1
|
Li AL, Sugiura K, Nishiwaki N, Suzuki K, Sadeghian D, Zhao J, Maitra A, Falvo D, Chandwani R, Pitarresi JR, Sims PA, Rustgi AK. FRA1 controls acinar cell plasticity during murine Kras G12D-induced pancreatic acinar to ductal metaplasia. Dev Cell 2024; 59:3025-3042.e7. [PMID: 39178842 PMCID: PMC11576252 DOI: 10.1016/j.devcel.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Acinar cells have been proposed as a cell-of-origin for pancreatic ductal adenocarcinoma (PDAC) after undergoing acinar-to-ductal metaplasia (ADM). ADM can be triggered by pancreatitis, causing acinar cells to de-differentiate to a ductal-like state. We identify FRA1 (gene name Fosl1) as the most active transcription factor during KrasG12D acute pancreatitis-mediated injury, and we have elucidated a functional role of FRA1 by generating an acinar-specific Fosl1 knockout mouse expressing KrasG12D. Using a gene regulatory network and pseudotime trajectory inferred from single-nuclei ATAC-seq and bulk RNA sequencing (RNA-seq), we hypothesized a regulatory model of the acinar-ADM-pancreatic intraepithelial neoplasia (PanIN) continuum and experimentally validated that Fosl1 knockout mice are delayed in the onset of ADM and neoplastic transformation. Our study also identifies that pro-inflammatory cytokines, such as granulocyte colony stimulating factor (G-CSF), can regulate FRA1 activity to modulate ADM. Our findings identify that FRA1 is a mediator of acinar cell plasticity and is critical for acinar cell de-differentiation and transformation.
Collapse
Affiliation(s)
- Alina L Li
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kensuke Sugiura
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Noriyuki Nishiwaki
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kensuke Suzuki
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of General Surgery, Chiba University, Chiba 260-0856, Japan
| | - Dorsay Sadeghian
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Falvo
- Department of Surgery and of Cell and Developmental Biology, Meyer Cancer Center, Weill-Cornell Medicine, New York, NY 10065, USA
| | - Rohit Chandwani
- Department of Surgery and of Cell and Developmental Biology, Meyer Cancer Center, Weill-Cornell Medicine, New York, NY 10065, USA
| | - Jason R Pitarresi
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan School of Medicine, Worchester, MA 01655, USA
| | - Peter A Sims
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anil K Rustgi
- Divison of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
3
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Venkat S, Feigin ME. Alternative Polyadenylation Characterizes Epithelial and Fibroblast Phenotypic Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:640. [PMID: 38339391 PMCID: PMC10854489 DOI: 10.3390/cancers16030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Human tumors are characterized by extensive intratumoral transcriptional variability within the cancer cell and stromal compartments. This variation drives phenotypic heterogeneity, producing cell states with differential pro- and anti-tumorigenic properties. While bulk RNA sequencing cannot achieve cell-type-specific transcriptional granularity, single-cell sequencing has permitted an unprecedented view of these cell states. Despite this knowledge, we lack an understanding of the mechanistic drivers of this transcriptional and phenotypic heterogeneity. 3' untranslated region alternative polyadenylation (3' UTR-APA) drives gene expression alterations through regulation of 3' UTR length. These 3' UTR alterations modulate mRNA stability, protein expression and protein localization, resulting in cellular phenotypes including differentiation, cell proliferation, and migration. Therefore, we sought to determine whether 3' UTR-APA events could characterize phenotypic heterogeneity of tumor cell states. Here, we analyze the largest single-cell human pancreatic ductal adenocarcinoma (PDAC) dataset and resolve 3' UTR-APA patterns across PDAC cell states. We find that increased proximal 3' UTR-APA is associated with PDAC progression and characterizes a metastatic ductal epithelial subpopulation and an inflammatory fibroblast population. Furthermore, we find significant 3' UTR shortening events in cell-state-specific marker genes associated with increased expression. Therefore, we propose that 3' UTR-APA drives phenotypic heterogeneity in cancer.
Collapse
Affiliation(s)
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Bhalerao N, Chakraborty A, Marciel MP, Hwang J, Britain CM, Silva AD, Eltoum IE, Jones RB, Alexander KL, Smythies LE, Smith PD, Crossman DK, Crowley MR, Shin B, Harrington LE, Yan Z, Bethea MM, Hunter CS, Klug CA, Buchsbaum DJ, Bellis SL. ST6GAL1 sialyltransferase promotes acinar to ductal metaplasia and pancreatic cancer progression. JCI Insight 2023; 8:e161563. [PMID: 37643018 PMCID: PMC10619436 DOI: 10.1172/jci.insight.161563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 β-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.
Collapse
Affiliation(s)
| | | | | | - Jihye Hwang
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | | | | | | | | | | | | | - Boyoung Shin
- Department of Cell, Developmental, and Integrative Biology
| | | | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | - Donald J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
6
|
Gong T, Wu D, Pan H, Sun Z, Yao X, Wang D, Huang Y, Li X, Guo Y, Lu Y. Biomimetic Microenvironmental Stiffness Boosts Stemness of Pancreatic Ductal Adenocarcinoma via Augmented Autophagy. ACS Biomater Sci Eng 2023; 9:5347-5360. [PMID: 37561610 DOI: 10.1021/acsbiomaterials.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features high recurrence rates and intensified lethality, accompanied by stiffening of the extracellular matrix (ECM) microenvironment, which is mainly due to the deposition, remodeling, and cross-linking of collagen. Boosted stemness plays an essential role during occurrence and progression, which indicates a poor prognosis. Therefore, it is of great importance to understand the effect of the underlying interaction of matrix stiffness and stemness on PDAC. For this purpose, a methacrylated gelatin (GelMA) hydrogel with tunable stiffness was applied for incubating MIA PaCa-2 and PANC-1 cells. The results demonstrated that compared to the soft group (5% GelMA, w/v), the expression of stemness-related genes (SOX2, OCT4, and NANOG) in the stiff group (10% GelMA, w/v) displayed pronounced elevation as well as sphere formation. Intriguingly, we also observed that matrix stiffness regulated autophagy of PDAC, which played a momentous role in stemness promotion. In order to clarify the underlying relationship between matrix stiffness-mediated cell autophagy and stemness, rescue experiments with rapamycin and chloroquine were conducted with transmission electron microscopy, immunofluorescence staining, sphere formation, and qRT-PCR assays to evaluate the level of stemness and autophagy. For exploring the molecular mechanism in depth, RNA-seq and differential expression of miRNAs were carried out, which may sensor and respond to matrix stiffness during the regulation of stemness and autophagy. In conclusion, we validated that blocking autophagy repressed the stemness induced by matrix stiffness in PDAC and provided a potential therapeutic strategy for this aggressive cancer.
