating the mechanisms of liver injury, we found that NK cell depletion at the onset of jaundice decreased liver inflammation, suppressed the expression of fibrosis and inflammation/immunity genes, lowered plasma ALT and bilirubin and improved survival.
Collapse
Affiliation(s)
- James E. Squires
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | - Pranavkumar Shivakumar
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | - Reena Mourya
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | | | - Stephanie Walters
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | - Jorge A. Bezerra
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mack CL. What Causes Biliary Atresia? Unique Aspects of the Neonatal Immune System Provide Clues to Disease Pathogenesis. Cell Mol Gastroenterol Hepatol 2015; 1:267-274. [PMID: 26090510 PMCID: PMC4467898 DOI: 10.1016/j.jcmgh.2015.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biliary atresia (BA) is the most frequent identifiable cause of neonatal cholestasis and the majority of patients will need liver transplantation for survival. Despite surgical intervention with the Kasai portoenterostomy, significant fibrosis and cirrhosis develops early in life. An increased understanding of what causes this inflammatory fibrosing cholangiopathy will lead to therapies aimed at protecting the intrahepatic biliary system from immune-mediated damage. This review focuses on studies pertaining to the role of the adaptive immune response in bile duct injury in BA, including cellular and humoral immunity. The neonatal presentation of BA begs the question of what are potential modifications of unique aspects of the neonatal immune system that "sets the stage" for the progressive biliary disease? Throughout this article, characteristics of the neonatal immune response are outlined and theories as to how alterations of this response could contribute to the pathogenesis of BA are discussed. These include aberrant Th1 and Th17 responses, deficiencies in regulatory T cells, activation of humoral immunity and autoimmunity. In order to advance our understanding of the etiology of BA, future studies should focus on those unique aspects of the neonatal immune system that have gone awry, as detailed throughout this review.
Collapse
Affiliation(s)
- Cara L. Mack
- Correspondence Address correspondence to: Cara L. Mack, MD, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, Mailstop B290, Aurora, Colorado 80045. fax: (720) 777-7277.
| |
Collapse
|
44
|
Low doses of CMV induce autoimmune-mediated and inflammatory responses in bile duct epithelia of regulatory T cell-depleted neonatal mice. J Transl Med 2015; 95:180-92. [PMID: 25531565 DOI: 10.1038/labinvest.2014.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/21/2014] [Accepted: 10/31/2014] [Indexed: 12/21/2022] Open
Abstract
Recent studies have indicated that perinatal infection with cytomegalovirus (CMV) may promote bile duct damage in biliary atresia (BA) and that the decreased regulatory T cell (Treg) percentage associated with BA may further amplify the bile duct damage. Although a majority of BA patients have had previous CMV infections and lower percentages of Tregs, it is unknown whether an initial exposure to a low dose of CMV could induce exaggerated and progressive biliary injury. A Treg-depleted neonatal mouse was infected with low-dose CMV (LD-CMV) as a model to study BA patients. LD-CMV infection in Treg-depleted mice induced extensive inflammation in both the intrahepatic and extrahepatic bile ducts, accompanied with injury to and atresia of intrahepatic bile ducts and partial obstruction of the extrahepatic bile ducts. Serum total and direct bilirubin amounts were also elevated. Evidence for the involvement of cellular and humoral autoimmune responses in LD-CMV-infection of Treg-depleted mice was also obtained through detection of increased percentages of CD3 and CD8 mononuclear cells and serum autoantibodies reactive to bile duct epithelial proteins, one of which was identified as α-enolase. Depletion of Tregs that can lead to the decreased inhibition of aberrantly activated hepatic T-lymphocytes and generation of autoantibodies may lead to further injury. Increased hepatic expression of Th1-related genes (TNF-α), IFN-γ-activated genes (STAT-1) and Th1 cytokines (TNF-α, lymphotactin, IL-12p40 and MIP -1γ) were also identified. In conclusion, autoimmune-mediated and inflammatory responses induced by LD-CMV infection in Treg-depleted mice results in increased intrahepatic and extrahepatic bile duct injury and contributed to disease progression.
