1
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Liu Y, Gu X, Xuan M, Lou N, Fu L, Li J, Xue C. Notch signaling in digestive system cancers: Roles and therapeutic prospects. Cell Signal 2024; 124:111476. [PMID: 39428027 DOI: 10.1016/j.cellsig.2024.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Digestive system cancers rank among the most prevalent malignant tumors, maintaining persistently high incidence and mortality rates. Notch signaling activity, often aberrant in esophageal, gastric, hepatic, pancreatic, and colorectal cancers, plays a pivotal role in the initiation, progression, and therapy resistance of these malignancies. As a highly conserved pathway, Notch signaling is integral to cell differentiation, survival, proliferation, stem cell renewal, development, and morphogenesis. Its dysregulation has been increasingly linked to various diseases, particularly digestive system cancers. In these malignancies, altered Notch signaling influences multiple biological processes, including cell proliferation, invasion, cell cycle progression, immune evasion, drug resistance, and stemness maintenance. Understanding the mechanisms of Notch signaling in digestive system cancers is essential for the development of novel targeted therapies. Numerous Notch pathway-targeting drugs are currently in preclinical studies, demonstrating promising efficacy both as monotherapies and in combination with conventional anti-cancer treatments. This review summarizes recent high-quality findings on the involvement of Notch signaling in digestive system cancers, focusing on the expression changes and pathological mechanisms of its dysregulated components. Special emphasis is placed on the potential of translating Notch-targeted approaches into therapeutic strategies, which hold promise for overcoming the limitations of existing treatments and improving the poor prognosis associated with these cancers.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
3
|
Kriukova E, Mazurenka M, Marcazzan S, Glasl S, Quante M, Saur D, Tschurtschenthaler M, Puppels GJ, Gorpas D, Ntziachristos V. Hybrid Raman and Partial Wave Spectroscopy Microscope for the Characterization of Molecular and Structural Alterations in Tissue. JOURNAL OF BIOPHOTONICS 2024; 17:e202400330. [PMID: 39462506 PMCID: PMC11614561 DOI: 10.1002/jbio.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
We present a hybrid Raman spectroscopy (RS) and partial wave spectroscopy (PWS) microscope for the characterization of molecular and structural tissue alterations. The PWS performance was assessed with surface roughness standards, while the Raman performance with a silicon crystal standard. We also validated the system on stomach and intestinal mouse tissues, two closely-related tissue types, and demonstrate that the addition of PWS information improves RS data classification for these tissue types from R2 = 0.892 to R2 = 0.964 (norm of residuals 0.863 and 0.497, respectively). Then, in a proof-of-concept experiment, we show that the hybrid system can detect changes in intestinal tissues harvested from a tumorigenic Villin-Cre, Apcfl/wt mouse. We discuss how the hybrid modality offers new abilities to identify the relative roles of PWS morphological features and Raman molecular fingerprints, possibly allowing for their combination to enhance the study of carcinogenesis and early cancer diagnostics in the future.
Collapse
Affiliation(s)
- Elena Kriukova
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Mikhail Mazurenka
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Sabrina Marcazzan
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Sarah Glasl
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum FreiburgFreiburgGermany
| | - Dieter Saur
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and HealthTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Markus Tschurtschenthaler
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and HealthTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
| | | | - Dimitris Gorpas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of MunichGarching b. MünchenGermany
| |
Collapse
|
4
|
Bhat N, Al-Mathkour M, Maacha S, Lu H, El-Rifai W, Ballout F. Esophageal adenocarcinoma models: a closer look. Front Mol Biosci 2024; 11:1440670. [PMID: 39600303 PMCID: PMC11589788 DOI: 10.3389/fmolb.2024.1440670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a subtype of esophageal cancer with significant morbidity and mortality rates worldwide. Despite advancements in tumor models, the underlying cellular and molecular mechanisms driving EAC pathogenesis are still poorly understood. Therefore, gaining insights into these mechanisms is crucial for improving patient outcomes. Researchers have developed various models to better understand EAC and evaluate clinical management strategies. However, no single model fully recapitulates the complexity of EAC. Emerging technologies, such as patient-derived organoids and immune-competent mouse models, hold promise for personalized EAC research and drug development. In this review, we shed light on the various models for studying EAC and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Selma Maacha
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
5
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Lian G, Malagola E, Wei C, Shi Q, Zhao J, Hata M, Kobayashi H, Ochiai Y, Zheng B, Zhi X, Wu F, Tu R, Nápoles OC, Su W, Li L, Jing C, Chen M, Zamechek L, Friedman R, Nowicki-Osuch K, Quante M, Que J, Wang TC. p53 mutation biases squamocolumnar junction progenitor cells towards dysplasia rather than metaplasia in Barrett's oesophagus. Gut 2024:gutjnl-2024-332095. [PMID: 39353725 DOI: 10.1136/gutjnl-2024-332095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND While p53 mutations occur early in Barrett's oesophagus (BE) progression to oesophageal adenocarcinoma (EAC), their role in gastric cardia stem cells remains unclear. OBJECTIVE This study investigates the impact of p53 mutation on the fate and function of cardia progenitor cells in BE to EAC progression, particularly under the duress of chronic injury. DESIGN We used a BE mouse model (L2-IL1β) harbouring a Trp53 mutation (R172H) to study the effects of p53 on Cck2r+ cardia progenitor cells. We employed lineage tracing, pathological analysis, organoid cultures, single-cell RNA sequencing (scRNA-seq) and computational analyses to investigate changes in progenitor cell behaviour, differentiation patterns and tumour progression. Additionally, we performed orthotopic transplantation of sorted metaplastic and mutant progenitor cells to assess their tumourigenic potential in vivo. RESULTS The p53 mutation acts as a switch to expand progenitor cells and inhibit their differentiation towards metaplasia, but only amidst chronic injury. In L2-IL1β mice, p53 mutation increased progenitors expansion and lineage-tracing with a shift from metaplasia to dysplasia. scRNA-seq revealed dysplastic cells arise directly from mutant progenitors rather than progressing through metaplasia. In vitro, p53 mutation enhanced BE progenitors' organoid-forming efficiency, growth, DNA damage resistance and progression to aneuploidy. Sorted metaplastic cells grew poorly with no progression to dysplasia, while mutant progenitors gave rise to dysplasia in orthotopic transplantation. Computational analyses indicated that p53 mutation inhibited stem cell differentiation through Notch activation. CONCLUSIONS p53 mutation contributes to BE progression by increasing expansion and fitness of undifferentiated cardia progenitors and preventing their differentiation towards metaplasia.
Collapse
Affiliation(s)
- Guodong Lian
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiongyu Shi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Masahiro Hata
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Osmel Companioni Nápoles
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Wenjing Su
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Leah Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Richard Friedman
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Karol Nowicki-Osuch
- German Cancer Research Center (DKFZ) Heidelberg, Tumorigenesis and Molecular Cancer Prevention Group, Heidelberg, Germany
- Herbert and Florence Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Munchen, Germany
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Columbia University Digestive and Disease Research Center, New York, NY, USA
| |
Collapse
|
7
|
Tian Y, Liu C, Yang W, Li X, Zhang M, Xiong Y, Ren X, Ma Z, Jin X, Wu Y, Dong X, Hu N, Xie Z, Qin Y, Wu S. Highlighting immune features of the tumor ecosystem and prognostic value of Tfh and Th17 cell infiltration in head and neck squamous cell carcinoma by single-cell RNA-seq. Cancer Immunol Immunother 2024; 73:187. [PMID: 39093451 PMCID: PMC11297013 DOI: 10.1007/s00262-024-03767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) typically present with a complex anatomical distribution, often accompanied by insidious symptoms. This combination contributes to its high incidence and poor prognosis. It is now understood that the immune features of cellular components within the tumor ecosystem and their complex interactions are critical factors influencing both tumor progression and the effective immune response. METHODS We obtained single-cell RNA sequencing data of 26,496 cells from three tumor tissues and five normal tissues and performed subsequent analyses. Immunohistochemical staining on tumor sections was used to validate the presence of malignant cells. Additionally, we included bulk RNA sequencing data from 502 HNSCC patients. Kaplan-Meier analysis and the log-rank test were employed to assess predictors of patient outcomes. RESULTS We identified three epithelial subclusters exhibiting immune-related features. These subclusters promoted the infiltration of T cells, dendritic cells, and monocytes into the tumor microenvironment. Additionally, cancer-associated fibroblasts displayed tumor-promoting and angiogenesis characteristics, contrasting with the predominant antigen-presenting and inflammatory roles observed in fibroblasts from normal tissues. Furthermore, tumor endothelial subsets exhibited a double-sided effect, promoting tumor progression and enhancing the effectiveness of immune response. Finally, follicular helper T cells and T helper 17 cells were found to be significantly correlated with improved outcomes in HNSCC patients. These CD4+ T cell subpopulations could promote the anti-tumor immune response by recruiting and activating B and T cells. CONCLUSION Our findings provide deeper insights into the immune features of the tumor ecosystem and reveal the prognostic significance of follicular helper T cells and T helper 17 cells. These findings may pave the way for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Yan Tian
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Wenhui Yang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Li
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Min Zhang
- Department of Radiation Oncology, Peking University People's Hospital, Beijing, China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Xueying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhiguo Ma
- Department of Neurology, Xi' an Aerospace General Hospital, Xian, China
| | - Xuan Jin
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yanping Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Xin Dong
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Nanlin Hu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Zhijun Xie
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yong Qin
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China.