Collapse
Affiliation(s)
- Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Haopeng Pan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zhongxiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
7
|
Chakraborty A, Halder B, Mondal S, Barrett A, Zhi W, Csanyi G, Sabbatini ME. NADPH oxidase 1 in chronic pancreatitis-activated pancreatic stellate cells facilitates the progression of pancreatic cancer. Am J Cancer Res 2023; 13:118-142. [PMID: 36777508 PMCID: PMC9906081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 02/14/2023] Open
Abstract
Patients suffering from chronic pancreatitis (CP) have a higher risk of pancreatic ductal adenocarcinoma (PDAC) compared to the general population. For instance, the presence of an activated pancreatic stellate cell (PaSC)-rich stroma in CP has facilitated the progression of non-invasive pancreatic intraepithelial neoplasia (PanIN) lesions to invasive PDAC. We have previously found that in a mouse model of CP, NADPH oxidase 1 (Nox1) in activated PaSCs forms fibrotic tissue and up-regulates both matrix metalloproteinase (MMP) 9 and the transcription factor Twist1. Yet, the role and mechanism of Nox1 in activated PaSCs from mice with CP (CP-activated PaSCs) in the progression of PDAC is unknown. For that, we tested the ability of Nox1 in CP-activated PaSCs to facilitate the growth of pancreatic cancer cells, and the mechanisms involved in these effects by identifying proteins in the secretome of CP-activated PaSCs whose production were Nox1-dependent. We found that, in vitro, Nox1 evoked a pro-invasive and cancer-promoting phenotype in CP-activated PaSCs via Twist1/MMP-9 expression, causing changes in the extracellular matrix composition. In vivo, Nox1 in CP-activated PaSCs facilitated tumor growth and stromal expansion. Using mass spectrometry, we identified proteins protecting from endoplasmic reticulum, oxidative and metabolic stresses in the secretome of CP-activated PaSCs whose production was Nox1-dependent, including peroxiredoxins (Prdx1 and Prdx4), and thioredoxin reductase 1. In conclusion, inhibiting the Nox1 signaling in activated PaSCs from patients with CP at early stages can reduce the reorganization of extracellular matrix, and the protection of neoplastic cells from cellular stresses, ameliorating the progression of PDAC.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Souravi Mondal
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Amanda Barrett
- Department of Surgical Pathology, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Gabor Csanyi
- Department of Pharmacology and Toxicology, and Vascular Biology Center, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| |
Collapse
|
8
|
Ginsberg SD, Sharma S, Norton L, Chiosis G. Targeting stressor-induced dysfunctions in protein-protein interaction networks via epichaperomes. Trends Pharmacol Sci 2023; 44:20-33. [PMID: 36414432 PMCID: PMC9789192 DOI: 10.1016/j.tips.2022.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
Diseases are manifestations of complex changes in protein-protein interaction (PPI) networks whereby stressors, genetic, environmental, and combinations thereof, alter molecular interactions and perturb the individual from the level of cells and tissues to the entire organism. Targeting stressor-induced dysfunctions in PPI networks has therefore become a promising but technically challenging frontier in therapeutics discovery. This opinion provides a new framework based upon disrupting epichaperomes - pathological entities that enable dysfunctional rewiring of PPI networks - as a mechanism to revert context-specific PPI network dysfunction to a normative state. We speculate on the implications of recent research in this area for a precision medicine approach to detecting and treating complex diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Larry Norton
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA; Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Wu C, Yang J, Ding R, Li X, Yang Z, Zhu M, Liu Z. Identification of a costimulatory molecule-based signature to predict prognostic risk of pancreatic adenocarcinoma. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Chao Wu
- Department of Oncology, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jingyue Yang
- Department of Oncology, Xijing Hospital, Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Zhi Yang
- The IVD Medical Marketing Department, 3D Medicines Inc., Shanghai, People’s Republic of China
| | - Min Zhu
- Department of Oncology, The Fifth medical center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhengcai Liu
- Department of Hepatopancreatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
10
|
Videmark AN, Christensen IJ, Feltoft CL, Villadsen M, Borg FH, Jørgensen BM, Bojesen SE, Kistorp C, Ugleholdt R, Johansen JS. Combined plasma C‐reactive protein, interleukin 6 and
YKL
‐40 for detection of cancer and prognosis in patients with serious nonspecific symptoms and signs of cancer. Cancer Med 2022; 12:6675-6688. [PMID: 36440611 PMCID: PMC10067028 DOI: 10.1002/cam4.5455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND METHODS Inflammation is a hallmark of cancer and its progression. Plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6) and YKL-40 reflect inflammation, and are elevated in patients with cancer. This study investigated whether plasma CRP, IL-6 and YKL-40 had diagnostic value in 753 patients referred with nonspecific signs and symptoms of cancer to a diagnostic outpatient clinic. RESULTS In total, 111 patients were diagnosed with cancer within 3 months and 30 after 3 months. CRP, IL-6 and YKL-40 were elevated in 44%, 60% and 45% of the cancer patients, and in 15%, 33% and 25% of the patients without cancer. Elevated levels of all three markers were associated with risk of cancer within 3 months: CRP (odds ratio (OR) 4.41, 95% confidence interval (CI) 2.86-6.81), IL-6 (OR = 2.89, 1.91-4.37) and YKL-40 (OR = 2.42, 1.59-3.66). Multivariate explorative analyses showed that increasing values were associated with the risk of getting a cancer diagnosis (continuous scale: CRP (OR = 1.28, 1.12-1.47), carcinoembryonic antigen (CEA) (OR = 1.61, 1.41-1.98), CA19-9 (OR = 1.15, 1.03-1.29), age (OR = 1.29, 1.02-1.63); dichotomized values: CRP (OR = 2.54, 1.39-4.66), CEA (OR = 4.22, 2.13-8.34), age (OR = 1.42, 1.13-1.80)). CRP had the highest diagnostic value (area under the curve = 0.69). Combined high CRP, IL-6 and YKL-40 was associated with short overall survival (HR = 3.8, 95% CI 2.5-5.9, p < 0.001). CONCLUSION In conclusion, plasma CRP, IL-6 and YKL-40 alone or combined cannot be used to identify patients with cancer, but high levels were associated with poor prognosis. CRP may be useful to indicate whether further diagnostic evaluation is needed when patients present with nonspecific signs and symptoms of cancer.
Collapse
Affiliation(s)
- Alex N. Videmark
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
| | - Ib J. Christensen
- Department of Gastroenterology Copenhagen University Hospital ‐ Amager and Hvidovre Hvidovre Denmark
| | - Claus L. Feltoft
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
| | - Mette Villadsen
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
| | - Frederikke H. Borg
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
| | - Barbara M. Jørgensen
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
| | - Stig E. Bojesen
- Department of Clinical Biochemistry Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Caroline Kistorp
- Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Endocrinology Copenhagen University Hospital ‐ Rigshospitalet Copenhagen Denmark
| | - Randi Ugleholdt
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Julia S. Johansen
- Department of Medicine Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Oncology Copenhagen University Hospital ‐ Herlev and Gentofte Herlev Denmark
| |
Collapse
|
11
|
Liu J, Tao M, Zhao W, Song Q, Yang X, Li M, Zhang Y, Xiu D, Zhang Z. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2. Cell Mol Gastroenterol Hepatol 2022; 15:373-392. [PMID: 36244646 PMCID: PMC9791133 DOI: 10.1016/j.jcmgh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.
Collapse
Affiliation(s)
- Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China; Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Meng Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Yanhua Zhang
- Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China.
