1
|
Manabe Y, Takebe T, Kasahara S, Hizume K, Kabayama K, Kamada Y, Asakura A, Shinzaki S, Takamatsu S, Miyoshi E, García-García A, Vakhrushev SY, Hurtado-Guerrero R, Fukase K. Development of a FUT8 Inhibitor with Cellular Inhibitory Properties. Angew Chem Int Ed Engl 2024:e202414682. [PMID: 39340265 DOI: 10.1002/anie.202414682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
Core fucosylation is catalyzed by α-1,6-fucosyltransferase (FUT8), which fucosylates the innermost GlcNAc of N-glycans. Given the association of FUT8 with various diseases, including cancer, selective FUT8 inhibitors applicable to in vivo or cell-based systems are highly sought-after. Herein, we report the discovery of a compound that selectively inhibits FUT8 in cell-based assays. High-throughput screening revealed a FUT8-inhibiting pharmacophore, and further structural optimization yielded an inhibitor with a KD value of 49 nM. Notably, this binding occurs only in the presence of GDP (a product of the enzymatic reaction catalyzed by FUT8). Mechanistic studies suggested that this inhibitor generates a highly reactive naphthoquinone methide derivative at the binding site in FUT8, which subsequently reacts with FUT8. Furthermore, prodrug derivatization of this inhibitor improved its stability, enabling suppression of core fucose expression and subsequent EGFR and T-cell signaling in cell-based assays, paving the way for the development of drugs targeting core fucosylation.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoyuki Takebe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Satomi Kasahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akiko Asakura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastroenterology, Faculty of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
3
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
4
|
He X, Zhao L, Tian Y, Li R, Chu Q, Gu Z, Zheng M, Wang Y, Li S, Jiang H, Jiang Y, Wen L, Wang D, Cheng X. Highly accurate carbohydrate-binding site prediction with DeepGlycanSite. Nat Commun 2024; 15:5163. [PMID: 38886381 PMCID: PMC11183243 DOI: 10.1038/s41467-024-49516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
As the most abundant organic substances in nature, carbohydrates are essential for life. Understanding how carbohydrates regulate proteins in the physiological and pathological processes presents opportunities to address crucial biological problems and develop new therapeutics. However, the diversity and complexity of carbohydrates pose a challenge in experimentally identifying the sites where carbohydrates bind to and act on proteins. Here, we introduce a deep learning model, DeepGlycanSite, capable of accurately predicting carbohydrate-binding sites on a given protein structure. Incorporating geometric and evolutionary features of proteins into a deep equivariant graph neural network with the transformer architecture, DeepGlycanSite remarkably outperforms previous state-of-the-art methods and effectively predicts binding sites for diverse carbohydrates. Integrating with a mutagenesis study, DeepGlycanSite reveals the guanosine-5'-diphosphate-sugar-recognition site of an important G-protein coupled receptor. These findings demonstrate DeepGlycanSite is invaluable for carbohydrate-binding site prediction and could provide insights into molecular mechanisms underlying carbohydrate-regulation of therapeutically important proteins.
Collapse
Affiliation(s)
- Xinheng He
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lifen Zhao
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yinping Tian
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rui Li
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinyu Chu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Zhiyong Gu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Yusong Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Shaoning Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
- Lingang Laboratory, Shanghai, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Liuqing Wen
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | | | - Xi Cheng
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China.
| |
Collapse
|
5
|
López-Cortés R, Correa Pardo I, Muinelo-Romay L, Fernández-Briera A, Gil-Martín E. Core Fucosylation Mediated by the FucT-8 Enzyme Affects TRAIL-Induced Apoptosis and Sensitivity to Chemotherapy in Human SW480 and SW620 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:11879. [PMID: 37569254 PMCID: PMC10418920 DOI: 10.3390/ijms241511879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to the pentasaccharide core of complex N-glycans. Specifically, in the cellular model of colorectal cancer (CRC) progression formed using the human syngeneic lines SW480 and SW620, knockdown of the FucT-8-encoding FUT8 gene significantly enhanced TRAIL-induced apoptosis in SW480 cells. However, FUT8 repression did not affect SW620 cells, which suggests that core fucosylation differentiates TRAIL-sensitive premetastatic SW480 cells from TRAIL-resistant metastatic SW620 cells. In this regard, we provide evidence that phosphorylation of ERK1/2 kinases can dynamically regulate TRAIL-dependent apoptosis and that core fucosylation can control the ERK/MAPK pro-survival pathway in which SW480 and SW620 cells participate. Moreover, the depletion of core fucosylation sensitises primary tumour SW480 cells to the combination of TRAIL and low doses of 5-FU, oxaliplatin, irinotecan, or mitomycin C. In contrast, a combination of TRAIL and oxaliplatin, irinotecan, or bevacizumab reinforces resistance of FUT8-knockdown metastatic SW620 cells to apoptosis. Consequently, FucT-8 could be a plausible target for increasing apoptosis and drug response in early CRC.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Doctoral Program in Methods and Applications in Life Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| | - Isabel Correa Pardo
- Master Program in Advanced Biotechnology, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, Travesía da Choupana, ES15706 Santiago de Compostela, Spain;
| | - Almudena Fernández-Briera
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, ES36310 Vigo, Spain;
| |
Collapse
|
6
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
7
|
Ng BG, Sosicka P, Xia Z, Freeze HH. GLUT1 is a highly efficient L-fucose transporter. J Biol Chem 2023; 299:102738. [PMID: 36423686 PMCID: PMC9758431 DOI: 10.1016/j.jbc.2022.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding L-fucose metabolism is important because it is used as a therapy for several congenital disorders of glycosylation. Exogenous L-fucose can be activated and incorporated directly into multiple N- and O-glycans via the fucose salvage/recycling pathway. However, unlike for other monosaccharides, no mammalian L-fucose transporter has been identified. Here, we functionally screened nearly 140 annotated transporters and identified GLUT1 (SLC2A1) as an L-fucose transporter. We confirmed this assignment using multiple approaches to alter GLUT1 function, including chemical inhibition, siRNA knockdown, and gene KO. Collectively, all methods demonstrate that GLUT1 contributes significantly to L-fucose uptake and its utilization at low micromolar levels. Surprisingly, millimolar levels of D-glucose do not compete with L-fucose uptake. We also show macropinocytosis, but not other endocytic pathways, can contribute to L-fucose uptake and utilization. In conclusion, we determined that GLUT1 functions as the previously missing transporter component in mammalian L-fucose metabolism.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zhijie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
8
|
Lewis glycosphingolipids as critical determinants of TRAIL sensitivity in cancer cells. Oncogene 2022; 41:4385-4396. [PMID: 35970887 DOI: 10.1038/s41388-022-02434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death and contributes to tumor rejection by cytotoxic lymphocytes in cancer immunosurveillance and immunotherapy. TRAIL and TRAIL receptor agonists have garnered wide popularity as promising agents for cancer therapy. We previously demonstrated that the loss of fucosylation in cancer cells impairs TRAIL sensitivity; however, the precise structures of the fucosylated glycans that regulate TRAIL sensitivity and their carrier molecules remain elusive. Herein, we observed that Lewis glycans among various fucosylated glycans positively regulate TRAIL-induced cell death. Specifically, Lewis glycans on lacto/neolacto glycosphingolipids, but not glycoproteins including TRAIL receptors, enhanced TRAIL-induced formation of the cytosolic caspase 8 complex, without affecting the formation of the membranous receptor complex. Furthermore, type I Lewis glycan expression in colon cancer cell lines and patient-derived cancer organoids was positively correlated with TRAIL sensitivity. These findings provide novel insights into the regulatory mechanism of TRAIL-induced cell death and facilitate the identification of novel predictive biomarkers for TRAIL-related cancer therapies in future.