| | - Shikai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Feng W, Niu N, Lu P, Chen Z, Rao H, Zhang W, Ma C, Liu C, Xu Y, Gao W, Xue J, Li L. Multilevel Regulation of NF-κB Signaling by NSD2 Suppresses Kras-Driven Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309387. [PMID: 38889281 PMCID: PMC11321637 DOI: 10.1002/advs.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer with a dismal overall prognosis. NSD2 is an H3K36-specific di-methyltransferase that has been reported to play a crucial role in promoting tumorigenesis. Here, the study demonstrates that NSD2 acts as a putative tumor suppressor in Kras-driven pancreatic tumorigenesis. NSD2 restrains the mice from inflammation and Kras-induced ductal metaplasia, while NSD2 loss facilitates pancreatic tumorigenesis. Mechanistically, NSD2-mediated H3K36me2 promotes the expression of IκBα, which inhibits the phosphorylation of p65 and NF-κB nuclear translocation. More importantly, NSD2 interacts with the DNA binding domain of p65, attenuating NF-κB transcriptional activity. Furthermore, inhibition of NF-κB signaling relieves the symptoms of Nsd2-deficient mice and sensitizes Nsd2-null PDAC to gemcitabine. Clinically, NSD2 expression decreased in PDAC patients and negatively correlated to nuclear p65 expression. Together, the study reveals the important tumor suppressor role of NSD2 and multiple mechanisms by which NSD2 suppresses both p65 phosphorylation and downstream transcriptional activity during pancreatic tumorigenesis. This study opens therapeutic opportunities for PDAC patients with NSD2 low/loss by combined treatment with gemcitabine and NF-κBi.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Zhuo Chen
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
9
|
Shen NX, Luo MY, Gu WM, Gong M, Lei HM, Bi L, Wang C, Zhang MC, Zhuang G, Xu L, Zhu L, Chen HZ, Shen Y. GSTO1 aggravates EGFR-TKIs resistance and tumor metastasis via deglutathionylation of NPM1 in lung adenocarcinoma. Oncogene 2024; 43:2504-2516. [PMID: 38969770 DOI: 10.1038/s41388-024-03096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Despite significantly improved clinical outcomes in EGFR-mutant lung adenocarcinoma, all patients develop acquired resistance and malignancy on the treatment of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Understanding the resistance mechanisms is crucial to uncover novel therapeutic targets to improve the efficacy of EGFR-TKI treatment. Here, integrated analysis using RNA-Seq and shRNAs metabolic screening reveals glutathione S-transferase omega 1 (GSTO1) as one of the key metabolic enzymes that is required for EGFR-TKIs resistance in lung adenocarcinoma cells. Aberrant upregulation of GSTO1 confers EGFR-TKIs resistance and tumor metastasis in vitro and in vivo dependent on its active-site cysteine 32 (C32). Pharmacological inhibition or knockdown of GSTO1 restores sensitivity to EGFR-TKIs and synergistically enhances tumoricidal effects. Importantly, nucleophosmin 1 (NPM1) cysteine 104 is deglutathionylated by GSTO1 through its active C32 site, which leads to activation of the AKT/NF-κB signaling pathway. In addition, clinical data illustrates that GSTO1 level is positively correlated with NPM1 level, NF-κB-mediated transcriptions and progression of human lung adenocarcinoma. Overall, our study highlights a novel mechanism of GSTO1 mediating EGFR-TKIs resistance and malignant progression via protein deglutathionylation, and GSTO1/NPM1/AKT/NF-κB axis as a potential therapeutic vulnerability in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ning-Xiang Shen
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Ming-Yu Luo
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Wei-Ming Gu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Miaomiao Gong
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Ling Bi
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Wang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Mo-Cong Zhang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Thoracic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China.
| |
Collapse
|
10
|
Wu C, Yu H, Liang F, Huang X, Jiang B, Lou Z, Liu Y, Wu Z, Wang Q, Shen H, Chen M, Wu P, Wu M. Hypoxia inhibits the iMo/cDC2/CD8+ TRMs immune axis in the tumor microenvironment of human esophageal cancer. J Immunother Cancer 2024; 12:e008889. [PMID: 38964786 PMCID: PMC11227851 DOI: 10.1136/jitc-2024-008889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is a form of malignant tumor associated with chronic inflammation and immune dysregulation. However, the specific immune status and key mechanisms of immune regulation in this disease require further exploration. METHODS To investigate the features of the human ESCA tumor immune microenvironment and its possible regulation, we performed mass cytometry by time of flight, single-cell RNA sequencing, multicolor fluorescence staining of tissue, and flow cytometry analyses on tumor and paracancerous tissue from treatment-naïve patients. RESULTS We depicted the immune landscape of the ESCA and revealed that CD8+ (tissue-resident memory CD8+ T cells (CD8+ TRMs) were closely related to disease progression. We also revealed the heterogeneity of CD8+ TRMs in the ESCA tumor microenvironment (TME), which was associated with their differentiation and function. Moreover, the subset of CD8+ TRMs in tumor (called tTRMs) that expressed high levels of granzyme B and immune checkpoints was markedly decreased in the TME of advanced ESCA. We showed that tTRMs are tumor effector cells preactivated in the TME. We then demonstrated that conventional dendritic cells (cDC2s) derived from intermediate monocytes (iMos) are essential for maintaining the proliferation of CD8+ TRMs in the TME. Our preliminary study showed that hypoxia can promote the apoptosis of iMos and impede the maturation of cDC2s, which in turn reduces the proliferative capacity of CD8+ TRMs, thereby contributing to the progression of cancer. CONCLUSIONS Our study revealed the essential antitumor roles of CD8+ TRMs and preliminarily explored the regulation of the iMo/cDC2/CD8+ TRM immune axis in the human ESCA TME.
Collapse
Affiliation(s)
- Chuanqiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Laboratory of Clinical Research Center of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huan Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fuxiang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiancong Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, Shandong Province, People's Republic of China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yafei Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zixiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hong Shen
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Laboratory of Clinical Research Center of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
11
|
Zhu H, Jin RU. The role of the fibroblast in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2024; 40:319-327. [PMID: 38626060 PMCID: PMC11155289 DOI: 10.1097/mog.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is the number one risk factor for developing esophageal adenocarcinoma (EAC), a deadly cancer with limited treatment options that has been increasing in incidence in the US. In this report, we discuss current studies on the role of mesenchyme and cancer-associated fibroblasts (CAFs) in BE and EAC, and we highlight translational prospects of targeting these cells. RECENT FINDINGS New insights through studies using single-cell RNA sequencing (sc-RNA seq) have revealed an important emerging role of the mesenchyme in developmental signaling and cancer initiation. BE and EAC share similar stromal gene expression, as functional classifications of nonepithelial cells in BE show a remarkable similarity to EAC CAFs. Several recent sc-RNA seq studies and novel organoid fibroblast co-culture systems have characterized the subgroups of fibroblasts in BE and EAC, and have shown that these cells can directly influence the epithelium to induce BE development and cancer progression. Targeting the CAFs in EAC with may be a promising novel therapeutic strategy. SUMMARY The fibroblasts in the surrounding mesenchyme may have a direct role in influencing altered epithelial plasticity during BE development and progression to EAC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
12
|
Baumeister T, Proaño-Vasco A, Metwaly A, Kleigrewe K, Kuznetsov A, Schömig L, Borgmann M, Khiat M, Anand A, Böttcher K, Haller D, Dunkel A, Somoza V, Reiter S, Meng C, Thimme R, Schmid RM, Patil DT, Burgermeister E, Huang Y, Sun Y, Wang HH, Wang TC, Abrams JA, Quante M. Microbiota metabolized Bile Acids accelerate Gastroesophageal Adenocarcinoma via FXR inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598405. [PMID: 38915718 PMCID: PMC11195123 DOI: 10.1101/2024.06.11.598405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.