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
12
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
13
|
Masugi Y. The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14133293. [PMID: 35805064 PMCID: PMC9265767 DOI: 10.3390/cancers14133293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic cancer is a highly malignant disease with treatment resistance to standardized chemotherapies. In addition, only a small fraction of patients with pancreatic cancer has, to date, actionable genetic aberrations, leading to a narrow therapeutic window for molecularly targeted therapies or immunotherapies. A lot of preclinical and translational studies are ongoing to discover potential vulnerabilities to treat pancreatic cancer. Histologically, human pancreatic cancer is characterized by abundant cancer-associated fibrotic stroma, called “desmoplastic stroma”. Recent technological advances have revealed that desmoplastic stroma in pancreatic cancer is much more complicated than previously thought, playing pleiotropic roles in manipulating tumor cell fate and anti-tumor immunity. Moreover, real-world specimen-based analyses of pancreatic cancer stroma have also uncovered spatial heterogeneity and an intertumoral variety associated with molecular alterations, clinicopathological factors, and patient outcomes. This review describes an overview of the current efforts in the field of pancreatic cancer stromal biology and discusses treatment opportunities of stroma-modifying therapies against this hard-to-treat cancer. Abstract Pancreatic cancer remains one of the most lethal malignancies and is becoming a dramatically increasing cause of cancer-related mortality worldwide. Abundant desmoplastic stroma is a histological hallmark of pancreatic ductal adenocarcinoma. Emerging evidence suggests a promising therapeutic effect of several stroma-modifying therapies that target desmoplastic stromal elements in the pancreatic cancer microenvironment. The evidence also unveils multifaceted roles of cancer-associated fibroblasts (CAFs) in manipulating pancreatic cancer progression, immunity, and chemotherapeutic response. Current state-of-the-art technologies, including single-cell transcriptomics and multiplexed tissue imaging techniques, have provided a more profound knowledge of CAF heterogeneity in real-world specimens from pancreatic cancer patients, as well as in genetically engineered mouse models. In this review, we describe recent advances in the understanding of the molecular pathology bases of pancreatic cancer desmoplastic stroma at multilayered levels of heterogeneity, namely, (1) variations in cellular and non-cellular members, including CAF subtypes and extracellular matrix (ECM) proteins; (2) geographical heterogeneity in relation to cell–cell interactions and signaling pathways at niche levels and spatial heterogeneity at locoregional levels or organ levels; and (3) intertumoral stromal heterogeneity at individual levels. This review further discusses the clinicopathological significance of desmoplastic stroma and the potential opportunities for stroma-targeted therapies against this lethal malignancy.
Collapse
Affiliation(s)
- Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 1608582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Department of Pathology, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
14
|
Tong Y, Zhang Z, Cheng Y, Yang J, Fan C, Zhang X, Yang J, Wang L, Guo D, Yan D. Hypoxia-induced NFATc3 deSUMOylation enhances pancreatic carcinoma progression. Cell Death Dis 2022; 13:413. [PMID: 35484132 PMCID: PMC9050899 DOI: 10.1038/s41419-022-04779-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
The transcriptional regulator nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3) is constitutively activated in several cancer types and plays important roles in cancer development and progression. Heavily phosphorylated NFATc3 resides in the cytoplasm of resting cells, and dephosphorylated NFATc3 translocates to the nucleus to activate expression of target genes in cells exposed to stimuli, for instance, hypoxia. Apart from phosphorylation, various post-translational modifications have been reported to regulate NFAT transcriptional activity. However, the mechanisms remain elusive. Here, we have demonstrated that NFATc3 is activated in human pancreatic ductal adenocarcinoma (PDAC) cells and that excessive activation of NFATc3 is correlated to advanced stages of PDAC and short survival time of PDAC patients. NFATc3 is deSUMOylated at K384 by SENP3 under hypoxia, which impairs the interaction between NFATc3 and phosphokinase GSK-3β, subsequently decreases NFATc3 phosphorylation and increases its nuclear occupancy. Knockdown of SENP3 greatly decreased hypoxia-induced NFATc3 nuclear occupancy. Our results highlight that SENP3-mediated deSUMOylation acts as an essential modulator of NFATc3, which is instrumental in PDAC tumor progression under hypoxia.
Collapse
Affiliation(s)
- Yingying Tong
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Yurong Cheng
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Jing Yang
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Cong Fan
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Xuyang Zhang
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Jiandong Yang
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Li Wang
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, China.
| | - Dong Yan
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
15
|
De Marco M, Gauttier V, Pengam S, Mary C, Ranieri B, Basile A, Festa M, Falco A, Reppucci F, Cammarota AL, Acernese F, De Laurenzi V, Sala G, Brongo S, Miyasaka M, Shalapour S, Vanhove B, Poirier N, Iaccarino R, Karin M, Turco MC, Rosati A, Marzullo L. Concerted BAG3 and SIRPα blockade impairs pancreatic tumor growth. Cell Death Dis 2022; 8:94. [PMID: 35241649 PMCID: PMC8894496 DOI: 10.1038/s41420-022-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4–2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.
Collapse
Affiliation(s)
- Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | | | | | | | - Bianca Ranieri
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Michela Festa
- BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.,Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Francesca Reppucci
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Fausto Acernese
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Sergio Brongo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Masayuki Miyasaka
- Immunology Frontier Research Center, Osaka University, Yamada-oka, Suita, Japan
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | - Roberta Iaccarino
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Michael Karin
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy. .,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| |
Collapse
|
16
|
Zhou T, Liu J, Xie Y, Yuan S, Guo Y, Bai W, Zhao K, Jiang W, Wang H, Wang H, Zhao T, Huang C, Gao S, Wang X, Yang S, Hao J. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4. Gut 2022; 71:357-371. [PMID: 33674341 PMCID: PMC9422994 DOI: 10.1136/gutjnl-2020-321952] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The crosstalk between cancer stem cells (CSCs) and their niche is required for the maintenance of stem cell-like phenotypes of CSCs. Here, we identified E26 transformation-specific homologous factor (EHF) as a key molecule in decreasing the sensitivity of pancreatic cancer (PC) cells to CSCs' niche stimulus. We also explored a therapeutic strategy to restore the expression of EHF. DESIGN We used a LSL-KrasG12D/+mice, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse model and samples from patients with PC. Immunostaining, flow cytometry, sphere formation assays, anchorage-independent growth assay, in vivo tumourigenicity, reverse transcription PCR, chromatin immunoprecipitation (ChIP) and luciferase analyses were conducted in this study. RESULTS CXCL12 derived from pancreatic stellate cells (PSCs) mediates the crosstalk between PC cells and PSCs to promote PC stemness. Tumorous EHF suppressed CSC stemness by decreasing the sensitivity of PC to CXCL12 stimulus and inhibiting the crosstalk between PC and CSC-supportive niches. Mechanically, EHF suppressed the transcription of the CXCL12 receptor CXCR4. EHF had a cell autonomous role in suppressing cancer stemness by inhibiting the transcription of Sox9, Sox2, Oct4 and Nanog. Rosiglitazone suppressed PC stemness and inhibited the crosstalk between PC and PSCs by upregulating EHF. Preclinical KPC mouse cohorts demonstrated that rosiglitazone sensitised PDAC to gemcitabine therapy. CONCLUSIONS EHF decreased the sensitivity of PC to the stimulus from PSC-derived CSC-supportive niche by negatively regulating tumorous CXCR4. Rosiglitazone could be used to target PC stem cells and the crosstalk between CSCs and their niche by upregulating EHF.