Collapse
|
9
|
Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:ijms222413333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
|
10
|
Simultaneous analysis of serum α2,3-linked sialylation and core-type fucosylation of prostate-specific antigen for the detection of high-grade prostate cancer. Br J Cancer 2021; 126:764-770. [PMID: 34802050 DOI: 10.1038/s41416-021-01637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Altered prostate-specific antigen (PSA) glycosylation patterns can be useful biomarkers in detecting high-grade prostate cancer (HGPC). The microfluidic immunoassay system can analyse α2,3-linked sialylated PSA (α2,3-Sia-PSA) and α1,6-linked fucosylated PSA (α1,6-Fuc-PSA) using different lectins, Mackkia amurensis agglutinin and Pholiota squarrosa lectin, respectively. Here, we investigated the diagnostic value of simultaneous analysis of α2,3-Sia-PSA and α1,6-Fuc-PSA for the detection of HGPC. METHODS Men with serum PSA levels of 4-20 ng/mL who underwent prostate biopsy were included. The model to predict HGPC (Gleason grade ≥2) was constructed by multivariate logistic regression analysis, in combination with α2,3-Sia-PSA and α1,6-Fuc-PSA (SF index). RESULTS In the development cohort (n = 150), the SF index showed good discrimination for HGPC (area under the receiver-operating curve (AUC) 0.842; 95% confidence interval (CI) 0.782-0.903), compared to the single PSA test (AUC 0.632, 95% CI 0.543-0.721), α2,3-Sia-PSA (AUC 0.711, 95% CI 0.629-0.793) and α1,6-Fuc-PSA (AUC 0.738, 95% CI 0.657-0.819). Decision-curve analysis showed the superior benefit of the SF index. In the validation cohort (n = 57), the SF index showed good discrimination for HGPC (AUC 0.769, 95% CI 0.643-0.895). CONCLUSIONS The SF index could differentiate HGPC, providing useful information for decision making for prostate biopsy in men with abnormal PSA levels.
Collapse
|
11
|
Li J, Cai Z, Vaites LP, Shen N, Mitchell DC, Huttlin EL, Paulo JA, Harry BL, Gygi SP. Proteome-wide mapping of short-lived proteins in human cells. Mol Cell 2021; 81:4722-4735.e5. [PMID: 34626566 DOI: 10.1016/j.molcel.2021.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Rapid protein degradation enables cells to quickly modulate protein abundance. Dysregulation of short-lived proteins plays essential roles in disease pathogenesis. A focused map of short-lived proteins remains understudied. Cycloheximide, a translational inhibitor, is widely used in targeted studies to measure degradation kinetics for short-lived proteins. Here, we combined cycloheximide chase assays with advanced quantitative proteomics to map short-lived proteins under translational inhibition in four human cell lines. Among 11,747 quantified proteins, we identified 1,017 short-lived proteins (half-lives ≤ 8 h). These short-lived proteins are less abundant, evolutionarily younger, and less thermally stable than other proteins. We quantified 103 proteins with different stabilities among cell lines. We showed that U2OS and HCT116 cells express truncated forms of ATRX and GMDS, respectively, which have lower stability than their full-length counterparts. This study provides a large-scale resource of human short-lived proteins under translational arrest, leading to untapped avenues of protein regulation for therapeutic interventions.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ning Shen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan C Mitchell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian L Harry
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Bozkurt E, Düssmann H, Salvucci M, Cavanagh BL, Van Schaeybroeck S, Longley DB, Martin SJ, Prehn JHM. TRAIL signaling promotes entosis in colorectal cancer. J Cell Biol 2021; 220:212649. [PMID: 34546352 PMCID: PMC8563286 DOI: 10.1083/jcb.202010030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Entosis is a form of nonphagocytic cell-in-cell (CIC) interaction where a living cell enters into another. Tumors show evidence of entosis; however, factors controlling entosis remain to be elucidated. Here, we find that besides inducing apoptosis, TRAIL signaling is a potent activator of entosis in colon cancer cells. Initiation of both apoptosis and entosis requires TRAIL receptors DR4 and DR5; however, induction of apoptosis and entosis diverges at caspase-8 as its structural presence is sufficient for induction of entosis but not apoptosis. Although apoptosis and entosis are morphologically and biochemically distinct, knockout of Bax and Bak, or inhibition of caspases, also inhibits entotic cell death and promotes survival and release of inner cells. Analysis of colorectal cancer tumors reveals a significant association between TRAIL signaling and CIC structures. Finally, the presence of CIC structures in the invasive front regions of colorectal tumors shows a strong correlation with adverse patient prognosis.
Collapse
Affiliation(s)
- Emir Bozkurt
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
13
|
Scherpenzeel M, Conte F, Büll C, Ashikov A, Hermans E, Willems A, Tol W, Kragt E, Noga M, Moret EE, Heise T, Langereis JD, Rossing E, Zimmermann M, Rubio-Gozalbo ME, de Jonge MI, Adema GJ, Zamboni N, Boltje T, Lefeber DJ. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology 2021; 32:239-250. [PMID: 34939087 PMCID: PMC8966471 DOI: 10.1093/glycob/cwab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.
Collapse
Affiliation(s)
- Monique Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,GlycoMScan B.V., Kloosterstraat 9, RE0329, 5349 AB Oss, The Netherlands
| | - Federica Conte
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Esther Hermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Walinka Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek Noga
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ed E Moret
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Emiel Rossing
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | - M Estela Rubio-Gozalbo
- Department of Clinical Genetics, department of Pediatrics, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, box 16, 6200 MD, Maastricht, The Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Fowler G, French DV, Rose A, Squires P, Aniceto da Silva C, Ohata S, Okamoto H, French CR. Protein fucosylation is required for Notch dependent vascular integrity in zebrafish. Dev Biol 2021; 480:62-68. [PMID: 34400136 DOI: 10.1016/j.ydbio.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
The onset of circulation in a developing embryo requires intact blood vessels to prevent hemorrhage. The development of endothelial cells, and their subsequent recruitment of perivascular mural cells are important processes to establish and maintain vascular integrity. These processes are genetically controlled during development, and mutations that affect endothelial cell specification, pattern formation, or maturation through the addition of mural cells can result in early developmental hemorrhage. We created a strong loss of function allele of the zebrafish GDP-mannose 4,6 dehydratase (gmds) gene that is required for the de novo synthesis of GDP-fucose, and homozygous embryos display cerebral hemorrhages. Our data demonstrate that gmds mutants have early defects in vascular patterning with ectopic branches observed at time of hemorrhage. Subsequently, defects in the number of mural cells that line the vasculature are observed. Moreover, activation of Notch signaling rescued hemorrhage phenotypes in gmds mutants, highlighting a potential downstream pathway that requires protein fucosylation for vascular integrity. Finally, supplementation with fucose can rescue hemorrhage frequency in gmds mutants, demonstrating that synthesis of GDP-fucose via an alternative (salvage) pathway may provide an avenue toward therapeutic correction of phenotypes observed due to defects in de novo GDP-fucose synthesis. Together, these data are consistent with a novel role for the de novo and salvage protein fucosylation pathways in regulating vascular integrity through a Notch dependent mechanism.