Collapse
Affiliation(s)
- Theresa Baumeister
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Andrea Proaño-Vasco
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology; Technical University of Munich; Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Alexander Kuznetsov
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Linus Schömig
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Martin Borgmann
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Mohammed Khiat
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
| | - Akanksha Anand
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Katrin Böttcher
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology; Technical University of Munich; Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology, Technical University of Munich; Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology, Technical University of Munich; Germany
| | - Sinah Reiter
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Robert Thimme
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
| | - Roland M. Schmid
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Deepa T. Patil
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, USA
| | - Elke Burgermeister
- Dept. of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University; Germany
| | - Yiming Huang
- Systems & Synthetic Biology, Columbia University Medical Center; New York, NY, USA
| | - Yiwei Sun
- Systems & Synthetic Biology, Columbia University Medical Center; New York, NY, USA
| | - Harris H. Wang
- Systems & Synthetic Biology, Columbia University Medical Center; New York, NY, USA
| | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Julian A. Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
| |
Collapse
|
13
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
14
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Marcazzan S, Braz Carvalho MJ, Nguyen NT, Strangmann J, Slotta-Huspenina J, Tenditnaya A, Tschurtschenthaler M, Rieder J, Proaño-Vasco A, Ntziachristos V, Steiger K, Gorpas D, Quante M, Kossatz S. PARP1-targeted fluorescence molecular endoscopy as novel tool for early detection of esophageal dysplasia and adenocarcinoma. J Exp Clin Cancer Res 2024; 43:53. [PMID: 38383387 PMCID: PMC10880256 DOI: 10.1186/s13046-024-02963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Clinical Radiology, Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Marcos J Braz Carvalho
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Nghia T Nguyen
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Julia Strangmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Anna Tenditnaya
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Markus Tschurtschenthaler
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, TUM School of Medicine and Health, Klinikum rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Jonas Rieder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Andrea Proaño-Vasco
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Comparative Experimental Pathology (CEP) and IBioTUM tissue biobank, TUM School of Medicine and Health, Technical University of Munich, München, 81675, Germany
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Michael Quante
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, 85748, Germany.
| |
Collapse
|
16
|
Martinez-Uribe O, Becker TC, Garman KS. Promises and Limitations of Current Models for Understanding Barrett's Esophagus and Esophageal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:1025-1038. [PMID: 38325549 PMCID: PMC11041847 DOI: 10.1016/j.jcmgh.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS This review was developed to provide a thorough and effective update on models relevant to esophageal metaplasia, dysplasia, and carcinogenesis, focusing on the advantages and limitations of different models of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). METHODS This expert review was written on the basis of a thorough review of the literature combined with expert interpretation of the state of the field. We emphasized advances over the years 2012-2023 and provided detailed information related to the characterization of established human esophageal cell lines. RESULTS New insights have been gained into the pathogenesis of BE and EAC using patient-derived samples and single-cell approaches. Relevant animal models include genetic as well as surgical mouse models and emphasize the development of lesions at the squamocolumnar junction in the mouse stomach. Rat models are generated using surgical approaches that directly connect the small intestine and esophagus. Large animal models have the advantage of including features in human esophagus such as esophageal submucosal glands. Alternatively, cell culture approaches remain important in the field and allow for personalized approaches, and scientific rigor can be ensured by authentication of cell lines. CONCLUSIONS Research in BE and EAC remains highly relevant given the morbidity and mortality associated with cancers of the tubular esophagus and gastroesophageal junction. Careful selection of models and inclusion of human samples whenever possible will ensure relevance to human health and disease.
Collapse
Affiliation(s)
- Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Thomas C Becker
- Division of Endocrinology, Department of Medicine, Duke University, Durham, North Carolina
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
17
|
Pravallika G, Rajasekaran R. Stage II oesophageal carcinoma: peril in disguise associated with cellular reprogramming and oncogenesis regulated by pseudogenes. BMC Genomics 2024; 25:135. [PMID: 38308202 PMCID: PMC10835973 DOI: 10.1186/s12864-024-10023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Pseudogenes have been implicated for their role in regulating cellular differentiation and organismal development. However, their role in promoting cancer-associated differentiation has not been well-studied. This study explores the tumour landscape of oesophageal carcinoma to identify pseudogenes that may regulate events of differentiation to promote oncogenic transformation. MATERIALS AND METHOD De-regulated differentiation-associated pseudogenes were identified using DeSeq2 followed by 'InteractiVenn' analysis to identify their expression pattern. Gene expression dependent and independent enrichment analyses were performed with GSEA and ShinyGO, respectively, followed by quantification of cellular reprogramming, extent of differentiation and pleiotropy using three unique metrics. Stage-specific gene regulatory networks using Bayesian Network Splitting Average were generated, followed by network topology analysis. MEME, STREME and Tomtom were employed to identify transcription factors and miRNAs that play a regulatory role downstream of pseudogenes to initiate cellular reprogramming and further promote oncogenic transformation. The patient samples were stratified based on the expression pattern of pseudogenes, followed by GSEA, mutation analysis and survival analysis using GSEA, MAF and 'survminer', respectively. RESULTS Pseudogenes display a unique stage-wise expression pattern that characterizes stage II (SII) ESCA with a high rate of cellular reprogramming, degree of differentiation and pleiotropy. Gene regulatory network and associated topology indicate high robustness, thus validating high pleiotropy observed for SII. Pseudogene-regulated expression of SOX2, FEV, PRRX1 and TFAP2A in SII may modulate cellular reprogramming and promote oncogenesis. Additionally, patient stratification-based mutational analysis in SII signifies APOBEC3A (A3A) as a potential hallmark of homeostatic mutational events of reprogrammed cells which in addition to de-regulated APOBEC3G leads to distinct events of hypermutations. Further enrichment analysis for both cohorts revealed the critical role of combinatorial expression of pseudogenes in cellular reprogramming. Finally, survival analysis reveals distinct genes that promote poor prognosis in SII ESCA and patient-stratified cohorts, thus providing valuable prognostic bio-markers along with markers of differentiation and oncogenesis for distinct landscapes of pseudogene expression. CONCLUSION Pseudogenes associated with the events of differentiation potentially aid in the initiation of cellular reprogramming to facilitate oncogenic transformation, especially during SII ESCA. Despite a better overall survival of SII, patient stratification reveals combinatorial de-regulation of pseudogenes as a notable marker for a high degree of cellular differentiation with a unique mutational landscape.
Collapse
Affiliation(s)
- Govada Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
18
|
Shi Y, Guo Y, Zhou J, Cui G, Cheng J, Wu Y, Zhao Y, Fang L, Han X, Yang Y, Sun Y. A spatiotemporal gene expression and cell atlases of the developing rat ovary. Cell Prolif 2023; 56:e13516. [PMID: 37309718 PMCID: PMC10693188 DOI: 10.1111/cpr.13516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
Normal ovarian development is necessary for the production of healthy oocytes. However, the characteristics of oocytes development at different stages and the regulatory relationship between oocytes and somatic cells remain to be fully explained. Here, we combined scRNA-seq and spatial transcriptomic sequencing to profile the transcriptomic atlas of developing ovarian of the rat. We identified four components from developing granulosa cells including cumulus, primitive, mural, and luteal cells, and constructed their differential transcriptional regulatory networks. Several novel growth signals from oocytes to cumulus cells were identified, such as JAG1-NOTCH2 and FGF9-FGFR2. Moreover, we observed three cumulus sequential phases during follicle development determined by the key transcriptional factors in each cumulus phase (Bckaf1, Gata6, Cebpb, etc.), as well as the potential pinpointed roles of macrophages in luteal regression. Altogether, the single-cell spatial transcriptomic profile of the ovary provides not only a new research dimension for temporal and spatial analysis of ovary development, but also valuable data resources and a research basis for in-depth excavation of the mechanisms of mammalian ovary development.