Collapse
Affiliation(s)
- Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Shuai Yuan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300071, China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Kaili Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Wenna Jiang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Haotian Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| |
Collapse
|
17
|
Xu B, Zhou Y, Pei Q, Tan F, Zhao L, Güngör C, Wang D, Li Y, Liu W, Zhou Z. The survival impact of palliative radiotherapy on synchronous metastatic pancreatic ductal adenocarcinoma: metastatic site can serve for radiotherapy-decision. J Cancer 2022; 13:385-392. [PMID: 35069888 PMCID: PMC8771529 DOI: 10.7150/jca.64800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022] Open
Abstract
Background: The metastatic site seems to represent a malignancy with a different biological characteristic and is an important prognostic factor in metastatic pancreatic ductal adenocarcinoma (mPDAC). Palliative radiotherapy is a therapeutic option, and usually used for pain management in the treatment of mPDAC. The real-world effect of radiotherapy on the survival outcomes of mPDAC patients might do exist and is worth exploring. Methods: Data from the Surveillance, Epidemiology, and End Results (SEER) was extracted to identify mPDAC diagnosed in the periods of 2010-2016. The statistical methods included Pearson's chi-square test, Log-rank test, Cox regression model and propensity score matching (PSM). Results: Radiotherapy was able to improve the overall survival of PDAC with liver metastasis (p<0.001), but not for PDAC patients with lung (p=0.130), bone (p=0.451) and brain metastasis (p=0.226) before PSM. Radiotherapy can only a prognostic factor for PDAC liver metastasis (p=0.001) in the cox regression analysis. The survival curves provided consistent results with cox regression analysis (PDAC with liver metastasis: p=0.023, PDAC with lung metastasis: p=0.528, PDAC with bone metastasis: p=0.210, PDAC with brain metastasis: p=0.106) after PSM. We continue to divided PDAC liver patients into PDAC-liver-metastasis with and without lung, bone, and/or brain (LBB) metastasis. Finally, radiotherapy can be used as a feasible treatment to prolong the overall survival of patients with PDAC liver metastasis without LBB metastasis. Conclusions: Radiotherapy can be used as a feasible treatment to prolong the overall survival of patients with PDAC liver metastasis without LBB metastasis.
Collapse
Affiliation(s)
- Biaoxiang Xu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lilan Zhao
- Department of Thoracic surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenxue Liu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China.,Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongyi Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Joshi S, Gomes ED, Wang T, Corben A, Taldone T, Gandu S, Xu C, Sharma S, Buddaseth S, Yan P, Chan LYL, Gokce A, Rajasekhar VK, Shrestha L, Panchal P, Almodovar J, Digwal CS, Rodina A, Merugu S, Pillarsetty N, Miclea V, Peter RI, Wang W, Ginsberg SD, Tang L, Mattar M, de Stanchina E, Yu KH, Lowery M, Grbovic-Huezo O, O'Reilly EM, Janjigian Y, Healey JH, Jarnagin WR, Allen PJ, Sander C, Erdjument-Bromage H, Neubert TA, Leach SD, Chiosis G. Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer. Commun Biol 2021; 4:1333. [PMID: 34824367 PMCID: PMC8617294 DOI: 10.1038/s42003-021-02842-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Erica DaGama Gomes
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chao Xu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Salma Buddaseth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lon Yin L Chan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Askan Gokce
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Vinagolu K Rajasekhar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lisa Shrestha
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Justina Almodovar
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Swathi Merugu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Vlad Miclea
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania
| | - Radu I Peter
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania
| | - Wanyan Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marissa Mattar
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maeve Lowery
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yelena Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH, 03766, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Tu M, Klein L, Espinet E, Georgomanolis T, Wegwitz F, Li X, Urbach L, Danieli-Mackay A, Küffer S, Bojarczuk K, Mizi A, Günesdogan U, Chapuy B, Gu Z, Neesse A, Kishore U, Ströbel P, Hessmann E, Hahn SA, Trumpp A, Papantonis A, Ellenrieder V, Singh SK. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. NATURE CANCER 2021; 2:1185-1203. [PMID: 35122059 DOI: 10.1038/s43018-021-00258-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.
Collapse
Affiliation(s)
- Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | | | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaojuan Li
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kamil Bojarczuk
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
- Division of Cancer Epigenomics, DKFZ, Heidelberg, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
Santos I, Mendes L, Mansinho H, Santos CA. Nutritional status and functional status of the pancreatic cancer patients and the impact of adjacent symptoms. Clin Nutr 2021; 40:5486-5493. [PMID: 34656030 DOI: 10.1016/j.clnu.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/04/2023]
Abstract
RATIONALE & AIMS Pancreatic cancer (PC) is the third most common type of gastrointestinal tract cancer in Europe and the fourth leading cause of death by cancer. Its initial stage is asymptomatic Therefore, the diagnosis tends to be late leading to locally advanced stages that presuppose late and debilitating symptoms, which consequently makes the Nutritional Status (NS) get worse. The weight loss (WL), malnutrition, and oncologic cachexia, which are quite prevalent in PC patients, reflect a poor prognosis. We aimed to track and evaluate the NS and Functional Status (FS) of PC patients (hospitalized patients - HP and Day Hospital patients - DHP) and associate NS with symptoms with nutritional impact and FS. METHODS Observational cohort study in PC patients from Garcia de Orta Hospital. NS was tracked and evaluated using Nutritional Risk Screening (NRS-2002) and Patient-Generated Subjective Global Assessment (PG-SGA). To assess FS we used the Eastern Cooperative Oncology Group (ECOG), Karnofsky Performance Scale Index (KPSI) and Handgrip Dynamometer (HGD). RESULTS 41 PC patients (30-HP and 11-DHP). 29 patients in stage IV of the tumor. 24 with a WL >10% in the last 6 months. 37 manifest symptoms with nutritional impact. 30 to 34 malnourished according to the GLIM criteria and PG-SGA, respectively. 11 in ECOG level 2 and corresponding KPSI, 10 in level 3 and 8 in level 4. 28 patients had a value of HGD below the 10th percentile. NRS-2002, PG-SGA and GLIM criteria were positively correlated with the symptoms (p < 0.01), % WL (p < 0.01) and ECOG (p < 0.01) and negatively correlated with HGS (p < 0.05 - NRS-2002; p < 0.01 - PG-SGA and GLIM criteria). CONCLUSIONS PC patients manifest debilitating symptoms with nutritional impact, namely severe WL and anorexia, which in turn lead to deterioration of the NS and FS. It is an oncology population with high nutritional risk and a higher prevalence of malnutrition, associated with severe % WL and symptoms and a sharp decline in FS.
Collapse
Affiliation(s)
- I Santos
- Serviço de Nutrição, Hospital Garcia de Orta, Portugal; Dietética e Nutrição, Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Portugal; Faculdade de Medicina, Universidade de Lisboa, Portugal.
| | - L Mendes
- Dietética e Nutrição, Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Portugal; Faculdade de Medicina, Universidade de Lisboa, Portugal; Centro de Investigação em Saúde e Tecnologia (H&TRC), Portugal
| | - H Mansinho
- Serviço de Hemato-Oncologia, Hospital Garcia de Orta, Portugal
| | - C A Santos
- Serviço de Nutrição, Hospital Garcia de Orta, Portugal; Dietética e Nutrição, Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Portugal; Centro de Investigação em Saúde e Tecnologia (H&TRC), Portugal
| |
Collapse
|
22
|
Basu M, Philipp LM, Baines JF, Sebens S. The Microbiome Tumor Axis: How the Microbiome Could Contribute to Clonal Heterogeneity and Disease Outcome in Pancreatic Cancer. Front Oncol 2021; 11:740606. [PMID: 34631577 PMCID: PMC8495218 DOI: 10.3389/fonc.2021.740606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by a poor prognosis with a 5-year survival rate of only around 10% and an ongoing increase in death rate. Due to the lack of early and specific symptoms, most patients are diagnosed at an advanced or even metastasized stage, essentially limiting curative treatment options. However, even curative resection of the primary tumor and adjuvant therapy often fails to provide a long-term survival benefit. One reason for this dismal situation can be seen in the evolution of therapy resistances. Furthermore, PDAC is characterized by high intratumor heterogeneity, pointing towards an abundance of cancer stem cells (CSCs), which are regarded as essential for tumor initiation and drug resistance. Additionally, it was shown that the gut microbiome is altered in PDAC patients, promotes Epithelial-Mesenchymal-Transition (EMT), determines responses towards chemotherapy, and affects survival in PDAC patients. Given the established links between CSCs and EMT as well as drug resistance, and the emerging role of the microbiome in PDAC, we postulate that the composition of the microbiome of PDAC patients is a critical determinant for the abundance and plasticity of CSC populations and thus tumor heterogeneity in PDAC. Unravelling this complex interplay might pave the way for novel treatment strategies.