Collapse
Affiliation(s)
- Gerissa Fowler
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Danielle V French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - April Rose
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Paige Squires
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Catarina Aniceto da Silva
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama, Japan
| | - Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
15
|
Moriwaki K, Chan FKM, Miyoshi E. Sweet modification and regulation of death receptor signaling pathway. J Biochem 2021; 169:643-652. [PMID: 33752241 DOI: 10.1093/jb/mvab034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Death receptors, members of the tumor necrosis factor receptor (TNFR) superfamily, are characterized by the presence of a death domain in the cytosolic region. TNFR1, Fas, and TNF-related apoptosis-inducing ligand receptors, which are prototypical death receptors, exert pleiotropic functions in cell death, inflammation, and immune surveillance. Hence, they are involved in several human diseases. The activation of death receptors and downstream intracellular signaling are regulated by various post-translational modifications, such as phosphorylation, ubiquitination, and glycosylation. Glycosylation is one of the most abundant and versatile modifications to proteins and lipids, and it plays a critical role in the development and physiology of organisms, as well as the pathology of many human diseases. Glycans control a number of cellular events, such as receptor activation, signal transduction, endocytosis, cell recognition, and cell adhesion. It has been demonstrated that oligo- and monosaccharides modify death receptors and intracellular signaling proteins, and regulate their functions. Here, we review the current understanding of glycan modifications of death receptor signaling and their impact on signaling activity.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Francis K M Chan
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci Rep 2021; 11:2466. [PMID: 33510350 PMCID: PMC7844035 DOI: 10.1038/s41598-021-81932-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The identification of genome-wide selection signatures can provide insights on the mechanisms of natural and/or artificial selection and uncover genes related to biological functions and/or phenotypes. Tibetan sheep are an important livestock in Tibet, providing meat and wool for Tibetans who are renown for breeding livestock that adapt well to high altitudes. Using whole-genome sequences with an effective sequencing depth of 5×, we investigated the genomic diversity and structure and, identified selection signatures of White Tibetan, Oula and Poll Dorset sheep. We obtained 30,163,679 Single Nucleotide Polymorphisms (SNPs) and 5,388,372 indels benchmarked against the ovine Oar_v4.0 genome assembly. Next, using FST, ZHp and XP-EHH approaches, we identified selection signatures spanning a set of candidate genes, including HIF1A, CAPN3, PRKAA1, RXFP2, TRHR and HOXA10 that are associated with pathways and GO categories putatively related to hypoxia responses, meat traits and disease resistance. Candidate genes and GO terms associated with coat color were also identified. Finally, quantification of blood physiological parameters, revealed higher levels of mean corpuscular hemoglobin measurement and mean corpuscular hemoglobin concentration in Tibetan sheep compared with Poll Dorset, suggesting a greater oxygen-carrying capacity in the Tibetan sheep and thus better adaptation to high-altitude hypoxia. In conclusion, this study provides a greater understanding of genome diversity and variations associated with adaptive and production traits in sheep.
Collapse
|
17
|
Wang L, Yu S, Chan ER, Chen KY, Liu C, Che D, Awadallah A, Myers J, Askew D, Huang AY, Maillard I, Huang D, Xin W, Zhou L. Notch-Regulated Dendritic Cells Restrain Inflammation-Associated Colorectal Carcinogenesis. Cancer Immunol Res 2021; 9:348-361. [PMID: 33441309 DOI: 10.1158/2326-6066.cir-20-0428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/24/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
Conventional dendritic cells (cDC) play a central role in T-cell antitumor responses. We studied the significance of Notch-regulated DC immune responses in a mouse model of colitis-associated colorectal cancer in which there is epithelial downregulation of Notch/Hes1 signaling. This defect phenocopies that caused by GMDS (GDP-mannose 4,6-dehydratase) mutation in human colorectal cancers. We found that, although wild-type immune cells restrained dysplasia progression and decreased the incidence of adenocarcinoma in chimeric mice, the immune system with Notch2 deleted in all blood lineages or in only DCs promoted inflammation-associated transformation. Notch2 signaling deficiency not only impaired cDC terminal differentiation, but also downregulated CCR7 expression, reduced DC migration, and suppressed antigen cross-presentation to CD8+ T cells. Transfer of Notch-primed DCs restrained inflammation-associated dysplasia progression. Consistent with the mouse data, we observed a correlation between infiltrating cDC1 and Notch2 signaling in human colorectal cancers and found that GMDS-mutant colorectal cancers showed decreased CCR7 expression and suppressed cDC1 signature gene expression. Suppressed cDC1 gene signature expression in human colorectal cancer was associated with a poor prognosis. In summary, our study supports an important role for Notch2 signaling in cDC1-mediated antitumor immunity and indicates that Notch2-controlled DCs restrain inflammation-associated colon cancer development in mice.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | | | - Cui Liu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Danian Che
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Amad Awadallah
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - David Askew
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Ivan Maillard
- Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio. .,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
18
|
Sogawa K, Yamanaka S, Takano S, Sasaki K, Miyahara Y, Furukawa K, Takayashiki T, Kuboki S, Takizawa H, Nomura F, Ohtsuka M. Fucosylated C4b-binding protein α-chain, a novel serum biomarker that predicts lymph node metastasis in pancreatic ductal adenocarcinoma. Oncol Lett 2020; 21:127. [PMID: 33552248 PMCID: PMC7798032 DOI: 10.3892/ol.2020.12388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
C4b-binding protein α-chain (C4BPA) was previously identified as a novel serum biomarker for pancreatic ductal adenocarcinoma (PDAC). To apply this biomarker for clinical diagnosis, a lectin ELISA was established to measure serum fucosylated (Fuc)-C4BPA levels in 45 patients with PDAC, 20 patients with chronic pancreatitis (CP) and 50 healthy volunteers (HVs) in one training and three validation sets. The lecithin ELISA developed in the current study exhibited satisfactory within-run (2.6–6.7%) and between-day (1.8–3.6%) coefficient of variations. Serum Fuc-C4BPA levels in patients with PDAC (0.54±0.27 AU/ml) was significantly higher than that in HVs (0.21±0.06 AU/ml; P<0.0001) and patients with CP (0.25±0.03 AU/ml; P<0.0001). Additionally, serum Fuc-C4BPA levels in preoperative patients were significantly decreased compared with postoperative patient sera (P<0.0003). The receiver operating characteristic (ROC) curve analyses revealed that the area under the curve (AUC) of Fuc-C4BPA (0.985) was higher than that of carbohydrate antigen (CA)19-9 (0.843), carcinoembryonic antigen (0.548) and total C4BPA (0.875) (P<0.001). To analyze the clinical significance of Fuc-C4BPA, the ability of Fuc-C4BPA to predict lymph node metastasis was compared with that of CA19-9. The AUC of serum Fuc-C4BPA levels (0.703) was significantly higher than that of serum CA19-9 levels (0.500) in patients with PDAC (P<0.001). The current study established a novel lectin ELISA for measuring serum Fuc-C4BPA levels. Thus, Fuc-C4BPA has potential clinical applications owing to its high diagnostic value in PDAC.
Collapse
Affiliation(s)
- Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Sakino Yamanaka
- Department of Biochemistry, School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kosuke Sasaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoji Miyahara
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hirotaka Takizawa
- Kashiwado Clinic in Port-Square, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
19
|
Tanaka K, Vong K. The Journey to In Vivo Synthetic Chemistry: From Azaelectrocyclization to Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Dai Y, Hartke R, Li C, Yang Q, Liu JO, Wang LX. Synthetic Fluorinated l-Fucose Analogs Inhibit Proliferation of Cancer Cells and Primary Endothelial Cells. ACS Chem Biol 2020; 15:2662-2672. [PMID: 32930566 PMCID: PMC10901565 DOI: 10.1021/acschembio.0c00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fucosylation is one of the most prevalent modifications on N- and O-glycans of glycoproteins, and it plays an important role in various cellular processes and diseases. Small molecule inhibitors of fucosylation have shown promise as therapeutic agents for sickle cell disease, arthritis, and cancer. We describe here the design and synthesis of a panel of fluorinated l-fucose analogs bearing fluorine atoms at the C2 and/or C6 positions of l-fucose as metabolic fucosylation inhibitors. Preliminary study of their effects on cell proliferation revealed that the 6,6-difluoro-l-fucose (3) and 6,6,6-trifluoro-l-fucose (6) showed significant inhibitory activity against proliferation of human colon cancer cells and human umbilical vein endothelial cells. In contrast, the previously reported 2-deoxy-2-fluoro-l-fucose (1) had no apparent effects on proliferations of all the cell lines tested. To understand the mechanism of cell proliferation inhibition by the fluorinated l-fucose analogs, we performed chemoenzymatic synthesis of the corresponding GDP-fluorinated l-fucose analogs and tested their inhibitory activities against the mammalian α1,6-fucosyltransferase (FUT8). Interestingly, the corresponding GDP derivatives of 6,6-difluoro-l-fucose (3) and 6,6,6-trifluoro-l-fucose (6), which are the stronger proliferation inhibitors, showed much weaker inhibitory activity against FUT8 than that of the 2-deoxy-2-fluoro-l-fucose (1). These results suggest that FUT8 is not the major target of the 6-fluorinated fucose analogs (3 and 6). Instead, other factors, such as the key enzymes involved in the de novo GDP-fucose biosynthetic pathway and/or other fucosyltransferases involved in the biosynthesis of tumor-associated glyco-epitopes are most likely the targets of the fluorinated l-fucose analogs to achieve cell proliferation inhibition. To our knowledge, this is the first comparative study of various fluorinated l-fucose analogs for suppressing the proliferation of human cancer and primary endothelial cells required for angiogenesis.