Collapse
Affiliation(s)
- Yong Shi
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of medical sciencesZhengzhou UniversityZhengzhouChina
| | - Yanjie Guo
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiayi Zhou
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guanshen Cui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
| | - Jung‐Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ying Wu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao Han
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
| | - Yun‐Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Yingpu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
19
|
Liu X, Yan C, Yang A, Yu E, Yu J, Zhou C, Wang Y, Wang K, Sun Y, Cheng Y. Efficacy of anti-programmed cell death protein 1 monoclonal antibody combined with bevacizumab and/or Pseudomonas aeruginosa injection in transplanted tumor of mouse forestomach carcinoma cell gastric cancer in mice and its mechanism in regulating tumor immune microenvironment. Clin Exp Immunol 2023; 213:328-338. [PMID: 37392409 PMCID: PMC10570988 DOI: 10.1093/cei/uxad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
Tumor immunotherapy represented by programmed cell death protein 1 (PD-1) inhibitors is considered as the most promising cancer treatment method and has been widely used in the treatment of advanced gastric cancer (GC). However, the effective rate of PD-1 inhibitor monotherapy is low. In this study, we constructed a transplanted tumor model in GC mice by inoculating mouse forestomach carcinoma cell (MFC) GC cells into 615 mice. Interventions were conducted with normal saline, anti-PD-1 monoclonal antibody (mAb), bevacizumab, Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA), anti-PD-1 mAb combined with bevacizumab, anti-PD-1 mAb combined with PA-MSHA, bevacizumab combined with PA-MSHA, anti-PD-1 mAb combined with bevacizumab and PA-MSHA, respectively. The tumor growth curves were drawn. TUNEL assay, western blotting, and immunohistochemistry were used to detect tumor proliferation and apoptosis. Flow cytometry and ELISA were used to detect the expression of tumor infiltrating lymphocytes and cytokines. This study found that anti-PD-1 mAb alone could not significantly inhibit the growth of transplanted tumors in mice. Anti-PD-1 mAb combined with bevacizumab, anti-PD-1 mAb combined with PA-MSHA, anti-PD-1 mAb combined with bevacizumab and PA-MSHA could all significantly inhibit tumor growth in mice, and the combination of three drugs presented the highest tumor inhibition rate. Anti-PD-1 mAb combined with bevacizumab and PA-MSHA could significantly upregulate the number of Th1-type cells, CD8 + T cells, and Type I tumor-associated macrophages (TAMs), while downregulate the number of Th2-type cells, myeloid-derived suppressor cells, regulatory T cells, and Type II TAMs. Therefore, we conclude that anti-PD-1 mAb combined with bevacizumab and/or PA-MSHA has a synergistic effect. Bevacizumab and PA-MSHA can transform the tumor immunosuppressive microenvironment into a supportive immune microenvironment, thus maximizing the antitumor effect of anti-PD-1 mAb.
Collapse
Affiliation(s)
- Xiangyong Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Chao Yan
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Aijie Yang
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Enhao Yu
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jie Yu
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Chunyang Zhou
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Yun Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Kai Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Ying Sun
- Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Lin F, Li X, Sun S, Li Z, Lv C, Bai J, Song L, Han Y, Li B, Fu J, Shao Y. Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics. Nat Commun 2023; 14:6016. [PMID: 37758697 PMCID: PMC10533890 DOI: 10.1038/s41467-023-41760-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Region-specific gut spheroids are precursors for gastrointestinal and pulmonary organoids that hold great promise for fundamental studies and translations. However, efficient production of gut spheroids remains challenging due to a lack of control and mechanistic understanding of gut spheroid morphogenesis. Here, we report an efficient biomaterial system, termed micropatterned gut spheroid generator (μGSG), to generate gut spheroids from human pluripotent stem cells through mechanically enhanced tissue morphogenesis. We show that μGSG enhances the biogenesis of gut spheroids independent of micropattern shape and size; instead, mechanically enforced cell multilayering and crowding is demonstrated as a general, geometry-insensitive mechanism that is necessary and sufficient for promoting spheroid formation. Combining experimental findings and an active-phase-field morphomechanics theory, our study further reveals an instability-driven mechanism and a mechanosensitive phase diagram governing spheroid pearling and fission in μGSG. This work unveils mechanobiological paradigms based on tissue architecture and surface tension for controlling tissue morphogenesis and advancing organoid technology.
Collapse
Affiliation(s)
- Feng Lin
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Xia Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Shiyu Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhongyi Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenglin Lv
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianbo Bai
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Song
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yizhao Han
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
21
|
Sadeghi ES, Nematpour FS, Mohtasham N, Mohajertehran F. The oncogenic role of NOTCH1 as biomarker in oral squamous cell carcinoma and oral lichen planus. Dent Res J (Isfahan) 2023; 20:102. [PMID: 38020255 PMCID: PMC10630544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/19/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer with heterogeneous molecular pathogenesis. Oral lichen planus (OLP) is demonstrated potentially can transfer to OSCC malignant lesions. Unfortunately, there are no definitive prognostic and predictive biomarkers for the clinical management of OSCC patients. The present research is the first study that compared an oral premalignant lesion such as OLP to malignant lesions like OSCC for NOTCH1 expression levels to better understand its oncogenic or tumor suppressive role. Materials and Methods In this cross-sectional study, mRNA expression of NOTCH1 was evaluated by quantitative polymerase chain reaction in 65 tissue-embedded Paraffin-Block samples, including 32 OSCC and 33 OLP. Furthermore, we collected demographic information and pathological data, including tumor stage and grade. The association between NOTCH1 and GAPDH gene expressions was determined by Chi-squared, Spearman, and Mann-Whitney tests. A P < 0.05 was considered statistically significant for all statistical analyses. Results Comparison of OSCC and OLP groups showed a statistically significant difference between the quantitative expression of the NOTCH1 gene (P < 0.001). Qualitative gene expression was divided into low expression and high expression. Both study groups demonstrated a statistically significant gene expression difference (P < 0.001). There was a statistically significant difference between age and NOTCH1 expression in the OLP group (P = 0.036). There was no correlation between NOTCH1 expression and age, gender, tumor grade, and stage. Conclusion Since the OSCC is a malignant lesion and the OLP showed the possible nature of malignancy transformation, we can consider the NOTCH1 as a biomarker for the assessment of the tumorigenesis process with a definition of a standard threshold for potentially malignant lesions and malignant OSCC tumors.
Collapse
Affiliation(s)
| | | | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Liu H, Wang X. Esophageal organoids: applications and future prospects. J Mol Med (Berl) 2023; 101:931-945. [PMID: 37380866 DOI: 10.1007/s00109-023-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Organoids have been developed in the last decade as a new research tool to simulate organ cell biology and disease. Compared to traditional 2D cell lines and animal models, experimental data based on esophageal organoids are more reliable. In recent years, esophageal organoids derived from multiple cell sources have been established, and relatively mature culture protocols have been developed. Esophageal inflammation and cancer are two directions of esophageal organoid modeling, and organoid models of esophageal adenocarcinoma, esophageal squamous cell carcinoma, and eosinophilic esophagitis have been established. The properties of esophageal organoids, which mimic the real esophagus, contribute to research in drug screening and regenerative medicine. The combination of organoids with other technologies, such as organ chips and xenografts, can complement the deficiencies of organoids and create entirely new research models that are more advantageous for cancer research. In this review, we will summarize the development of tumor and non-tumor esophageal organoids, the current application of esophageal organoids in disease modeling, regenerative medicine, and drug screening. We will also discuss the future prospects of esophageal organoids.
Collapse
Affiliation(s)
- Hongyuan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xianli Wang
- Shanghai Jiao Tong University, School of Public Health, Shanghai, 200025, China.
| |
Collapse
|
23
|
Maslenkina K, Mikhaleva L, Naumenko M, Vandysheva R, Gushchin M, Atiakshin D, Buchwalow I, Tiemann M. Signaling Pathways in the Pathogenesis of Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24119304. [PMID: 37298253 DOI: 10.3390/ijms24119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Barrett's esophagus (BE) is a premalignant lesion that can develop into esophageal adenocarcinoma (EAC). The development of Barrett's esophagus is caused by biliary reflux, which causes extensive mutagenesis in the stem cells of the epithelium in the distal esophagus and gastro-esophageal junction. Other possible cellular origins of BE include the stem cells of the mucosal esophageal glands and their ducts, the stem cells of the stomach, residual embryonic cells and circulating bone marrow stem cells. The classical concept of healing a caustic lesion has been replaced by the concept of a cytokine storm, which forms an inflammatory microenvironment eliciting a phenotypic shift toward intestinal metaplasia of the distal esophagus. This review describes the roles of the NOTCH, hedgehog, NF-κB and IL6/STAT3 molecular pathways in the pathogenesis of BE and EAC.