Collapse
Affiliation(s)
- Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
23
|
Inflammatory Biomarker Score Identifies Patients with Six-Fold Increased Risk of One-Year Mortality after Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13184599. [PMID: 34572824 PMCID: PMC8466571 DOI: 10.3390/cancers13184599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary For 20 years, the CA 19-9 blood test has been the only broadly used biomarker of pancreatic ductal adenocarcinoma (PDAC). We lack easily available biomarkers to help differentiate patients between good, intermediate and poor survivors at the time of PDAC diagnosis. Using one of the largest studies of patients with PDAC, we found that a simple combination of blood tests, namely CRP, CA 19-9 and IL-6, into a single biomarker score was a better marker of one-year survival than the currently recommended CA 19-9 alone or any other combination of the four inflammatory biomarkers examined (CRP, CA 19-9, IL-6 and YKL-40). However, since this is the first study examining this inflammatory biomarker score, future validation studies are needed. Moreover, CRP outperformed CA 19-9 in the majority of patients, thus questioning the routine use of CA 19-9 in patients with PDAC. Abstract We examined whether elevated plasma C-reactive protein (CRP), carbohydrate antigen (CA) 19-9, interleukin-6 (IL-6) and YKL-40, individually or combined, can identify poor survivors among patients with pancreatic ductal adenocarcinoma (PDAC). We measured CRP, CA 19-9, IL-6 and YKL-40 in 993 patients at the time of PDAC diagnosis. The biomarker score was the sum of biomarker categories, coded 0, 1 and 2 for low, intermediate and high plasma concentrations, respectively. High vs. low levels of CRP, CA 19-9 and IL-6 were each independently associated with a two-fold increased risk of one-year mortality. CRP performed best in patients with advanced and CA 19-9 in patients with low cancer stages. YKL-40 was not associated with mortality and, therefore, was not included in the biomarker score. Compared to the biomarker score = 0, the multifactorially adjusted hazard ratios for one-year mortality were 1.56 (95% confidence interval: 0.99–2.44) for score = 1, 2.22 (1.41–3.49) for score = 2, 3.44 (2.20–5.38) for score = 3, 5.13 (3.21–8.17) for score = 4 and 6.32 (3.84–10.41) for score = 5–6 (p-value for trend = 3 × 10−31). This score performed better than any single biomarker or combination of biomarkers when examined in similarly sized or other categories. In conclusion, a combination score of elevated CRP, CA 19-9 and IL-6 identified patients with six-fold higher one-year mortality.
Collapse
|
24
|
Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021; 21:510-525. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Venkat S, Alahmari AA, Feigin ME. Drivers of Gene Expression Dysregulation in Pancreatic Cancer. Trends Cancer 2021; 7:594-605. [PMID: 33618999 PMCID: PMC8217125 DOI: 10.1016/j.trecan.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease with a poor prognosis. The functional consequences of common genetic aberrations and their roles in treatment strategies have been extensively reviewed. In addition to these genomic aberrations, consideration of non-genetic drivers of altered oncogene expression is essential to account for the diversity in PDAC phenotypes. In this review we seek to assess our current understanding of mechanisms of gene expression dysregulation. We focus on four drivers of gene expression dysregulation, including mutations, transcription factors, epigenetic regulators, and RNA stability/isoform regulation, in the context of PDAC pathogenesis. Recent studies provide much-needed insight into the role of gene expression dysregulation in dissecting tumor heterogeneity and stratifying patients for the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Medical Laboratory Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
26
|
Wu L, Zhu L, Xu K, Zhou S, Zhou Y, Zhang T, Hang J, Zee BCY. Clinical significance of site-specific metastases in pancreatic cancer: a study based on both clinical trial and real-world data. J Cancer 2021; 12:1715-1721. [PMID: 33613759 PMCID: PMC7890328 DOI: 10.7150/jca.50317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background: There is limited consensus on whether metastatic patterns are correlated with prognosis and treatment efficacy in pancreatic cancer. A better understanding of clinical implication of the metastatic patterns is pivotal for therapeutic decision-making and drug development. Methods: This study included 977 patients with metastatic pancreatic cancer (MPC) in three cohorts. The training cohort included 273 patients from clinical trial NCT00574275 and 367 patients from clinical trial NCT01124786. As the validation cohort, 337 patients from Changzhou No.2 People's Hospital and Shanghai General Hospital were enrolled. The correlations between different patterns of metastases and clinicopathological characteristics were investigated with the Pearson Chi-Square test. Kaplan-Meier analysis and log-rank test were applied to analyze the survival outcomes among groups with different metastatic patterns. The prognostic value of the number of metastatic sites and other variables was evaluated using the Cox regression model. Results: MPC patients aged ≥65 years had a higher rate of lung metastasis and those with liver metastasis were prone to have a high level of carbohydrate antigen 19-9 (CA19-9). Additionally, patients with isolated lung metastasis had much better overall survival (OS) than those with isolated liver or peritoneum metastasis. Cox regression analyses showed that the number of metastatic sites was an independent prognostic factor for OS in patients with MPC. Furthermore, for patients with one-site or two-site metastasis, there was a significant difference in OS among patients receiving no chemotherapy, monotherapy and combination therapy. However, for patients with more than two metastatic sites, receiving combination therapy or monotherapy showed limited superiority in OS over receiving no chemotherapy. Conclusion: MPC patients with isolated lung metastasis had better OS than those with isolated liver or peritoneum metastasis. Moreover, the number of metastatic sites showed prognostic and predictive value in patients with MPC.
Collapse
Affiliation(s)
- Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Shanghai 200070, China
| | - Lina Zhu
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Kequn Xu
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Siyuan Zhou
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yang Zhou
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Tiening Zhang
- Department of Radiotherapy, Shanghai General Hospital, Shanghai 200080, China
| | - Junjie Hang
- Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China.,JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong, China
| | - Benny Chung-Ying Zee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong, China
| |
Collapse
|
27
|
Rong Z, Xu J, Shi S, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X, Liang C. Circular RNA in pancreatic cancer: a novel avenue for the roles of diagnosis and treatment. Am J Cancer Res 2021; 11:2755-2769. [PMID: 33456571 PMCID: PMC7806488 DOI: 10.7150/thno.56174] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC), an important cause of cancer-related deaths worldwide, is one of the most malignant cancers characterized by a dismal prognosis. Circular RNAs (circRNAs), a class of endogenous ncRNAs with unique covalently closed loops, have attracted great attention in regard to various diseases, especially cancers. Compelling studies have suggested that circRNAs are aberrantly expressed in different cancer tissues and cell types, including PC. More specifically, circRNAs can modify the proliferation, progression, tumorigenesis and chemosensitivity of PC, and some circRNAs could serve as biomarkers for diagnosis and prognosis. Herein, we summarize what is currently known to be related to the biogenesis, functions and potential roles of human circRNAs in PC and their application prospects for PC clinical treatments.