Collapse
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ruth Hartke
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Blanas A, Zaal A, van der Haar Àvila I, Kempers M, Kruijssen L, de Kok M, Popovic MA, van der Horst JC, J. van Vliet S. FUT9-Driven Programming of Colon Cancer Cells towards a Stem Cell-Like State. Cancers (Basel) 2020; 12:cancers12092580. [PMID: 32927726 PMCID: PMC7565653 DOI: 10.3390/cancers12092580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are located in dedicated niches, where they remain inert to chemotherapeutic drugs and drive metastasis. Although plasticity in the CSC pool is well appreciated, the molecular mechanisms implicated in the regulation of cancer stemness are still elusive. Here, we define a fucosylation-dependent reprogramming of colon cancer cells towards a stem cell-like phenotype and function. De novo transcriptional activation of Fut9 in the murine colon adenocarcinoma cell line, MC38, followed by RNA seq-based regulon analysis, revealed major gene regulatory networks related to stemness. Lewisx, Sox2, ALDH and CD44 expression, tumorsphere formation, resistance to 5-FU treatment and in vivo tumor growth were increased in FUT9-expressing MC38 cells compared to the control cells. Likewise, human CRC cell lines highly expressing FUT9 displayed phenotypic features of CSCs, which were significantly impaired upon FUT9 knock-out. Finally, in primary CRC FUT9+ tumor cells pathways related to cancer stemness were enriched, providing a clinically meaningful annotation of the complicity of FUT9 in stemness regulation and may open new avenues for therapeutic intervention.
Collapse
|
22
|
N-Glycoproteins Have a Major Role in MGL Binding to Colorectal Cancer Cell Lines: Associations with Overall Proteome Diversity. Int J Mol Sci 2020; 21:ijms21155522. [PMID: 32752259 PMCID: PMC7432225 DOI: 10.3390/ijms21155522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis. We had recently identified the major MGL-binding glycoproteins in two high-MGL-binding CRC cells lines, HCT116 and HT29. However, we failed to detect the presence of O-linked Tn and STn glycans on most CRC glycoproteins recognized by MGL. We therefore investigated here the impact of N-linked and O-linked glycans carried by these proteins for the binding to MGL. In addition, we performed quantitative proteomics to study the major differences in proteins involved in glycosylation in these cells. Our results showed that N-glycans have a significant, previously underestimated, importance in MGL binding to CRC cell lines. Finally, we highlighted both common and cell-specific processes associated with a high-MGL-binding phenotype, such as differential levels of enzymes involved in protein glycosylation, and a transcriptional factor (CDX-2) involved in their regulation.
Collapse
|
23
|
Miyoshi E, Kamada Y, Suzuki T. Functional glycomics: Application to medical science and hepatology. Hepatol Res 2020; 50:153-164. [PMID: 31750967 DOI: 10.1111/hepr.13459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/20/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023]
Abstract
Glycomics refers to the comprehensive analysis of glycans. Recent progress in glycotechnology enables the determination of a variety of biological functions of glycans. Among different glycosylation patterns, certain types of aberrant glycosylation are linked to cancer and/or inflammation, and thus have biological importance. Glycotechnology has been applied to many fields of medical science, including hepatology. In particular, dramatic changes in glycosylation are observed in the progression of liver diseases. As the liver produces so many serum glycoproteins, changes in glycosylation of these proteins might provide useful disease biomarkers. Furthermore, many patients with genetic diseases of glycosylation who have liver dysfunction have been found as a result from whole genome sequencing, and various kinds of glycotherapy have been developed, especially in immunotherapy. In this review, we describe our basic knowledge of glycobiology and discuss the application of these data to medical science, especially hepatology.
Collapse
Affiliation(s)
- Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama, Japan
| |
Collapse
|
24
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
25
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
26
|
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 2019; 9:380. [PMID: 31157165 PMCID: PMC6530332 DOI: 10.3389/fonc.2019.00380] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Tumour and Microenvironment Interactions Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center, Porto, Portugal
| |
Collapse
|
27
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
28
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Zhang B, van Roosmalen IAM, Reis CR, Setroikromo R, Quax WJ. Death receptor 5 is activated by fucosylation in colon cancer cells. FEBS J 2019; 286:555-571. [PMID: 30589515 PMCID: PMC6849799 DOI: 10.1111/febs.14742] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/01/2018] [Accepted: 12/24/2018] [Indexed: 12/24/2022]
Abstract
The remarkable pro‐apoptotic properties of tumour necrosis factor (TNF)‐related apoptosis‐inducing ligand (TRAIL) have led to considerable interest in this protein as a potential anticancer therapeutic. However, TRAIL is largely ineffective in inducing apoptosis in certain cancer cells, and the mechanisms underlying this selectivity are unknown. In colon adenocarcinomas, posttranslational modifications including O‐ and N‐ glycosylation of death receptors were found to correlate with TRAIL‐induced apoptosis. Additionally, mRNA levels of fucosyltransferase 3 (FUT3) and 6 (FUT6) were found to be high in the TRAIL‐sensitive colon adenocarcinoma cell line COLO 205. In this study, we use agonistic receptor‐specific TRAIL variants to dissect the contribution of FUT3 and FUT6‐mediated fucosylation to TRAIL‐induced apoptosis via its two death receptors, DR4 and DR5. Triggering of apoptosis by TRAIL revealed that the low FUT3/6‐expressing cells DLD‐1 and HCT 116 are insensitive to DR5 but not to DR4‐mediated apoptosis. By contrast, efficient apoptosis is mediated via both receptors in high FUT3/6‐expressing COLO 205 cells. The reconstitution of FUT3/6 expression in DR5‐resistant cells completely restored TRAIL sensitivity via this receptor, while only marginally enhancing apoptosis via DR4 at lower TRAIL concentrations. Interestingly, we observed that induction of the salvage pathway by external administration of l‐fucose restores DR5‐mediated apoptosis in both DLD‐1 and HCT 116 cells. Finally, we show that fucosylation influences the ligand‐independent receptor association that leads to increased death inducing signalling complex (DISC) formation and caspase‐8 activation. Taken together, these results provide evidence for the differential impact of fucosylation on signalling via DR4 or DR5. These findings provide novel opportunities to enhance TRAIL sensitivity in colon adenocarcinoma cells that are highly resistant to DR5‐mediated apoptosis.