Collapse
Affiliation(s)
- Ksenia Maslenkina
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Maxim Naumenko
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Michail Gushchin
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| |
Collapse
|
24
|
Chen L, Lu H, Peng D, Cao LL, Ballout F, Srirmajayam K, Chen Z, Bhat A, Wang TC, Capobianco A, Que J, McDonald OG, Zaika A, Zhang S, El-Rifai W. Activation of NOTCH signaling via DLL1 is mediated by APE1-redox-dependent NF-κB activation in oesophageal adenocarcinoma. Gut 2023; 72:421-432. [PMID: 35750470 PMCID: PMC9789198 DOI: 10.1136/gutjnl-2022-327076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/03/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Oesophageal adenocarcinoma (EAC) arises in the setting of Barrett's oesophagus, an intestinal metaplastic precursor lesion that can develop in patients with chronic GERD. Here, we investigated the role of acidic bile salts, the mimicry of reflux, in activation of NOTCH signaling in EAC. DESIGN This study used public databases, EAC cell line models, L2-IL1β transgenic mouse model and human EAC tissue samples to identify mechanisms of NOTCH activation under reflux conditions. RESULTS Analysis of public databases demonstrated significant upregulation of NOTCH signaling components in EAC. In vitro studies demonstrated nuclear accumulation of active NOTCH1 cleaved fragment (NOTCH intracellular domain) and upregulation of NOTCH targets in EAC cells in response to reflux conditions. Additional investigations identified DLL1 as the predominant ligand contributing to NOTCH1 activation under reflux conditions. We discovered a novel crosstalk between APE1 redox function, reflux-induced inflammation and DLL1 upregulation where NF-κB can directly bind to and induce the expression of DLL1. The APE1 redox function was crucial for activation of the APE1-NF-κB-NOTCH axis and promoting cancer cell stem-like properties in response to reflux conditions. Overexpression of APE1 and DLL1 was detected in gastro-oesophageal junctions of the L2-IL1ß transgenic mouse model and human EAC tissue microarrays. DLL1 high levels were associated with poor overall survival in patients with EAC. CONCLUSION These findings underscore a unique mechanism that links redox balance, inflammation and embryonic development (NOTCH) into a common pro-tumorigenic pathway that is intrinsic to EAC cells.
Collapse
Affiliation(s)
- Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Long Long Cao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Farah Ballout
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kannappan Srirmajayam
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ajaz Bhat
- Sidra Medicine, Doha, Ad Dawhah, Qatar
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Anthony Capobianco
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
25
|
Li HS, Chu CL. Intestinal metaplasia in progression of Barrett's esophagus to esophageal adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2023; 31:41-47. [DOI: 10.11569/wcjd.v31.i2.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has been increasing year by year. The prognosis of EAC is poor, and the 5-year survival rate is less than 20%. Barrett's esophagus (BE) is the only known precancerous lesion of EAC. BE with intestinal metaplasia (IM) has a higher risk of progressing to EAC. Exploring the mechanism of IM and finding targeted therapeutic targets for BE has become an important measure for tumor prevention. Bile acid reflux is considered an important factor in the occurrence of IM and promotes the progression of BE to EAC. However, the molecular regulatory mechanism of bile reflux induced IM and carcinogenesis remains unclear. This article reviews the environment, significance, and cell origin theory of IM, toxic effects of bile reflux, and molecular changes of IM progression to tumor, aiming to improve clinicians' understanding of IM in BE and provide evidence for early intervention of BE and prevention and treatment of EAC.
Collapse
Affiliation(s)
- Hai-Su Li
- Jinan Central Hospital, Jinan Key Translational Gastroenterology Laboratory, Jinan Digestive Diseases Clinical Research Center, Jinan 250013, Shandong Province, China
| | - Chuan-Lian Chu
- Jinan Central Hospital, Jinan Key Translational Gastroenterology Laboratory, Jinan Digestive Diseases Clinical Research Center, Jinan 250013, Shandong Province, China
| |
Collapse
|
26
|
JAG1 is associated with the prognosis and metastasis in breast cancer. Sci Rep 2022; 12:21986. [PMID: 36539520 PMCID: PMC9768120 DOI: 10.1038/s41598-022-26241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Jagged canonical Notch ligand 1 (JAG1) regulates the progression of many cancers by the Notch signaling pathway, but its role in breast cancer (BC) remains unclear. In this research, JAG1 protein expression in BC tissues was detected by immunohistochemistry. The association between JAG1 and clinical significance was analyzed. The effect of JAG1 on malignant behaviors of BC cells was demonstrated by in vitro experiments. JAG1 expression in BC tissues was higher than that in para-carcinoma tissues. High JAG1 expression was significantly linked to advanced lymph node metastasis, distant metastasis, and the TNM stage. JAG1 was an independent prognostic factor for BC patients. JAG1 knockdown inhibited the proliferation, motility, migration, and invasion of BC cells, and weakened adhesion and penetration abilities to the blood-brain barrier, whereas JAG1 overexpression had the opposite effects. JAG1 has the potential to be a prognostic marker and therapeutic target for BC patients.
Collapse
|
27
|
Li Y, Xie F, Zhang H, Wu X, Ji G, Li J, Hong L. Effects of mRNA expression of five Notch ligands on prognosis of gastric carcinoma. Sci Rep 2022; 12:15141. [PMID: 36071128 PMCID: PMC9452498 DOI: 10.1038/s41598-022-19291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Notch ligands are expression changes in a great many malignancies including gastric cancer (GC) frequently. The prognostic value of each Notch ligands in GC patients remains lack of large sample data results. In present research, we researched the prognostic value of Notch ligands in GC patients in order to fill the shortage areas. We used an online database ( http://kmplot.com/analysis/index.php?p=service&cancer=gastric ) to identify the relationship between mRNA expression of each Notch ligand and overall survival (OS) in GC. We analyze the relevance of overall survival and clinical data which includes gender, Lauren's classification, differentiation, clinical stage and treatment. The study found that high DLL1, DLL3, DLL4 and JAG2 mRNA expression were tied to worse OS in all GC patients followed up for 10 years. There is no significant relevance to the expression of JAG1 mRNA and OS in patients with GC. We also did a survey of each Notch ligands in different clinical and pathological features present different prognosis. The information will help to better understand the biology of gastric cancer heterogeneity, provide more accurate prognostic evaluation tools and provide new targets for targeted drug development besides.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Fengni Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Huimin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Gang Ji
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jipeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Liu Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
28
|
Souza RF, Spechler SJ. Mechanisms and pathophysiology of Barrett oesophagus. Nat Rev Gastroenterol Hepatol 2022; 19:605-620. [PMID: 35672395 DOI: 10.1038/s41575-022-00622-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 01/10/2023]
Abstract
Barrett oesophagus, in which a metaplastic columnar mucosa that can predispose individuals to cancer development lines a portion of the distal oesophagus, is the only known precursor of oesophageal adenocarcinoma, the incidence of which has increased profoundly over the past several decades. Most evidence suggests that Barrett oesophagus develops from progenitor cells at the oesophagogastric junction that proliferate and undergo epithelial-mesenchymal transition as part of a wound-healing process that replaces oesophageal squamous epithelium damaged by gastroesophageal reflux disease (GERD). GERD also seems to induce reprogramming of key transcription factors in the progenitor cells, resulting in the development of the specialized intestinal metaplasia that is characteristic of Barrett oesophagus, probably through an intermediate step of metaplasia to cardiac mucosa. Genome-wide association studies suggest that patients with GERD who develop Barrett oesophagus might have an inherited predisposition to oesophageal metaplasia and that there is a shared genetic susceptibility to Barrett oesophagus and to several of its risk factors (such as GERD, obesity and cigarette smoking). In this Review, we discuss the mechanisms, pathophysiology, genetic predisposition and cells of origin of Barrett oesophagus, and opine on the clinical implications and future research directions.
Collapse
Affiliation(s)
- Rhonda F Souza
- Division of Gastroenterology, Center for Oesophageal Diseases, Baylor University Medical Center, Dallas, TX, USA. .,Center for Oesophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA.
| | - Stuart J Spechler
- Division of Gastroenterology, Center for Oesophageal Diseases, Baylor University Medical Center, Dallas, TX, USA.,Center for Oesophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
29
|
Liu J, Liu L, Su Y, Wang Y, Zhu Y, Sun X, Guo Y, Shan J. IL-33 Participates in the Development of Esophageal Adenocarcinoma. Pathol Oncol Res 2022; 28:1610474. [PMID: 36110250 PMCID: PMC9469785 DOI: 10.3389/pore.2022.1610474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
Background: The progression from chronic gastroesophageal reflux disease (GERD) to Barrett esophagus (BE) and esophageal adenocarcinoma (EAC) is an inflammatory-driven neoplastic change. Interleukin-33 (IL-33) has identified as a crucial factor in several inflammatory disorders and malignancies.Methods: The high-density tissue microarray of the human EAC was analyzed with IL-33 immunohistochemistry staining (IHC). By anastomosing the jejunum with the esophagus, the rat model of EAC with mixed gastroduodenal reflux was established. The expression of IL-33 was determined using quantitative real-time polymerase chain reaction (RT-qPCR), western blot (WB), IHC and enzyme-linked immunosorbent assay (ELISA). Esophageal adenocarcinoma cells (OE19 and OE33) and human esophageal epithelial cells (HEECs) were used.Results: In the cytoplasm of human EAC tissue, IL-33 expression was substantially greater than in adjacent normal tissue. In rat model, the expression of IL-33 in the EAC group was considerably greater than in the control group, and this expression increased with the upgrade of pathological stage. In in vitro experiment, the mRNA and protein levels of IL-33 were considerably greater in OE19 and OE33 than in HEECs. The stimulation of IL-33 enhanced the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OE19 and OE33, but soluble ST2 (sST2) inhibited these effects. IL-33 stimulated the release of IL-6 by OE19 and OE33 cells.Conclusion: This study demonstrated the overexpression of IL-33 in the transition from GERD to EAC and that IL-33 promoted carcinogenesis in EAC cells through ST2. IL-33 might be a possible preventive target for EAC.