Collapse
|
28
|
Kesh K, Garrido VT, Dosch A, Durden B, Gupta VK, Sharma NS, Lyle M, Nagathihalli N, Merchant N, Saluja A, Banerjee S. Stroma secreted IL6 selects for "stem-like" population and alters pancreatic tumor microenvironment by reprogramming metabolic pathways. Cell Death Dis 2020; 11:967. [PMID: 33177492 PMCID: PMC7658205 DOI: 10.1038/s41419-020-03168-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic adenocarcinoma is a devastating disease with an abysmal survival rate of 9%. A robust fibro-inflammatory and desmoplastic stroma, characteristic of pancreatic cancer, contribute to the challenges in developing viable therapeutic strategies in this disease. Apart from constricting blood vessels and preventing efficient drug delivery to the tumor, the stroma also contributes to the aggressive biology of cancer along with its immune-evasive microenvironment. In this study, we show that in pancreatic tumors, the developing stroma increases tumor initiation frequency in pancreatic cancer cells in vivo by enriching for CD133 + aggressive "stem-like" cells. Additionally, the stromal fibroblasts secrete IL6 as the major cytokine, increases glycolytic flux in the pancreatic tumor cells, and increases lactate efflux in the microenvironment via activation of the STAT signaling pathway. We also show that the secreted lactate favors activation of M2 macrophages in the tumor microenvironment, which excludes CD8 + T cells in the tumor. Our data additionally confirms that the treatment of pancreatic tumors with anti-IL6 antibody results in tumor regression as well as decreased CD133 + population within the tumor. Furthermore, inhibiting the lactate efflux in the microenvironment reduces M2 macrophages, and makes pancreatic tumors more responsive to anti-PD1 therapy. This suggests that stromal IL6 driven metabolic reprogramming plays a significant role in the development of an immune-evasive microenvironment. In conclusion, our study shows that targeting the metabolic pathways affected by stromal IL6 can make pancreatic tumors amenable to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Vanessa T Garrido
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Austin Dosch
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Brittany Durden
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Vineet K Gupta
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nikita S Sharma
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Michael Lyle
- WeliChem Biotech Inc, Vancouver, British Columbia, Canada
| | - Nagaraj Nagathihalli
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nipun Merchant
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Ashok Saluja
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Sulagna Banerjee
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
29
|
Therapy Resistance, Cancer Stem Cells and ECM in Cancer: The Matrix Reloaded. Cancers (Basel) 2020; 12:cancers12103067. [PMID: 33096662 PMCID: PMC7589733 DOI: 10.3390/cancers12103067] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) has remained an enigmatic component of the tumor microenvironment. It drives metastasis via its interaction with the integrin signaling pathway, contributes to tumor progression and confers therapy resistance by providing a physical barrier around the tumor. The complexity of the ECM lies in its heterogeneous composition and complex glycosylation that can provide a support matrix as well as trigger oncogenic signaling pathways by interacting with the tumor cells. In this review, we attempt to dissect the role of the ECM in enriching for the treatment refractory cancer stem cell population and how it may be involved in regulating their metabolic needs. Additionally, we discuss how the ECM is instrumental in remodeling the tumor immune microenvironment and the potential ways to target this component in order to develop a viable therapy.
Collapse
|
30
|
Ogawa Y, Masugi Y, Abe T, Yamazaki K, Ueno A, Fujii-Nishimura Y, Hori S, Yagi H, Abe Y, Kitago M, Sakamoto M. Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen. Clin Cancer Res 2020; 27:107-119. [PMID: 33046515 DOI: 10.1158/1078-0432.ccr-20-2298] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-associated fibroblasts have emerged to be highly heterogenous and can play multifaceted roles in dictating pancreatic ductal adenocarcinoma (PDAC) progression, immunosuppression, and therapeutic response, highlighting the need for a deeper understanding of stromal heterogeneity between patients and even within a single tumor. We hypothesized that image analysis of fibroblast subpopulations and collagen in PDAC tissues might guide stroma-based patient stratification to predict clinical outcomes and tumor characteristics. EXPERIMENTAL DESIGN A novel multiplex IHC-based image analysis system was established to digitally differentiate fibroblast subpopulations. Using whole-tissue slides from 215 treatment-naïve PDACs, we performed concurrent quantification of principal fibroblast subpopulations and collagen and defined three stroma types: collagen-rich stroma, fibroblast activation protein α (FAP)-dominant fibroblast-rich stroma, and α smooth muscle actin (ACTA2)-dominant fibroblast-rich stroma. These stroma types were assessed for the associations with cancer-specific survival by multivariable Cox regression analyses and with clinicopathologic factors, including CD8+ cell density. RESULTS FAP-dominant fibroblasts and ACTA2-dominant fibroblasts represented the principal distinct fibroblast subpopulations in tumor stroma. Stroma types were associated with patient survival, SMAD4 status, and transcriptome signatures. Compared with FAP-dominant fibroblast-rich stroma, collagen-rich stroma correlated with prolonged survival [HR, 0.57; 95% confidence interval (CI), 0.33-0.99], while ACTA2-dominant fibroblast-rich stroma exhibited poorer prognosis (HR, 1.65; 95% CI, 1.06-2.58). FAP-dominant fibroblast-rich stroma was additionally characterized by restricted CD8+ cell infiltrates and intense neutrophil infiltration. CONCLUSIONS This study identified three distinct stroma types differentially associated with survival, immunity, and molecular features, thereby underscoring the importance of stromal heterogeneity in subtyping pancreatic cancers and supporting the development of antistromal therapies.
Collapse
Affiliation(s)
- Yurina Ogawa
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tokiya Abe
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoko Fujii-Nishimura
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Pathology, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
31
|
Targeting SRC Kinase Signaling in Pancreatic Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21207437. [PMID: 33050159 PMCID: PMC7588004 DOI: 10.3390/ijms21207437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene nonreceptor tyrosine-protein kinase SRC is a member of the SRC family of tyrosine kinases (SFKs), and its activation and overexpression have been shown to play a protumorigenic role in multiple solid cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is currently the seventh-leading cause of cancer-related death worldwide, and, by 2030, it is predicted to become the second-leading cause of cancer-related death in the United States. PDAC is characterized by its high lethality (5-year survival of rate of <10%), invasiveness, and chemoresistance, all of which have been shown to be due to the presence of pancreatic cancer stem cells (PaCSCs) within the tumor. Due to the demonstrated overexpression of SRC in PDAC, we set out to determine if SRC kinases are important for PaCSC biology using pharmacological inhibitors of SRC kinases (dasatinib or PP2). Treatment of primary PDAC cultures established from patient-derived xenografts with dasatinib or PP2 reduced the clonogenic, self-renewal, and tumor-initiating capacity of PaCSCs, which we attribute to the downregulation of key signaling factors such as p-FAK, p-ERK1-2, and p-AKT. Therefore, this study not only validates that SRC kinases are relevant and biologically important for PaCSCs but also suggests that inhibitors of SRC kinases may represent a possible future treatment option for PDAC patients, although further studies are still needed.