Collapse
Affiliation(s)
- Baojie Zhang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ingrid A M van Roosmalen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Carlos R Reis
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| |
Collapse
|
30
|
Yang J, Kong P, Yang J, Jia Z, Hu X, Wang Z, Cui H, Bi Y, Qian Y, Li H, Wang F, Yang B, Yan T, Ma Y, Zhang L, Cheng C, Song B, Li Y, Xu E, Liu H, Gao W, Wang J, Liu Y, Zhai Y, Chang L, Wang Y, Zhang Y, Shi R, Liu J, Wang Q, Cheng X, Cui Y. High TSTA3 Expression as a Candidate Biomarker for Poor Prognosis of Patients With ESCC. Technol Cancer Res Treat 2018; 17:1533033818781405. [PMID: 29950151 PMCID: PMC6048620 DOI: 10.1177/1533033818781405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Esophageal squamous cell carcinoma is the sixth most lethal cancer worldwide and the
fourth most lethal cancer in China. Tissue-specific transplantation antigen P35B codifies
the enzyme GDP-d-mannose-4,6-dehydratase, which participates in the biosynthesis
of GDP-l-fucose. GDP-l-fucose is an important substrate involved in the
biosynthesis of many glycoproteins. Cancer cells are often accompanied by the changes in
glycoprotein structure, which affects the adhesion, invasion, and metastasis of cells. It
is not clear whether tissue-specific transplantation antigen P35B has any effect on the
development of esophageal squamous cell carcinoma. We used an immunohistochemical method
to assess the expression of tissue-specific transplantation antigen P35B in 104 esophageal
squamous cell carcinoma samples. The results showed tissue-specific transplantation
antigen P35B expression was associated with some clinical features in patients, such as
age (P = .017), clinical stage (P = .010), and lymph
node metastasis (P = .043). Kaplan-Meier analysis and log-rank test
showed that patients with esophageal squamous cell carcinoma having high tissue-specific
transplantation antigen P35B expression had a worse prognosis compared to the patients
with low expression (P = .048). Multivariate Cox proportional hazards
regression model showed that high expression of tissue-specific transplantation antigen
P35B could predict poor prognosis for patients with esophageal squamous cell carcinoma
independently. In conclusion, abnormal fucosylation might participate in the progress of
esophageal squamous cell carcinoma and tissue-specific transplantation antigen P35B may
serve as a novel biomarker for prognosis of patients with esophageal squamous cell
carcinoma.
Collapse
Affiliation(s)
- Jie Yang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,3 Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Pengzhou Kong
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian Yang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhiwu Jia
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiaoling Hu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,4 Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zianyi Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,5 Taiyuan Lingde Secondary School, Taiyuan, Shanxi, PR China
| | - Heyang Cui
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanghui Bi
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yu Qian
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hongyi Li
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Fang Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Bin Yang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,6 Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Ting Yan
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanchun Ma
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ling Zhang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Caixia Cheng
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,7 Department of Pathology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Bin Song
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,8 Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yaoping Li
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,9 Department of Anorectum, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Enwei Xu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,10 Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Haiyan Liu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Wei Gao
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,11 Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Taiyuan, Shanxi, PR China.,12 Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Juan Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yiqian Liu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yuanfang Zhai
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,13 Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Lu Chang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yi Wang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yingchun Zhang
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,13 Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ruyi Shi
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jing Liu
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,14 Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Qi Wang
- 3 Department of Gastroenterology, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiaolong Cheng
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China.,13 Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yongping Cui
- 1 Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China.,2 Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
31
|
Ng BG, Rosenfeld JA, Emrick L, Jain M, Burrage LC, Lee B, Craigen WJ, Bearden DR, Graham BH, Freeze HH, Freeze HH. Pathogenic Variants in Fucokinase Cause a Congenital Disorder of Glycosylation. Am J Hum Genet 2018; 103:1030-1037. [PMID: 30503518 DOI: 10.1016/j.ajhg.2018.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/25/2018] [Indexed: 01/20/2023] Open
Abstract
FUK encodes fucokinase, the only enzyme capable of converting L-fucose to fucose-1-phosphate, which will ultimately be used for synthesizing GDP-fucose, the donor substrate for all fucosyltransferases. Although it is essential for fucose salvage, this pathway is thought to make only a minor contribution to the total amount of GDP-fucose. A second pathway, the major de novo pathway, involves conversion of GDP-mannose to GDP-fucose. Here we describe two unrelated individuals who have pathogenic variants in FUK and who presented with severe developmental delays, encephalopathy, intractable seizures, and hypotonia. The first individual was compound heterozygous for c.667T>C (p.Ser223Pro) and c.2047C>T (p.Arg683Cys), and the second individual was homozygous for c.2980A>C (p.Lys994Gln). Skin fibroblasts from the first individual confirmed the variants as loss of function and showed significant decreases in total GDP-[3H] fucose and [3H] fucose-1-phosphate. There was also a decrease in the incorporation of [5,6-3H]-fucose into fucosylated glycoproteins. Lys994 has previously been shown to be an important site for ubiquitin conjugation. Here, we show that loss-of-function variants in FUK cause a congenital glycosylation disorder characterized by a defective fucose-salvage pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hudson H Freeze
- Human Genetics Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Saarinen L, Nummela P, Leinonen H, Heiskanen A, Thiel A, Haglund C, Lepistö A, Satomaa T, Hautaniemi S, Ristimäki A. Glycomic Profiling Highlights Increased Fucosylation in Pseudomyxoma Peritonei. Mol Cell Proteomics 2018; 17:2107-2118. [PMID: 30072579 DOI: 10.1074/mcp.ra118.000615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomyxoma peritonei (PMP) is a subtype of mucinous adenocarcinoma that most often originates from the appendix, and grows in the peritoneal cavity filling it with mucinous ascites. KRAS and GNAS mutations are frequently found in PMP, but other common driver mutations are infrequent. As altered glycosylation can promote carcinogenesis, we compared N-linked glycan profiles of PMP tissues to those of normal appendix. Glycan profiles of eight normal appendix samples and eight low-grade and eight high-grade PMP specimens were analyzed by mass spectrometry. Our results show differences in glycan profiles between PMP and the controls, especially in those of neutral glycans, and the most prominent alteration was increased fucosylation. We further demonstrate up-regulated mRNA expression of four fucosylation-related enzymes, the core fucosylation performing fucosyltransferase 8 and three GDP-fucose biosynthetic enzymes in PMP tissues when compared with the controls. Up-regulated protein expression of the latter three enzymes was further observed in PMP cells by immunohistochemistry. We also demonstrate that restoration of fucosylation either by salvage pathway or by introduction of an expression of intact GDP-mannose 4,6-dehydratase enhance expression of MUC2, which is the predominant mucin molecule secreted by the PMP cells, in an intestinal-derived adenocarcinoma cell line with defective fucosylation because of deletion in the GDP-mannose 4,6-dehydratase gene. Thus, altered glycosylation especially in the form of fucosylation is linked to the characteristic mucin production of PMP. Glycomic data are available via ProteomeXchange with identifier PXD010086.