Collapse
|
45
|
Zheng S, Zhang H, Zhang X, Peng F, Chen X, Yang J, Brigstock D, Feng J. CD8+ T lymphocyte response against extrahepatic biliary epithelium is activated by epitopes within NSP4 in experimental biliary atresia. Am J Physiol Gastrointest Liver Physiol 2014; 307:G233-40. [PMID: 24875101 DOI: 10.1152/ajpgi.00099.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interferon (IFN)-γ-driven and CD8+ T cell-dependent inflammatory injury to extrahepatic biliary epithelium (EHBE) is likely to be involved in the development of biliary atresia (BA). We previously showed that viral protein NSP4 is the pathogenic immunogen that causes biliary injury in BA. In this study, NSP4 or four synthetic NSP4 (NSP4(157-170), NSP4(144-152), NSP4(93-110), NSP4(24-32)) identified by computer analysis as candidate CD8+ T cell epitopes were injected into neonatal mice. The pathogenic NSP4 epitopes were confirmed by studying extrahepatic bile duct injury, IFN-γ release and CD8+ T cell response against EHBE. The results revealed, at 7 days postinjection, inoculation of glutathione S-transferase (GST)-NSP4 caused EHBE injury and BA in neonatal mice. At 7 or 14 days postinject, inoculation of GST-NSP4, NSP4(144-152), or NSP4(157-170) increased IFN-γ release by CD8+ T cells, elevated the population of hepatic memory CD8+ T cells, and augmented cytotoxicity of CD8+ T cells to rhesus rotavirus (RRV)-infected or naive EHBE cells. Furthermore, depletion of CD8+ T cells in mice abrogated the elevation of GST-NSP4-induced serum IFN-γ. Lastly, parenteral immunization of mouse dams with GST-NSP4, NSP4(144-152), or NSP4(157-170) decreased the incidence of RRV-induced BA in their offspring. Overall, this study reports the CD8+ T cell response against EHBE is activated by epitopes within rotavirus NSP4 in experimental BA. Neonatal passive immunization by maternal vaccination against NSP4(144-152) or NSP4(157-170) is effective in protecting neonates from developing RRV-related BA.
Collapse
Affiliation(s)
- Shuaiyu Zheng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Department of Pediatric Surgery, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China; and
| | - Hongyi Zhang
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojin Zhang
- Department of Pediatric Surgery, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China; and
| | - Fei Peng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - David Brigstock
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China;
| |
Collapse
|
46
|
Qiu Y, Yang J, Wang W, Zhao W, Peng F, Xiang Y, Chen G, Chen T, Chai C, Zheng S, Watkins DJ, Feng J. HMGB1-promoted and TLR2/4-dependent NK cell maturation and activation take part in rotavirus-induced murine biliary atresia. PLoS Pathog 2014; 10:e1004011. [PMID: 24651485 PMCID: PMC3961347 DOI: 10.1371/journal.ppat.1004011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/04/2014] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that NK cells play important roles in murine biliary atresia (BA), and a temporary immunological gap exists in this disease. In this study, we found high-mobility group box-1 (HMGB1) and TLRs were overexpressed in human and rotavirus-induced murine BA. The overexpressed HMGB1 released from the nuclei of rotavirus-infected cholangiocytes, as well as macrophages, activated hepatic NK cells via HMGB1-TLRs-MAPK signaling pathways. Immature NK cells had low cytotoxicity on rotavirus-injured cholangiocytes due to low expression of TLRs, which caused persistent rotavirus infection in bile ducts. HMGB1 up-regulated the levels of TLRs of NK cells and promoted NK cell activation in an age-dependent fashion. As NK cells gained increasing activation as mice aged, they gained increasing cytotoxicity on rotavirus-infected cholangiocytes, which finally caused BA. Adult NK cells eliminated rotavirus-infected cholangiocytes shortly after infection, which prevented persistent rotavirus infection in bile ducts. Moreover, adoptive transfer of mature NK cells prior to rotavirus infection decreased the incidence of BA in newborn mice. Thus, the dysfunction of newborn NK cells may, in part, participate in the immunological gap in the development of rotavirus induced murine BA. Biliary atresia (BA) is the most common precipitating factor for liver transplantation in infants. BA is caused by the obstruction of hepatic bile ducts, leading to progressive obstructive jaundice and liver fibrosis. A well-recognized theory is that rotavirus injures biliary epithelia in a mouse model of BA, followed by attack of immunocytes, such as NK cells. We performed this research to investigate whether maturation and activation of NK cells take part in the development of BA. We identified that rotavirus induced HMGB1 release from injured bile ducts. HMGB1 induced NK cell activation in an age-dependent fashion via HMGB1-TLRs-MAPK signaling pathways. Newborn NK cells were unable to eliminate rotavirus-infected cholangiocytes, which caused persistent biliary infection; maturated NK cells were activated gradually and caused persistent biliary injury, which finally led to BA. We identify HMGB1 as an important pro-inflammatory initiator and a critical inducer for maturation of NK cells in the development of BA. HMGB1-induced activation of NK cells may, in part, plays crucial roles in the development of murine BA. Novel therapies targeting HMGB1 or TLRs in patients with BA may be applied in the future to decrease the activity of NK cells in order to inhibit the progression of BA.