Collapse
|
32
|
Safa AR. Epithelial-mesenchymal transition: a hallmark in pancreatic cancer stem cell migration, metastasis formation, and drug resistance. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:36. [PMID: 34841087 PMCID: PMC8623975 DOI: 10.20517/2394-4722.2020.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis, tumor progression, and chemoresistance are the major causes of death in patients with pancreatic ductal adenocarcinoma (PDAC). Tumor dissemination is associated with the activation of an epithelial-to-mesenchymal transition (EMT) process, a program by which epithelial cells lose their cell polarity and cell-to-cell adhesion, and acquire migratory and invasive abilities to become mesenchymal stem cells (MSC). These MSCs are multipotent stromal cells capable of differentiating into various cell types and trigger the phenotypic transition from an epithelial to a mesenchymal state. Therefore, EMT promotes migration and survival during cancer metastasis and confers stemness features to particular subsets of cells. Furthermore, a major problem limiting our ability to treat PDAC is the existence of rare populations of pancreatic cancer stem cells (PCSCs) or cancer-initiating cells in pancreatic tumors. PCSCs may represent sub-populations of tumor cells resistant to therapy which are most crucial for driving invasive tumor growth. These cells are capable of regenerating the cellular heterogeneity associated with the primary tumor when xenografted into mice. Therefore, the presence of PCSCs has prognostic relevance and influences the therapeutic response of tumors. PCSCs express markers of cancer stem cells (CSCs) including CD24, CD133, CD44, and epithelial specific antigen as well as the drug transporter ABCG2 grow as spheroids in a defined growth medium. A major difficulty in studying tumor cell dissemination and metastasis has been the identification of markers that distinguish metastatic cancer cells from cells that are normally circulating in the bloodstream or at sites where these cells metastasize. Evidence highlights a linkage between CSC and EMT. In this review, The current understanding of the PCSCs, signaling pathways regulating these cells, PDAC heterogeneity, EMT mechanism, and links between EMT and metastasis in PCSCs are summarised. This information may provide potential therapeutic strategies to prevent EMT and trigger CSC growth inhibition and cell death.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
33
|
Chen Y, Huang Y, Zhou S, Sun M, Chen L, Wang J, Xu M, Liu S, Liang K, Zhang Q, Jiang T, Song Q, Jiang G, Tang X, Gao X, Chen J. Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. NANO LETTERS 2020; 20:6780-6790. [PMID: 32809834 DOI: 10.1021/acs.nanolett.0c02622] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) strongly resists standard therapies since KRAS-mutated cancer cells harbor endogenous resistance toward chemotherapy-induced apoptosis and tumor-associated macrophages (TAMs) activate stroma cells to create the nearly impenetrable matrix. Herein, we developed a tailored nanocomplex through the self-assembly of synthetic 4-(phosphonooxy)phenyl-2,4-dinitrobenzenesulfonate and Fe3+ followed by hyaluronic acid decoration, realizing chemodynamic therapy (CDT) to combat PDAC. By controllably releasing its components in a GSH-sensitive manner under the distinctive redox homeostasis in cancer cells and TAMs, the nanocomplex selectively triggered a Fenton reaction to induce oxidative damage in cancer cells and simultaneously repolarized TAMs to deactivate stromal cells and thus attenuate stroma. Compared to gemcitabine, CDT remarkably inhibited tumor growth and prolonged animal survival in orthotopic PDAC models without noticeable side effects. This study provides a promising strategy to improve the treatment of PDAC through CDT-mediated controlled cancer cells damage and reprogramming of the stromal microenvironment.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yukun Huang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Songlei Zhou
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jiahao Wang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Minjun Xu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Shanshan Liu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Kaifan Liang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Qian Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Tianze Jiang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Gan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Xuyi Tang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Jun Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
34
|
Miao JX, Wang JY, Li HZ, Guo HR, Dunmall LSC, Zhang ZX, Cheng ZG, Gao DL, Dong JZ, Wang ZD, Wang YH. Promising xenograft animal model recapitulating the features of human pancreatic cancer. World J Gastroenterol 2020; 26:4802-4816. [PMID: 32921958 PMCID: PMC7459204 DOI: 10.3748/wjg.v26.i32.4802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple sites of metastasis and desmoplastic reactions in the stroma are key features of human pancreatic cancer (PC). There are currently no simple and reliable animal models that can mimic these features for accurate disease modeling.
AIM To create a new xenograft animal model that can faithfully recapitulate the features of human PC.
METHODS Interleukin 2 receptor subunit gamma (IL2RG) gene knockout Syrian hamster was created and characterized. A panel of human PC cell lines were transplanted into IL2RG knockout Syrian hamsters and severe immune-deficient mice subcutaneously or orthotopically. Tumor growth, local invasion, remote organ metastasis, histopathology, and molecular alterations of tumor cells and stroma were compared over time.
RESULTS The Syrian hamster with IL2RG gene knockout (named ZZU001) demonstrated an immune-deficient phenotype and function. ZZU001 hamsters faithfully recapitulated most features of human PC, in particular, they developed metastasis at multiple sites. PC tissues derived from ZZU001 hamsters displayed desmoplastic reactions in the stroma and epithelial to mesenchymal transition phenotypes, whereas PC tissues derived from immune-deficient mice did not present such features.
CONCLUSION ZZU001 hamsters engrafted with human PC cells are a superior animal model compared to immune-deficient mice. ZZU001 hamsters can be a valuable animal model for better understanding the molecular mechanism of tumorigenesis and metastasis and the evaluation of new drugs targeting human PC.
Collapse
Affiliation(s)
- Jin-Xin Miao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Jian-Yao Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Hao-Ze Li
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Hao-Ran Guo
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Louisa S Chard Dunmall
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M6BQ, United Kingdom
| | - Zhong-Xian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Zhen-Guo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Dong-Ling Gao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Jian-Zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhong-De Wang
- Department of Animal Dairy, and Veterinary Sciences, Utah State University, Logan UT 84341, United States
| | - Yao-He Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M6BQ, United Kingdom
| |
Collapse
|
35
|
Wei-Hua W, Ning Z, Qian C, Dao-Wen J. ZIC2 promotes cancer stem cell traits via up-regulating OCT4 expression in lung adenocarcinoma cells. J Cancer 2020; 11:6070-6080. [PMID: 32922547 PMCID: PMC7477430 DOI: 10.7150/jca.44367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Accumulating evidence has revealed the importance of cancer stem cells (CSCs) in self-renewal and chemoresistance. Previous studies reported high expression of ZIC2 was closely associated with tumorigenesis and CSC traits. However, the role of ZIC2 as a crucial factor for regulating CSC properties in lung adenocarcinoma (LAC) remains elusive. Methods: RT-PCR and WB assay were employed to assess ZIC2 expression in 20 LAC tumor tissues and the matched non-cancerous tissues. The role of ZIC2 in LAC CSC were analyzed by evaluation of CSC-related markers expression and spheroid formation in vitro. Cisplatin and paclitaxel resistance capacities were evaluated by CCK8 assay, colony formation assay, and flow cytometry analysis. Subcutaneous NOD/SCID mice models were generated to assess in vivo CSC features. Results: High expression of ZIC2 was found in LAC tumor tissues and indicated a poor overall survival in LAC patients. ZIC2 upregulated an array of CSCs-related genes, including EpCAM, OCT4, SOX2, NANOG, C-Myc and Bmi-1. Knockdown of ZIC2 inhibited sphere-forming capacity and decreased cisplatin and paclitaxel resistance. However, overexpression of ZIC2 achieved opposite effects. Mechanically, ZIC2 acts upstream of OCT4 to promote its expression, resulting in enhancement of CSC traits in LAC. Conclusion: Our results demonstrated that ZIC2 was crucial for promoting CSC traits in LAC cells, and served as a potential biomarker for predicting prognosis. The ZIC2-OCT4 network will facilitate the evaluation of the potential therapeutic efficacy of chemotherapy and predict patient sensitivity to treatment.