Collapse
Affiliation(s)
- Lilli Saarinen
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Pirjo Nummela
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Hannele Leinonen
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | | | - Alexandra Thiel
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Caj Haglund
- ¶Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FI-00029 HUS, Finland.,‖Translational Cancer Biology, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Anna Lepistö
- ¶Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FI-00029 HUS, Finland
| | - Tero Satomaa
- §Glykos Finland Ltd, Viikinkaari 6, FI-00790 Helsinki, Finland
| | - Sampsa Hautaniemi
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Ari Ristimäki
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland; .,**Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, P.O. Box 400, FI-00029 HUS, Finland
| |
Collapse
|
33
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
34
|
Wei X, Zhang K, Qin H, Zhu J, Qin Q, Yu Y, Wang H. GMDS knockdown impairs cell proliferation and survival in human lung adenocarcinoma. BMC Cancer 2018; 18:600. [PMID: 29843634 PMCID: PMC5975429 DOI: 10.1186/s12885-018-4524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 05/18/2018] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma is the most common type of lung cancer and one of the most lethal and prevalent cancers. Aberrant glycosylation was common and essential in tumorigenesis, with fucosylation as one of the most common types disrupted in cancers. However, it is still unknown whether genes involved in fucosylation are important for lung adenocarcinoma development and process. Methods GMDS is involved in cellular fucosylation. Here we examined GMDS expression level at both mRNA and protein level in lung adenocarcinoma. The impact of GMDS knockdown on lung adenocarcinoma in vitro and in vivo was investigated. Transcriptome changes with GMDS knockdown in lung adenocarcinoma cells were also examined to provide insights into related molecular mechanisms. Results GMDS expression is significantly upregulated in lung adenocarcinoma at both mRNA and protein levels. Lentivirus-mediated shRNA strategy inhibited GMDS expression efficiently in human lung adenocarcinoma cells A549 and H1299, and GMDS knockdown impaired cell proliferation, colony formation ability, induced cell cycle arrest, and apoptosis in both cell lines. Furthermore, GMDS knockdown inhibited tumorigenesis in a xenograft mice model of lung adenocarcinoma. Microarray analysis explored the GMDS-mediated molecular network and revealed that the CASP8-CDKN1A axis might be critical for lung adenocarcinoma development. Conclusions These findings suggest that GMDS upregulation is critical for cell proliferation and survival in human lung adenocarcinoma and might serve as a potential biomarker for lung adenocarcinoma diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12885-018-4524-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Wei
- Outpatient Department, Southern Theatre Command of People's Liberation Army, Guangzhou, 510080, Guangdong, China
| | - Kun Zhang
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Haifeng Qin
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Jinlong Zhu
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Qiaoxi Qin
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Yang Yu
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Hong Wang
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China.
| |
Collapse
|
35
|
Micheau O. Regulation of TNF-Related Apoptosis-Inducing Ligand Signaling by Glycosylation. Int J Mol Sci 2018; 19:E715. [PMID: 29498673 PMCID: PMC5877576 DOI: 10.3390/ijms19030715] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis-factor related apoptosis-inducing ligand, also known as TRAIL or APO2L (Apo-2 ligand), is a cytokine of the TNF superfamily acknowledged for its ability to trigger selective apoptosis in tumor cells while being relatively safe towards normal cells. Its binding to its cognate agonist receptors, namely death receptor 4 (DR4) and/or DR5, can induce the formation of a membrane-bound macromolecular complex, coined DISC (death-signaling inducing complex), necessary and sufficient to engage the apoptotic machinery. At the very proximal level, TRAIL DISC formation and activation of apoptosis is regulated both by antagonist receptors and by glycosylation. Remarkably, though, despite the fact that all membrane-bound TRAIL receptors harbor putative glycosylation sites, only pro-apoptotic signaling through DR4 and DR5 has, so far, been found to be regulated by N- and O-glycosylation, respectively. Because putative N-glycosylation sequons and O-glycosylation sites are also found and conserved in all these receptors throughout all animal species (in which these receptors have been identified), glycosylation is likely to play a more prominent role than anticipated in regulating receptor/receptor interactions or trafficking, ultimately defining cell fate through TRAIL stimulation. This review aims to present and discuss these emerging concepts, the comprehension of which is likely to lead to innovative anticancer therapies.
Collapse
Affiliation(s)
- Olivier Micheau
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
- UFR Sciences de Santé, University Bourgogne Franche-Comté, UBFC, F-21079 Dijon, France.
| |
Collapse
|
36
|
Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation. Oncotarget 2018; 9:12732-12744. [PMID: 29560105 PMCID: PMC5849169 DOI: 10.18632/oncotarget.24332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/20/2018] [Indexed: 12/13/2022] Open
Abstract
We previously found that the serum level of fucosylated haptoglobin (Fuc-Hpt) was significantly increased in pancreatic cancer patients. To delineate the mechanism underlying this increase and develop a simple detection method, we set out to generate a monoclonal antibody (mAb) specific for Fuc-Hpt. After multiple screenings by enzyme-linked immunosorbent assay (ELISA), a 10-7G mAb was identified as being highly specific for Fuc-Hpt generated in a cell line as well as for Hpt derived from a pancreatic cancer patient. As a result from affinity chromatography with 10-7G mAb, followed by lectin blot and mass spectrometry analyses, it was found that 10-7G mAb predominantly recognized both Fuc-Hpt and prohaptoglobin (proHpt), which was also fucosylated. In immunohistochemical analyses, hepatocytes surrounding metastasized cancer cells were stained by the 10-7G mAb, but neither the original cancer cells themselves nor normal hepatocytes exhibited positive staining, suggesting that metastasized cancer cells promote Fuc-Hpt production in adjacent hepatocytes. Serum level of Fuc-Hpt determined with newly developed ELISA system using the 10-7G mAb, was increased in patients of pancreatic and colorectal cancer. Interestingly, dramatic increases in Fuc-Hpt levels were observed at the stage IV of colorectal cancer. These results indicate that the 10-7G mAb developed is a promising antibody which recognizes Fuc-Hpt and could be a useful diagnostic tool for detecting liver metastasis of cancer.
Collapse
|
37
|
Ferdosi S, Rehder DS, Maranian P, Castle EP, Ho TH, Pass HI, Cramer DW, Anderson KS, Fu L, Cole DEC, Le T, Wu X, Borges CR. Stage Dependence, Cell-Origin Independence, and Prognostic Capacity of Serum Glycan Fucosylation, β1-4 Branching, β1-6 Branching, and α2-6 Sialylation in Cancer. J Proteome Res 2018; 17:543-558. [PMID: 29129073 PMCID: PMC5978412 DOI: 10.1021/acs.jproteome.7b00672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans represent a promising but only marginally accessed source of cancer markers. We previously reported the development of a molecularly bottom-up approach to plasma and serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals. Based on the behavior of P/S glycans established to date, we hypothesized that the alteration of P/S glycans observed in cancer would be independent of the tissue in which the tumor originated yet exhibit stage dependence that varied little between cancers classified on the basis of tumor origin. Herein, the diagnostic utility of this bottom-up approach as applied to lung cancer patients (n = 127 stage I; n = 20 stage II; n = 81 stage III; and n = 90 stage IV) as well as prostate (n = 40 stage II), serous ovarian (n = 59 stage III), and pancreatic cancer patients (n = 15 rapid autopsy) compared to certifiably healthy individuals (n = 30), nominally healthy individuals (n = 166), and risk-matched controls (n = 300) is reported. Diagnostic performance in lung cancer was stage-dependent, with markers for terminal (total) fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation most able to differentiate cases from controls. These markers behaved in a similar stage-dependent manner in other types of cancer as well. Notable differences between certifiably healthy individuals and case-matched controls were observed. These markers were not significantly elevated in liver fibrosis. Using a Cox proportional hazards regression model, the marker for α2-6 sialylation was found to predict both progression and survival in lung cancer patients after adjusting for age, gender, smoking status, and stage. The potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.
Collapse
Affiliation(s)
- Shadi Ferdosi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Douglas S. Rehder
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Maranian
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Erik P. Castle
- Department of Urology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Thai H. Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Harvey I. Pass
- Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York 10016, United States
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Lei Fu
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David E. C. Cole
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Le
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xifeng Wu
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
38
|
de Freitas Junior JCM, Morgado-Díaz JA. The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications. Oncotarget 2017; 7:19395-413. [PMID: 26539643 PMCID: PMC4991391 DOI: 10.18632/oncotarget.6283] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Changes in glycosylation, which is one of the most common protein post-translational modifications, are considered to be a hallmark of cancer. N-glycans can modulate cell migration, cell-cell adhesion, cell signaling, growth and metastasis. The colorectal cancer (CRC) is a leading cause of cancer-related mortality and the correlation between CRC progression and changes in the pattern of expression of N-glycans is being considered in the search for new biomarkers. Here, we review the role of N-glycans in CRC cell biology. The perspectives on emerging N-glycan-related anticancer therapies, along with new insights and challenges, are also discussed.