Collapse
Affiliation(s)
- Jia Liu
- School of Medicine, Southwest Jiaotong University, Chengdu, China
- The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Yang Su
- School of Medicine, Southwest Jiaotong University, Chengdu, China
- The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Yi Wang
- North Sichuan Medical College, Nanchong, China
| | - Yuchun Zhu
- North Sichuan Medical College, Nanchong, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Jing Shan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
- *Correspondence: Jing Shan,
| |
Collapse
|
30
|
Li M, Zheng Y, Zhao J, Liu M, Shu X, Li Q, Wang Y, Zhou Y. Polyphenol Mechanisms against Gastric Cancer and Their Interactions with Gut Microbiota: A Review. Curr Oncol 2022; 29:5247-5261. [PMID: 35892986 PMCID: PMC9332243 DOI: 10.3390/curroncol29080417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
The lack of new drugs and resistance to existing drugs are serious problems in gastric cancer(GC) treatment. The research found polyphenols possess anti-Helicobacter pylori(Hp) and antitumor activities and may be used in the research and development of drugs for cancer prevention and treatment. However, polyphenols are affected by their chemical structures and physical properties, which leads to relatively low bioavailability and bioactivity in vivo. The intestinal flora can improve the absorption, utilization, and biological activity of polyphenols, whereas polyphenol compounds can increase the richness of the intestinal flora, reduce the activity of carcinogenic bacteria, stabilize the proportion of core flora, and maintain homeostasis of the intestinal microenvironment. Our review summarizes the gastrointestinal flora-mediated mechanisms of polyphenol against GC.
Collapse
Affiliation(s)
- Matu Li
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jinyu Zhao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Meimei Liu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaochuang Shu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Sun X, Xin S, Li W, Zhang Y, Ye L. Discovery of Notch Pathway-Related Genes for Predicting Prognosis and Tumor Microenvironment Status in Bladder Cancer. Front Genet 2022; 13:928778. [PMID: 35846128 PMCID: PMC9279929 DOI: 10.3389/fgene.2022.928778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Notch signaling is a key regulator of immune cell differentiation and linked to autoimmune diseases, tumorigenesis and tumor-induced immunomodulation. An abnormally activated Notch signaling pathway contributes to almost all of the key features of cancer, including tumor angiogenesis, stemness, and epithelial-mesenchymal transition. Consequently, we investigated Notch pathway-related genes for developing prognostic marker and assessing immune status in bladder cancer. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to analyze RNA-seq data for bladder cancer. Cluster subtypes were identified using the NMF algorithm. In order to establish a prognostic risk signature, the least absolute shrinkage and selection operator (Lasso) and Cox regression analysis was utilized. GSEA was carried out to investigate the molecular mechanisms. Immune cell infiltration levels in bladder cancer were calculated using the CIBERSORT algorithm. External clinical tissue samples were used to validate the expression levels of signature genes. Results: Based on the NMF algorithm, bladder cancer samples were divided into two cluster subtypes and displayed different survival outcome and immune microenvironment. A six-gene risk signature (DTX3L, CNTN1, ENO1, GATA3, MAGEA1, and SORBS2) was independent for prognosis and showed good stability. The infiltration of immune cells and clinical variables were significantly different among the risk groups of patients. Response to immunotherapy also differed between different risk groups. Furthermore, the mRNA expression levels of the signature genes were verified in tissue samples by qRT-PCR. Conclusion: We established a 6-gene signature associated with Notch pathway in bladder cancer to effectively predict prognosis and reflect immune microenvironment status.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ying Zhang, ; Lin Ye,
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ying Zhang, ; Lin Ye,
| |
Collapse
|
32
|
Frei NF, Stachler MD. Today's Mistakes and Tomorrow's Wisdom in Development and Use of Biomarkers for Barrett's Esophagus. Visc Med 2022; 38:173-181. [PMID: 35814971 PMCID: PMC9210037 DOI: 10.1159/000521706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND A histological diagnosis of dysplasia is our current best predictor of progression in Barrett's esophagus (BE), the precursor of esophageal adenocarcinoma (EAC). Despite periodic endoscopic surveillance and assessment of dysplastic changes, we fail to identify the majority of those who progress before the development of EAC, whereas the majority of patients undergo endoscopy without showing progression. SUMMARY Low-grade dysplasia (LGD), confirmed by expert pathologists, identifies BE patients at higher risk for progression, but the diagnosis of LGD is challenging. Recent research indicates that progression from BE to EAC is heterogeneous and can accelerate via genome doubling and genome catastrophes, resulting in different ways to progression. We identified 3 target areas, which may help to overcome the current lack of an accurate biomarker: (1) the implementation of somatic point mutations, chromosomal alterations, and epigenetic changes (genomics and epigenomics), (2) evaluate and develop biomarkers over space and time, (3) use new sampling methods such as noninvasive self-expandable sponges and endoscopic brushes. This review focus on the state of the art in risk stratifying BE and on recent advances which may overcome the limitations of current strategies. KEY MESSAGES A panel of clinical factors, genomics, epigenomics, and/or proteomics will most likely lead to an assay that accurately risk stratifies BE patients into low- or high-risk for progression. This biomarker panel needs to be developed and validated in large cohorts containing a sufficient number of progressors, with testing samples over space (spatial distribution) and time (temporal distribution). For implementation in clinical practice, the technique should be affordable and applicable to formalin-fixed paraffin-embedded samples, which represent standard of care.
Collapse
Affiliation(s)
- Nicola F. Frei
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Matthew D. Stachler
- Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
33
|
Impact of the Tumor Microenvironment for Esophageal Tumor Development—An Opportunity for Prevention? Cancers (Basel) 2022; 14:cancers14092246. [PMID: 35565378 PMCID: PMC9100503 DOI: 10.3390/cancers14092246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Researchers increasingly appreciate the tumor microenvironment (TME) for its role in the development and therapy resistance of cancers like esophageal adenocarcinoma. A better understanding of the TME fueling carcinogenesis is necessary for tailored prevention and therapies. Here, we highlight recent insights into tumor initiation, interactions with the immune system and possible novel preventative measures. Abstract Despite therapeutical advancements, and in contrast to other malignancies, esophageal adenocarcinoma (EAC) prognosis remains dismal while the incidence has markedly increased worldwide over the past decades. EAC is a malignancy of the distal esophageal squamous epithelium at the squamocolumnar junction with gastric cells expanding into the esophagus. Most EAC patients have a history of Barret’s esophagus (BE), a metaplastic adaption to chronic reflux, initially causing an inflammatory microenvironment. Thus, the immune system is highly involved early on in disease development and progression. Normally, anti-tumor immunity could prevent carcinogenesis but in rare cases BE still progresses over a dysplastic intermediate state to EAC. The inflammatory milieu during the initial esophagitis phase changes to a tolerogenic immune environment in BE, and back to pro-inflammatory conditions in dysplasia and finally to an immune-suppressive tumor microenvironment in EAC. Consequently, there is a huge interest in understanding the underpinnings that lead to the inflammation driven stepwise progression of the disease. Since knowledge about the constellations of the various involved cells and signaling molecules is currently fragmentary, a comprehensive description of these changes is needed, allowing better preventative measures, diagnosis, and novel therapeutic targets.