Collapse
Affiliation(s)
- Wang Wei-Hua
- Department of thoracic surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Zhou Ning
- Department of thoracic surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Chen Qian
- Department of general surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Jiang Dao-Wen
- Department of thoracic surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
| |
Collapse
|
36
|
Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers (Basel) 2020; 12:cancers12051347. [PMID: 32466266 PMCID: PMC7281461 DOI: 10.3390/cancers12051347] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the 4th leading cause of cancer deaths in the United States. The pancreatic cancer phenotype is primarily a consequence of oncogenes disturbing the resident pancreas parenchymal cell repair program. Many solid tumor types including pancreatic cancer have severe tumor fibrosis called desmoplasia. Desmoplastic stroma is coopted by the tumor as a support structure and CAFs aid in tumor growth, invasion, and metastases. This stroma is caused by cancer associated fibroblasts (CAFs), which lay down extensive connective tissue in and around the tumor cells. CAFs represent a heterogeneous population of cells that produce various paracrine molecules such as transforming growth factor-beta (TGF-beta) and platelet derived growth factors (PDGFs) that aid tumor growth, local invasion, and development of metastases. The hard, fibrotic shell of desmoplasia serves as a barrier to the infiltration of both chemo- and immunotherapy drugs and host immune cells to the tumor. Although there have been recent improvements in chemotherapy and surgical techniques for management of pancreatic cancer, the majority of patients will die from this disease. Therefore, new treatment strategies are clearly needed. CAFs represent an under-explored potential therapeutic target. This paper discusses what we know about the role of CAFs in pancreatic cancer cell growth, invasion, and metastases. Additionally, we present different strategies that are being and could be explored as anti-CAF treatments for pancreatic cancer.
Collapse
|
37
|
Guo X, Zhou Q, Su D, Luo Y, Fu Z, Huang L, Li Z, Jiang D, Kong Y, Li Z, Chen R, Chen C. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol Cancer 2020; 19:83. [PMID: 32375768 PMCID: PMC7201986 DOI: 10.1186/s12943-020-01196-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Accumulating evidence suggests that circular RNAs (circRNAs) are important participants in cancer progression. However, the biological processes and underlying mechanisms of circRNAs in pancreatic ductal adenocarcinoma (PDAC) are unclear. Method CircRNAs were verified by Sanger sequencing. Colony formation, 5-Ethynyl-2′-deoxyuridine (EdU), and Transwell assays were performed to investigate the effect of circBFAR on the proliferation, invasion, and migration of PDAC cells in vitro. RNA pull-down assays were conducted to verify the binding of circBFAR with microRNA miR-34b-5p. Results In the present study, we identified a novel circRNA (termed as circBFAR, hsa_circ_0009065) that was upregulated in a 208-case cohort of patients with PDAC. The ectopic expression of circBFAR correlated positively with the tumor-node-metastasis (TNM) stage and was related to poorer prognosis of patients with PDAC. Moreover, circBFAR knockdown dramatically inhibited the proliferation and motility of PDAC cells in vitro and their tumor-promoting and metastasis properties in in vivo models. Mechanistically, circBFAR upregulated mesenchymal-epithelial transition factor (MET) expression via sponging miR-34b-5p. Additionally, circBFAR overexpression increased the expression of MET and activated downstream phosphorylation of Akt (Ser 473) and further activated the MET/PI3K/Akt signaling pathway, which ultimately promoted the progression of PDAC cells. Importantly, application of MET inhibitors could significantly attenuate circBFAR-mediated tumorigenesis in vivo. Conclusions Our findings showed that circBFAR plays an important role in the proliferation and metastasis of PDAC, which might be explored as a potential prognostic marker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Quanbo Zhou
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Dan Su
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Yuming Luo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhiqiang Fu
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Leyi Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhiguo Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Decan Jiang
- Affiliated Huadu Hospital, Southern Medical University, 48 Xinhua Road, Huadu District, Guangzhou, Guangdong, 510800, P. R. China
| | - Yao Kong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China.
| | - Changhao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China. .,Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, P. R. China.
| |
Collapse
|
38
|
Pylayeva-Gupta Y. Pancreatic Cancer Thrives on Hijacking a Homeostatic Tissue Repair Pathway. Gastroenterology 2020; 158:1216-1218. [PMID: 32057721 DOI: 10.1053/j.gastro.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/05/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill and Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
39
|
Jiao F, Han T, Yuan C, Liang Y, Cui J, Zhuo M, Wang L. Caveolin-2 is regulated by BRD4 and contributes to cell growth in pancreatic cancer. Cancer Cell Int 2020; 20:55. [PMID: 32099528 PMCID: PMC7029443 DOI: 10.1186/s12935-020-1135-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background The bromodomain and extra-terminal domain (BET) family of proteins, especially BRD4 play an important role in epigenetic regulation, and are essential for cell survival and also are promising anticancer targets. This study aims to analyze the effect of BRD4 on the cell growth and progression of pancreatic cancer and novel mechanisms involved. Methods Expression of BRD4 in pancreatic cancer and paired adjacent noncancerous tissues from 76 patients was analyzed by western blotting, immunohistochemistry, and real time PCR. Its correlation with the clinicopathological characteristics and prognosis of pancreatic cancer patients was analyzed. The effects of BRD4 on the cell proliferation were detected by colony formation assay and sulforhodamine B assay. Migration and invasion were determined by Transwell assays, and the effect of BRD4 on subcutaneous tumor formation was verified in nude mice. Cell cycle analysis was detected by flow cytometry. The potential downstream targets of BRD4 and related molecular mechanisms were clarified by RNA sequencing, chromatin immunoprecipitation and dual luciferase reporter assay. Results BRD4 was overexpressed in pancreatic cancer. Biological results showed that BRD4 functioned as tumor promoter, facilitated cell proliferation, migration and invasion in vitro and in vivo. Further, caveolin-2 was selected as the downstream gene of BRD4 by RNA sequencing. Caveolin-2 overexpression can partially reverse the decreased cell growth ability caused by BRD4 knockdown, but did not affect cell migration and invasion. Chromatin immunoprecipitation assay and dual luciferase reporter assay revealed BRD4 could bind to the promoter region of caveolin-2 and upregulate caveolin-2 expression. Clinical data further indicated a positive correlation between BRD4 and caveolin-2 expression. BRD4 (high)/caveolin-2 (high) correlated with shorter overall survival of patients with pancreatic cancer. Multivariate analysis revealed that both BRD4 and caveolin-2 were independent factors. Conclusions Our findings reveal the oncogenic effects of BRD4 in pancreatic cancer and elucidate a possible mechanism by which BRD4 and caveolin-2 act to enhance cell growth. Targeting the BRD4-caveolin-2 interaction by development of BET inhibitors will be a therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Feng Jiao
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Ting Han
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Cuncun Yuan
- 2Department of Pathology, Fudan University Eye Ear Nose and Throat Hospital, 83 Fenyang Road, Shanghai, 201114 China
| | - Yiyi Liang
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jiujie Cui
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Meng Zhuo
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Liwei Wang
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
40
|
Affiliation(s)
- Ashok Saluja
- Sylvester Pancreatic Cancer Research Institute, Departments of Surgery, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|