Collapse
Affiliation(s)
| | - José Andrés Morgado-Díaz
- Cellular Biology Program, Structural Biology Group, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Kizuka Y, Funayama S, Shogomori H, Nakano M, Nakajima K, Oka R, Kitazume S, Yamaguchi Y, Sano M, Korekane H, Hsu TL, Lee HY, Wong CH, Taniguchi N. High-Sensitivity and Low-Toxicity Fucose Probe for Glycan Imaging and Biomarker Discovery. Cell Chem Biol 2017; 23:782-792. [PMID: 27447047 DOI: 10.1016/j.chembiol.2016.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/13/2023]
Abstract
Fucose, a terminal sugar in glycoconjugates, critically regulates various physiological and pathological phenomena, including cancer development and inflammation. However, there are currently no probes for efficient labeling and detection of this sugar. We chemically synthesized a novel series of alkynyl-fucose analogs as probe candidates and found that 7-alkynyl-fucose gave the highest labeling efficiency and low cytotoxicity. Among the fucose analogs, 7-alkynyl-fucose was the best substrate against all five fucosyltransferases examined. We confirmed its conversion to the corresponding guanosine diphosphate derivative in cells and found that cellular glycoproteins were labeled much more efficiently with 7-alkynyl-fucose than with an existing probe. 7-Alkynyl-fucose was detected in the N-glycan core by mass spectrometry, and 7-alkynyl-fucose-modified proteins mostly disappeared in core-fucose-deficient mouse embryonic fibroblasts, suggesting that this analog mainly labeled core fucose in these cells. These results indicate that 7-alkynyl-fucose is a highly sensitive and powerful tool for basic glycobiology research and clinical application for biomarker discovery.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sho Funayama
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Hidehiko Shogomori
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima 739-8530, Japan
| | - Kazuki Nakajima
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan; Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Global Research Cluster, RIKEN, Saitama 351-0198, Japan
| | - Masahiro Sano
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Hiroaki Korekane
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsiu-Yu Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan.
| |
Collapse
|
40
|
Kizuka Y, Nakano M, Yamaguchi Y, Nakajima K, Oka R, Sato K, Ren CT, Hsu TL, Wong CH, Taniguchi N. An Alkynyl-Fucose Halts Hepatoma Cell Migration and Invasion by Inhibiting GDP-Fucose-Synthesizing Enzyme FX, TSTA3. Cell Chem Biol 2017; 24:1467-1478.e5. [PMID: 29033318 DOI: 10.1016/j.chembiol.2017.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/30/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022]
Abstract
Fucosylation is a glycan modification critically involved in cancer and inflammation. Although potent fucosylation inhibitors are useful for basic and clinical research, only a few inhibitors have been developed. Here, we focus on a fucose analog with an alkyne group, 6-alkynyl-fucose (6-Alk-Fuc), which is used widely as a detection probe for fucosylated glycans, but is also suggested for use as a fucosylation inhibitor. Our glycan analysis using lectin and mass spectrometry demonstrated that 6-Alk-Fuc is a potent and general inhibitor of cellular fucosylation, with much higher potency than the existing inhibitor, 2-fluoro-fucose (2-F-Fuc). The action mechanism was shown to deplete cellular GDP-Fuc, and the direct target of 6-Alk-Fuc is FX (encoded by TSTA3), the bifunctional GDP-Fuc synthase. We also show that 6-Alk-Fuc halts hepatoma invasion. These results highlight the unappreciated role of 6-Alk-Fuc as a fucosylation inhibitor and its potential use for basic and clinical science.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Division of Clinical Research Promotion and Support, Center for Research Promotion, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Keiko Sato
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
41
|
Zhou Y, Fukuda T, Hang Q, Hou S, Isaji T, Kameyama A, Gu J. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep 2017; 7:11563. [PMID: 28912543 PMCID: PMC5599613 DOI: 10.1038/s41598-017-11911-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Core fucosylation is one of the most important glycosylation events in the progression of liver cancer. For this study, we used an easily handled L-fucose analog, 2-fluoro-L-fucose (2FF), which interferes with the normal synthesis of GDP-fucose, and verified its potential roles in regulating core fucosylation and cell behavior in the HepG2 liver cancer cell line. Results obtained from lectin blot and flow cytometry analysis clearly showed that 2FF treatment dramatically inhibited core fucosylation, which was also confirmed via mass spectrometry analysis. Cell proliferation and integrin-mediated cell migration were significantly suppressed in cells treated with 2FF. We further analyzed cell colony formation in soft agar and tumor xenograft efficacy, and found that both were greatly suppressed in the 2FF-treated cells, compared with the control cells. Moreover, the treatment with 2FF decreased the core fucosylation levels of membrane glycoproteins such as EGF receptor and integrin β1, which in turn suppressed downstream signals that included phospho-EGFR, -AKT, -ERK, and -FAK. These results clearly described the roles of 2FF and the importance of core fucosylation in liver cancer progression, suggesting 2FF shows promise for use in the treatment of hepatoma.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Akihiko Kameyama
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
42
|
McGirr JA, Martin CH. Novel Candidate Genes Underlying Extreme Trophic Specialization in Caribbean Pupfishes. Mol Biol Evol 2017; 34:873-888. [PMID: 28028132 PMCID: PMC5850223 DOI: 10.1093/molbev/msw286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic changes responsible for evolutionary transitions from generalist to specialist phenotypes are poorly understood. Here we examine the genetic basis of craniofacial traits enabling novel trophic specialization in a sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist species and two novel specialists: a small-jawed "snail-eater" and a large-jawed "scale-eater." We genotyped 12 million single nucleotide polymorphisms (SNPs) by whole-genome resequencing of 37 individuals of all three species from nine populations and integrated genome-wide divergence scans with association mapping to identify divergent regions containing putatively causal SNPs affecting jaw size-the most rapidly diversifying trait in this radiation. A mere 22 fixed variants accompanied extreme ecological divergence between generalist and scale-eater species. We identified 31 regions (20 kb) containing variants fixed between specialists that were significantly associated with variation in jaw size which contained 11 genes annotated for skeletal system effects and 18 novel candidate genes never previously associated with craniofacial phenotypes. Six of these 31 regions showed robust signs of hard selective sweeps after accounting for demographic history. Our data are consistent with predictions based on quantitative genetic models of adaptation, suggesting that the effect sizes of regions influencing jaw phenotypes are positively correlated with distance between fitness peaks on a complex adaptive landscape.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
43
|
Zhang K, Wang H. [Role of Fucosylation in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:760-765. [PMID: 27866519 PMCID: PMC5999636 DOI: 10.3779/j.issn.1009-3419.2016.11.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
岩藻糖基化是重要的糖基化修饰方式,在哺乳动物中发挥重要作用,其参与ABO血型H抗原、Lewis血型抗原形成、选择素介导的白细胞外渗或归巢、宿主病原相互作用及信号通路修饰。在多种肿瘤中存在岩藻糖基化异常,其在肿瘤生长、侵袭、转移、免疫逃逸以及药物敏感性方面发挥重要作用,与肺癌的发生发展及预后密切相关。因此,靶向肿瘤中异常岩藻糖基化可能成为治疗肿瘤的新策略。本文将对岩藻糖基化在肿瘤发生发展中的作用进行综述。
Collapse
Affiliation(s)
- Kun Zhang
- Department of Lung Oncology, Affiliated Hospital of the PLA Military Academy of Medical Sciences, Beijing 100071, China
| | - Hong Wang
- Department of Lung Oncology, Affiliated Hospital of the PLA Military Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
44
|
Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 2017; 6:e306. [PMID: 28319096 PMCID: PMC5533945 DOI: 10.1038/oncsis.2017.2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Hyperglycemia is a common feature of diabetes mellitus, considered as a risk factor for cancer. However, its direct effects in cancer cell behavior are relatively unexplored. Herein we show that high glucose concentration induces aberrant glycosylation, increased cell proliferation, invasion and tumor progression of colon cancer. By modulating the activity of the rate-limiting enzyme, glutamine-fructose-6-phosphate amidotransferase (GFAT), we demonstrate that hexosamine biosynthetic pathway (HBP) is involved in those processes. Biopsies from patients with colon carcinoma show increased levels of GFAT and consequently aberrant glycans’ expression suggesting an increase of HBP flow in human colon cancer. All together, our results open the possibility that HBP links hyperglycemia, aberrant glycosylation and tumor malignancy, and suggest this pathway as a potential therapeutic target for colorectal cancer.