Collapse
Affiliation(s)
- Yinrong Qiu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmei Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengwei Chai
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiyu Zheng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel J. Watkins
- Department of Surgery, Wayne State University, Detroit, Michigan, United States of America
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
47
|
Perforin and granzymes work in synergy to mediate cholangiocyte injury in experimental biliary atresia. J Hepatol 2014; 60:370-6. [PMID: 24096050 PMCID: PMC3946990 DOI: 10.1016/j.jhep.2013.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Biliary atresia represents obstructive cholangiopathy in infants progressing rapidly to cirrhosis and end-stage liver disease. Activated NK cells expressing Nkg2d have been linked to bile duct injury and obstruction by establishing contact with cholangiocytes. To define the mechanisms used by cytotoxic cells, we investigated the role of perforin and granzymes in a neonatal mouse model of rotavirus (RRV)-induced biliary atresia. METHODS We used complementary cell lysis assays, flow cytometric analyses, quantitative PCRs and in vivo systems to determine the mechanisms of bile duct epithelial injury and the control of the tissue phenotype in experimental biliary atresia. RESULTS RRV-infected hepatic NK and CD8 T cells increased the expression of perforin and injured cholangiocytes in short-term culture in a perforin-dependent fashion. However, the loss of perforin in vivo delayed but did not prevent the obstruction of bile ducts. Based on the increased expression of granzymes by perforin-deficient cytotoxic cells in long-term cytolytic assays, we found that the inhibition of granzymes by nafamostat mesilate (FUT-175) blocked cholangiocyte lysis. Administration of FUT-175 to perforin-deficient mice after RRV infection decreased the development of jaundice, minimized epithelial injury, and improved long-term survival. However, the inhibition of granzymes alone in wild-type mice was not sufficient to prevent the atresia phenotype in newborn mice. In infants with biliary atresia, hepatic Granzymes A and B mRNA, but not Perforin, increased at the time of portoenterostomy. CONCLUSIONS Perforin and granzymes have complementary roles mediating epithelial injury by NK and CD8 T cells. The prevention of experimental biliary atresia can only be achieved by inhibiting both granules.
Collapse
|
48
|
Reovirus type-2-triggered autoimmune cholangitis in extrahepatic bile ducts of weanling DBA/1J mice. Pediatr Res 2014; 75:29-37. [PMID: 24121424 DOI: 10.1038/pr.2013.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/23/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Reovirus is a proposed cause of infantile biliary atresia. However, mechanistic insight regarding Reo-2 as a potential cholangiotropic virus is lacking. Furthermore, it is unknown whether Reo-2 infection can induce autoimmune-mediated bile duct injury. METHODS Lesions of bile ducts in newborn DBA/1J mice infected with Reo-2 were analyzed immunopathologically. RESULTS Damage to biliary epithelia occurs after Reo-2 infection. In addition, nonsuppurative cholangitis with fibrosis in extrahepatic (especially septal) bile ducts developed following complete viral clearance from the liver. At the inflamed ducts, major histocompatibility complex class I expressing((+)) and FAS(+) cholangiocytes were associated with FAS ligand(+) lymphocytes and tumor necrosis factor-α(+) mononuclear cells (macrophages and lymphocytes). These cholangiocytes were apoptotic and necrotic. Moreover, affected ducts were infiltrated by CD3(+), CD4(+), CD8(+), IFN-γ(+), and FAS(+) lymphocytes. Analysis of blood from Reo-2-infected mice revealed that they developed anticholangiocyte cytoplasm antibodies and had high serum IFN-γ concentration. Notably, there was no increase in Foxp3(+) lymphocytes at inflamed ducts, lymph nodes, and thymi. CONCLUSION Reo-2 infection induced T-helper cell type 1-dependent injury to bile ducts in weanling mice. The lesions observed in mice may be analogous to those associated with human infantile biliary atresia, which are caused by an autoimmune-mediated process.