Collapse
|
34
|
Du S, Sun L, Wang Y, Zhu W, Gao J, Pei W, Zhang Y. ADAM12 is an independent predictor of poor prognosis in liver cancer. Sci Rep 2022; 12:6634. [PMID: 35459884 PMCID: PMC9033838 DOI: 10.1038/s41598-022-10608-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Disintegrin and metalloproteinase 12 (ADAM12) is thought to trigger the occurrence and development of numerous tumours, including colorectal, breast, and pancreatic cancers. On the basis of The Cancer Genome Atlas (TCGA) datasets, in this study, the relationship between ADAM12 gene expression and hepatocellular carcinoma (HCC), the prognostic value of this relationship, and the potential mechanisms influencing HCC development were evaluated. The results showed that the ADAM12 gene was significantly and highly expressed in liver cancer tissue. The high expression of the ADAM12 gene in liver cancer tissue significantly and positively correlated with T stage, pathological stage, and residual tumour. Kaplan–Meier and Cox regression analyses revealed that ADAM12 gene expression is an independent risk factor influencing the prognosis of patients with liver cancer. Pathway analyses of ADAM12 in HCC revealed ADAM12-correlated signalling pathways, and the expression level of ADAM12 was associated with immune cell infiltration. In vitro experiments demonstrated that the expression level of ADAM12 in Huh-7 and Hep3B cells was significantly higher than that in other HCC cells. ShRNA transfection experiments confirmed that the expression levels of TGF-β and Notch pathway-related proteins were significantly decreased. An EdU cell proliferation assay showed that a low level of ADAM12 gene expression significantly inhibited the proliferative activity of HCC cells. Cell cycle experiments showed that low ADAM12 expression blocked the G1/S phase transition. Overall, this research revealed that high ADAM12 gene expression implies a poor prognosis for patients with primary liver cancer. In addition, it is a potential indicator for the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Shuangqiu Du
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Linlin Sun
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Yun Wang
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Wenhao Zhu
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, 241002, China
| | - Jialin Gao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, 241002, China.
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
35
|
Jiangang S, Nayoung K, Hongfang W, Junda L, Li C, Xuefeng B, Mingsong L. COX-2 strengthens the effects of acid and bile salts on human esophageal cells and Barrett esophageal cells. BMC Mol Cell Biol 2022; 23:19. [PMID: 35413817 PMCID: PMC9004192 DOI: 10.1186/s12860-022-00418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Aims Investigate the effect and mechanism of COX-2 on viability, intestinal metaplasia, and atypia in human esophageal squamous and Barrett esophageal cell lines. Methods Human esophageal squamous and Barrett esophageal cell lines were transfected with a COX-2 expression vector and a COX-2 siRNA, and then were treated with acid, bile salts, and a mixture of both. Cell viability, the expression of COX-2, NF-κB(p65), CDX-2, MUC2, c-myb, and BMP-4, and the morphology and microstructure of cells were then observed. Results The viability of COX-2 overexpressed cells was significantly higher than that of control cells, while the viability of COX-2 siRNA-treated cells was significantly lower than that of control cells. Intestinal metaplasia and atypia were observed in cells overexpressing COX-2. Acid, bile salts, and their mixture inhibited the viability of these two cell lines, but the inhibitory effect of the mixture was stronger than a single treatment in either. SiRNA mediated knockdown of COX-2 strengthened the antiproliferative effects of the mixture on HET-1A and BAR-T cells. The expression of p-p65, CDX-2, and BMP-4 was positively correlated with COX-2 expression, while the expression levels of p65, MUC2, and c-myb remained unchanged. Conclusion COX-2 may influence the viability, atypia, and intestinal metaplasia of human esophageal cells and Barrett esophageal cells. Activation of the p-p65, CDX-2, and BMP-4 signaling pathways by COX-2 may be part of this mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00418-5.
Collapse
Affiliation(s)
- Shen Jiangang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Gastroenterology, Shenzhen Longhua District People' Hospital, Shenzhen, 518109, China
| | - Kang Nayoung
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wang Hongfang
- Department of Gastroenterology, Shenzhen Luohu People' Hospital, Shenzhen, 518003, China
| | - Li Junda
- Department of Gastroenterology, Shenzhen Longhua District People' Hospital, Shenzhen, 518109, China
| | - Chen Li
- Department of Gastroenterology, Shenzhen Longhua District People' Hospital, Shenzhen, 518109, China
| | - Bai Xuefeng
- Department of Pathology and Comprehensive Cancer Center, Ohio State University Medical Centre, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA
| | - Li Mingsong
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
36
|
Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights. Nutrients 2022; 14:nu14050969. [PMID: 35267943 PMCID: PMC8912450 DOI: 10.3390/nu14050969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett’s esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents.
Collapse
|
37
|
Sahm V, Maurer C, Baumeister T, Anand A, Strangmann J, Schmid RM, Wang TC, Quante M. Telomere shortening accelerates tumor initiation in the L2-IL1B mouse model of Barrett esophagus and emerges as a possible biomarker. Oncotarget 2022; 13:347-359. [PMID: 35178191 PMCID: PMC8842791 DOI: 10.18632/oncotarget.28198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Barrett’s esophagus (BE) is a precursor of the esophageal adenocarcinoma (EAC). BE- development and its progression to cancer is associated with gastroesophageal reflux disease. However, there is currently no molecular risk prediction model that accurately identifies patients at high risk for EAC. Here, we investigated the impact of shortened telomeres in a mouse model for Barrett esophagus (L2-IL1B). The L2-IL1B mouse model is characterized by IL-1β-mediated inflammation, which leads to a Barrett-like metaplasia in the transition zone between the squamous forestomach and glandular cardia/stomach. Telomere shortening was achieved by mTERC knockout. In the second generation (G2) of mTERC knockout L2-IL1B.mTERC−/− G2 mice exhibited telomere dysfunction with significantly shorter telomeres as measured by qFISH compared to L2-IL1B mice, correlating with stronger DNA damage in the form of phosphorylation of H2AX (γH2AX). Macroscopically, tumor area along the squamocolumnar junction (SCJ) was increased in L2-IL1B.mTERC−/− G2 mice, along with increased histopathological dysplasia. In vitro studies indicated increased organoid formation capacity in BE tissue from L2-IL1B.mTERC−/− G2 mice. In addition, pilot studies of human BE-, dysplasia- and EAC tissue samples confirmed that BE epithelial cells with or without dysplasia (LGD) had shorter telomeres compared to gastric cardia tissue. Of note, differentiated goblet cells retained longer telomeres than columnar lined BE epithelium. In conclusion, our studies suggest that shortened telomeres are functionally important for tumor development in a mouse model of BE and are associated with proliferating columnar epithelium in human BE. We propose that shortened telomeres should be evaluated further as a possible biomarker of cancer risk in BE patients.
Collapse
Affiliation(s)
- Vincenz Sahm
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Carlo Maurer
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Akanksha Anand
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Roland M. Schmid
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Quante
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Shen LJ, Sun HW, Chai YY, Jiang QY, Zhang J, Li WM, Xin SJ. The Disassociation of the A20/HSP90 Complex via Downregulation of HSP90 Restores the Effect of A20 Enhancing the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents. Front Oncol 2022; 11:804412. [PMID: 34976842 PMCID: PMC8714928 DOI: 10.3389/fonc.2021.804412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
NF-κB (nuclear factor κB) is a regulator of hepatocellular cancer (HCC)-related inflammation and enhances HCC cells' resistance to antitumor therapies by promoting cell survival and anti-apoptosis processes. In the present work, we demonstrate that A20, a dominant-negative regulator of NF-κB, forms a complex with HSP90 (heat-shock protein 90) and causes the disassociation of the A20/HSP90 complex via downregulation of HSP90. This process restores the antitumor activation of A20. In clinical specimens, the expression level of A20 did not relate with the outcome in patients receiving sorafenib; however, high levels of HSP90 were associated with poor outcomes in these patients. A20 interacted with and formed complexes with HSP90. Knockdown of HSP90 and treatment with an HSP90 inhibitor disassociated the A20/HSP90 complex. Overexpression of A20 alone did not affect HCC cells. Downregulation of HSP90 combined with A20 overexpression restored the effect of A20. Overexpression of A20 repressed the expression of pro-survival and anti-apoptosis-related factors and enhanced HCC cells' sensitivity to sorafenib. These results suggest that interactions with HSP90 could be potential mechanisms of A20 inactivation and disassociation of the A20/HSP90 complex and could serve as a novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Li-Jun Shen
- Medical School of Chinese People's Liberation Army (PLA), Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Division 8, Department of Hepatology, Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hui-Wei Sun
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan-Yao Chai
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qi-Yu Jiang
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jian Zhang
- Department of Patient Management, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wen-Ming Li
- Department of Emergency Medicine, Handan Central Hospital, Handan, Hebei Province, China
| | - Shao-Jie Xin
- Medical School of Chinese People's Liberation Army (PLA), Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Division 6, Department of Hepatology, Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
39
|
Maslyonkina KS, Konyukova AK, Alexeeva DY, Sinelnikov MY, Mikhaleva LM. Barrett's esophagus: The pathomorphological and molecular genetic keystones of neoplastic progression. Cancer Med 2022; 11:447-478. [PMID: 34870375 PMCID: PMC8729054 DOI: 10.1002/cam4.4447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Barrett's esophagus is a widespread chronically progressing disease of heterogeneous nature. A life threatening complication of this condition is neoplastic transformation, which is often overlooked due to lack of standardized approaches in diagnosis, preventative measures and treatment. In this essay, we aim to stratify existing data to show specific associations between neoplastic transformation and the underlying processes which predate cancerous transition. We discuss pathomorphological, genetic, epigenetic, molecular and immunohistochemical methods related to neoplasia detection on the basis of Barrett's esophagus. Our review sheds light on pathways of such neoplastic progression in the distal esophagus, providing valuable insight into progression assessment, preventative targets and treatment modalities. Our results suggest that molecular, genetic and epigenetic alterations in the esophagus arise earlier than cancerous transformation, meaning the discussed targets can help form preventative strategies in at-risk patient groups.