Collapse
|
45
|
Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. BIOLOGY 2017; 6:biology6010016. [PMID: 28241499 PMCID: PMC5372009 DOI: 10.3390/biology6010016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.
Collapse
|
46
|
Wang Y, Huang D, Chen KY, Cui M, Wang W, Huang X, Awadellah A, Li Q, Friedman A, Xin WW, Di Martino L, Cominelli F, Miron A, Chan R, Fox J, Xu Y, Shen X, Kalady MF, Markowitz S, Maillard I, Lowe JB, Xin W, Zhou L. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma. Gastroenterology 2017; 152:193-205.e10. [PMID: 27639802 PMCID: PMC5164974 DOI: 10.1053/j.gastro.2016.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. METHODS FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). RESULTS Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced mucosal barrier function, and altered epithelial proliferation marked by Ki67. Fx-/- mice receiving control bone marrow cells had intestinal inflammation and dysplasia, and reduced expression of cytokines produced by cytotoxic T cells. Human sessile serrated adenomas and right-sided colorectal tumors with epigenetic loss of MutL homolog 1 (MLH1) had lost or had lower levels of HES1 than other colorectal tumor types or nontumor tissues. CONCLUSIONS In mice, fucosylation deficiency leads to colitis and adenocarcinoma, loss of Notch activation, and down-regulation of Hes1. HES1 loss correlates with the development of human right-sided colorectal tumors with epigenetic loss of MLH1. These findings indicate that carcinogenesis in a subset of colon cancer is consequent to a molecular mechanism driven by fucosylation deficiency and/or HES1-loss.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kai-Yuan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Min Cui
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaoran Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amad Awadellah
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Qing Li
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - William W. Xin
- School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104-6304, USA
| | - Luca Di Martino
- Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Alex Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44106, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mathew F. Kalady
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sanford Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John B. Lowe
- Department of Pathology, Genentech Inc., San Francisco, CA, 94080 USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA,Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
47
|
Cancer Therapy Due to Apoptosis: Galectin-9. Int J Mol Sci 2017; 18:ijms18010074. [PMID: 28045432 PMCID: PMC5297709 DOI: 10.3390/ijms18010074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/25/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of apoptosis is a major hallmark in cancer biology that might equip tumors with a higher malignant potential and chemoresistance. The anti-cancer activities of lectin, defined as a carbohydrate-binding protein that is not an enzyme or antibody, have been investigated for over a century. Recently, galectin-9, which has two distinct carbohydrate recognition domains connected by a linker peptide, was noted to induce apoptosis in thymocytes and immune cells. The apoptosis of these cells contributes to the development and regulation of acquired immunity. Furthermore, human recombinant galectin-9, hG9NC (null), which lacks an entire region of the linker peptide, was designed to resist proteolysis. The hG9NC (null) has demonstrated anti-cancer activities, including inducing apoptosis in hematological, dermatological and gastrointestinal malignancies. In this review, the molecular characteristics, history and apoptosis-inducing potential of galectin-9 are described.
Collapse
|
48
|
Miyoshi E, Shinzaki S, Fujii H, Iijima H, Kamada Y, Takehara T. Role of aberrant IgG glycosylation in the pathogenesis of inflammatory bowel disease. Proteomics Clin Appl 2016; 10:384-90. [PMID: 26427763 DOI: 10.1002/prca.201500089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/31/2015] [Accepted: 09/24/2015] [Indexed: 01/02/2023]
Abstract
The intestine is one of the most important organs associated with the immune system. It is thought that disruption of intestinal immunity causes inflammatory bowel disease (IBD). Recent advances in immune glycobiology have provided novel insights into many human diseases. For example, studies of glycosylation remodeling in mice have underscored the importance of oligosaccharides in the pathogenesis of IBD. Furthermore, aberrant glycosylation of IgG is a good serum marker of IBD activity. In this review, we examine current understanding of the role of aberrant glycosylation in the pathogenesis of IBD in terms of our original data and recent reports.
Collapse
Affiliation(s)
- Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichiro Shinzaki
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hironobu Fujii
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
49
|
Lau E, Feng Y, Claps G, Fukuda MN, Perlina A, Donn D, Jilaveanu L, Kluger H, Freeze HH, Ronai ZA. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation. Sci Signal 2015; 8:ra124. [PMID: 26645581 DOI: 10.1126/scisignal.aac6479] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)-mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients.
Collapse
Affiliation(s)
- Eric Lau
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Giuseppina Claps
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michiko N Fukuda
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ally Perlina
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dylan Donn
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lucia Jilaveanu
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT 06520, USA
| | - Harriet Kluger
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT 06520, USA
| | - Hudson H Freeze
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
do Nascimento JCF, Ferreira SDA, Vasconcelos JLDA, da Silva-Filho JLQ, Barbosa BT, Bezerra MF, Rocha CRC, Beltrão EIC. Fut3 role in breast invasive ductal carcinoma: Investigating its gene promoter and protein expression. Exp Mol Pathol 2015; 99:409-15. [PMID: 26321244 DOI: 10.1016/j.yexmp.2015.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/07/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022]
Abstract
Fucosylated glycans synthesized by α1,3/4-fucosyltransferase (FUT3) enzyme play an important role in breast cancer prognosis and metastasis, being involved in the binding of circulating tumor cells to the endothelium and being related to tumor stage, metastatic potential and chemoresistance. Despite the pro-tumor action of this enzyme, studies have demonstrated its role in natural killer-induced cytotoxicity through the recognition of sialyl Lewis X by C-type lectin receptors and through extrinsic apoptosis pathway triggered by Apo2L-TRAIL. This study aimed to investigate the expression pattern of FUT3 in invasive breast carcinoma (IDC) from patients of Pernambuco state, Northeast of Brazil, and genotype FUT3 promoter region to identify possible SNPs that could be associated with variations in FUT3 expression. Immunohistochemistry assay was used to access the FUT3 expression in normal (n=11) and tumor tissues (n=85). DNA sequencing was performed to genotype the FUT3 promoter region in patients with IDC (n=109) and healthy controls (n=110). Our results demonstrated that the absence of FUT3 enzyme is related to breast's IDC. The non-expression of FUT3 was more frequent in larger lesions and also in HER2 negative IDC tumors. Genomic analysis showed that two variations localized in FUT3 promoter region are possibly associated with IDC. Our results suggest that minor allele T of SNP rs73920070 (-6933 C>T) confers protection whereas minor allele T of SNP rs2306969 (-6951 C>T) triggers to susceptibility to IDC in the population of Pernambuco state, Northeast of Brazil.
Collapse
Affiliation(s)
- Jessica Catarine Frutuoso do Nascimento
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| | - Steffany de Almeida Ferreira
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| | | | - João Luiz Quirino da Silva-Filho
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| | - Bruno Trajano Barbosa
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| | - Matheus Filgueira Bezerra
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| | - Cíntia Renata Costa Rocha
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| | - Eduardo Isidoro Carneiro Beltrão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Av. Prof. Moraes Rêgo, s/n, CDU, Recife, PE 50670-901, Brazil
| |
Collapse
|