Collapse
|
49
|
Bessho K, Shanmukhappa K, Sheridan R, Shivakumar P, Mourya R, Walters S, Kaimal V, Dilbone E, Jegga AG, Bezerra JA. Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia. BMC SYSTEMS BIOLOGY 2013; 7:104. [PMID: 24138927 PMCID: PMC3819657 DOI: 10.1186/1752-0509-7-104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Abstract
Background Biliary atresia is a fibroinflammatory obstruction of extrahepatic bile duct that leads to end-stage liver disease in children. Despite advances in understanding the pathogenesis of biliary atresia, very little is known about the role of microRNAs (miRNAs) in onset and progression of the disease. In this study, we aimed to investigate the entire biliary transcriptome to identify miRNAs with potential role in the pathogenesis of bile duct obstruction. Results By profiling the expression levels of miRNA in extrahepatic bile ducts and gallbladder (EHBDs) from a murine model of biliary atresia, we identified 14 miRNAs whose expression was suppressed at the times of duct obstruction and atresia (≥2 fold suppression, P < 0.05, FDR 5%). Next, we obtained 2,216 putative target genes of the 14 miRNAs using in silico target prediction algorithms. By integrating this result with a genome-wide gene expression analysis of the same tissue (≥2 fold increase, P < 0.05, FDR 5%), we identified 26 potential target genes with coordinate expression by the 14 miRNAs. Functional analysis of these target genes revealed a significant relevance of miR-30b/c, -133a/b, -195, -200a, -320 and −365 based on increases in expression of at least 3 target genes in the same tissue and 1st-to-3rd tier links with genes and gene-groups regulating organogenesis and immune response. These miRNAs showed higher expression in EHBDs above livers, a unique expression in cholangiocytes and the subepithelial compartment, and were downregulated in a cholangiocyte cell line after RRV infection. Conclusions Integrative genomics reveals functional relevance of miR-30b/c, -133a/b, -195, -200a, -320 and −365. The coordinate expression of miRNAs and target genes in a temporal-spatial fashion suggests a regulatory role of these miRNAs in pathogenesis of experimental biliary atresia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jorge A Bezerra
- Cincinnati Children's Hospital Medical Center and Departments of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
50
|
Tucker RM, Feldman AG, Fenner EK, Mack CL. Regulatory T cells inhibit Th1 cell-mediated bile duct injury in murine biliary atresia. J Hepatol 2013; 59:790-6. [PMID: 23685050 PMCID: PMC3855478 DOI: 10.1016/j.jhep.2013.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) is a pediatric inflammatory disease of the biliary system which leads to cirrhosis and the need for liver transplantation. One theory regarding etiology is that bile duct injury is due to virus-induced autoreactive T cell-mediated inflammation. Regulatory T cell (Treg) abnormalities in BA could result in unchecked bystander inflammation and autoimmunity targeting bile ducts. The aim of this study was to determine if Tregs are dysfunctional in the rotavirus-induced mouse model of BA (murine BA). METHODS Murine BA resulted from infection of BALB/c neonates with Rhesus rotavirus (RRV). RESULTS Liver Tregs from BA mice were decreased in number, activation marker expression, and suppressive function. Adoptive transfer studies revealed that RRV-infected mice that received Tregs had significantly increased survival (84%) compared to controls (12.5%). In addition, ablation of Tregs in older mice, followed by RRV infection, resulted in increased bile duct injury. CONCLUSIONS These studies demonstrate that dysregulation of Tregs is present in murine BA and that diminished Treg function may be implicated in the pathogenesis of human BA.
Collapse
Affiliation(s)
| | | | | | - Cara L. Mack
- University of Colorado, Denver,Children’s Hospital Colorado, Denver, CO 80262
| |
Collapse
|