Collapse
|
40
|
Abnormal Expression of Centromere Protein U Is Associated with Hepatocellular Cancer Progression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4051192. [PMID: 34957303 PMCID: PMC8702312 DOI: 10.1155/2021/4051192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, but its molecular mechanism is unclear. Abnormal expression of centromere protein U (CENPU) is closely related to diverse human cancers. The purpose of this article was to evaluate the function and potential mechanisms of CENPU in HCC development. Methods We performed bioinformatics analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), and Kaplan-Meier plotter databases to investigate the clinical significance and prognostic value of CENPU in HCC. Western blotting and immunohistochemical staining were used to measure protein expression, while reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was used to determine mRNA expression. Cell Counting Kit8 (CCK-8) and colony formation assays were conducted to examine cell proliferation. Transwell and wound healing assays were used to assess cell migration and invasion. Gene set enrichment analysis (GSEA) was used to explore the potential signaling pathways of CENPU involved in HCC. Results High expression of CENPU in HCC was predicted by public database analysis and indicated a poor prognosis. CENPU expression was significantly higher in HCC tissues and cells than in normal tissues and cell. In vitro, CENPU promoted the proliferation, migration, and invasion of HCC cells. GSEA results indicated that CENPU was linked to the Notch signaling pathway, and our research supported this prediction. Conclusion CENPU promotes the malignant biological process of HCC and may be a promising target for HCC treatment.
Collapse
|
41
|
High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett’s Esophagus. Microorganisms 2021; 9:microorganisms9122432. [PMID: 34946037 PMCID: PMC8708753 DOI: 10.3390/microorganisms9122432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett’s esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.
Collapse
|
42
|
Yao C, Li Y, Luo L, Xiong Q, Zhong X, Xie F, Feng P. Identification of miRNAs and genes for predicting Barrett's esophagus progressing to esophageal adenocarcinoma using miRNA-mRNA integrated analysis. PLoS One 2021; 16:e0260353. [PMID: 34818353 PMCID: PMC8612537 DOI: 10.1371/journal.pone.0260353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Barrett's esophagus (BE) is defined as any metaplastic columnar epithelium in the distal esophagus, which predisposes to esophageal adenocarcinoma (EAC). Yet, the mechanism through which BE develops to EAC still remain unclear. Moreover, the miRNA-mRNA regulatory network in distinguishing BE from EAC still remains poorly understood. To identify differentially expressed miRNAs (DEMs) and genes (DEGs) between EAC and BE from tissue samples, gene expression microarray datasets GSE13898, GSE26886, GSE1420 and miRNA microarray datasets GSE16456, GSE20099 were downloaded from Gene Expression Omnibus (GEO) database. GEO2R was used to screen the DEMs and DEGs. Pathway and functional enrichment analysis were performed by DAVID database. The protein-protein interaction (PPI) network was constructed by STRING and been visualized by Cytoscape software. Finnal, survival analysis was performed basing TCGA database. A total of 21 DEMs were identified. The enriched functions and pathways analysis inclued Epstein-Barr virus infection, herpesvirus infection and TRP channels. GART, TNFSF11, GTSE1, NEK2, ICAM1, PSMD12, CTNNB1, CDH1, PSEN1, IL1B, CTNND1, JAG1, CDH17, ITCH, CALM1 and ITGA6 were considered as the hub-genes. Hsa-miR-143 and hsa-miR-133b were the highest connectivity target gene. JAG1 was predicted as the largest number of target miRNAs. The expression of hsa-miR-181d, hsa-miR-185, hsa-miR-15b, hsa-miR-214 and hsa-miR-496 was significantly different between normal tissue and EAC. CDH1, GART, GTSE1, NEK2 and hsa-miR-496, hsa-miR-214, hsa-miR-15b were found to be correlated with survival.
Collapse
Affiliation(s)
- Chengjiao Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Geriatrics of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yilin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihong Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaowu Zhong
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- * E-mail: (PF); (XZ)
| | - Fengjiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peimin Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- * E-mail: (PF); (XZ)
| |
Collapse
|
43
|
Teufel A, Quante M, Kandulski A, Hirth M, Zhan T, Eckardt M, Thieme R, Kusnik A, Yesmembetov K, Wiest I, Riemann JF, Schlitt HJ, Gockel I, Malfertheiner P, Ebert MP. [Prevention of gastrointestinal cancer]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:964-982. [PMID: 34507375 DOI: 10.1055/a-1540-7539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Throughout the past decades, considerable progress has been made in the (early) diagnosis and treatment of gastrointestinal cancers. However, the prognosis for advanced stages of gastrointestinal tumors remains limited for many patients and approximately one third of all tumor patients die as a result of gastrointestinal tumors. The prevention and early detection of gastrointestinal tumors is therefore of great importance.For this reason, we summarize the current state of knowledge and recommendations for the primary, secondary and tertiary prevention of esophageal, stomach, pancreas, liver and colorectal cancer in the following.
Collapse
Affiliation(s)
- Andreas Teufel
- II. Medizinische Klinik, Sektion Hepatologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Universitätsklinikum Mannheim, Mannheim.,Klinische Kooperationseinheit Healthy Metabolism, Zentrum für Präventivmedizin und Digitale Gesundheit Baden-Württemberg, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim
| | - Michael Quante
- Klinik für Innere Medizin II, Medizinische Universitätsklinik, Universitätsklinikum Freiburg, Freiburg im Breisgau
| | - Arne Kandulski
- Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, Regensburg
| | - Michael Hirth
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Universitätsklinikum Mannheim, Mannheim
| | - Tianzuo Zhan
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Universitätsklinikum Mannheim, Mannheim
| | - Maximilian Eckardt
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Universitätsklinikum Mannheim, Mannheim
| | - René Thieme
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Department für Operative Medizin (DOPM), Universitatsklinikum Leipzig, Leipzig
| | - Alexander Kusnik
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Universitätsklinikum Mannheim, Mannheim
| | - Kakharman Yesmembetov
- Klinik für Gastroenterologie, Stoffwechselerkrankungen und Internistische Intensivmedizin (Med. III), RWTH Universitätsklinikum Aachen, Aachen
| | - Isabella Wiest
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Universitätsklinikum Mannheim, Mannheim
| | | | - Hans Jürgen Schlitt
- Klinik und Poliklinik für Chirurgie, Universitatsklinikum Regensburg, Regensburg
| | - Ines Gockel
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Department für Operative Medizin (DOPM), Universitatsklinikum Leipzig, Leipzig
| | - Peter Malfertheiner
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Medizinische Fakultät Magdeburg, Magdeburg
| | - Matthias Philip Ebert
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Universitätsklinikum Mannheim, Mannheim.,Klinische Kooperationseinheit Healthy Metabolism, Zentrum für Präventivmedizin und Digitale Gesundheit Baden-Württemberg, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim
| |
Collapse
|
44
|
Gil-Gómez G, Fassan M, Nonell L, Garrido M, Climent M, Anglada R, Iglesias M, Guzzardo V, Borga C, Grande L, de Bolós C, Pera M. miR-24-3p regulates CDX2 during intestinalization of cardiac-type epithelium in a human model of Barrett's esophagus. Dis Esophagus 2021; 34:6131383. [PMID: 33558874 DOI: 10.1093/dote/doab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac-type epithelium has been proposed as the precursor of intestinal metaplasia in the development of Barrett's esophagus. Dysregulation of microRNAs (miRNAs) and their effects on CDX2 expression may contribute to intestinalization of cardiac-type epithelium. The aim of this study was to examine the possible effect of specific miRNAs on the regulation of CDX2 in a human model of Barrett's esophagus. METHODS Microdissection of cardiac-type glands was performed in biopsy samples from patients who underwent esophagectomy and developed cardiac-type epithelium in the remnant esophagus. OpenArray™ analysis was used to compare the miRNAs profiling of cardiac-type glands with negative or fully positive CDX2 expression. CDX2 was validated as a miR-24 messenger RNA target by the study of CDX2 expression upon transfection of miRNA mimics and inhibitors in esophageal adenocarcinoma cell lines. The CDX2/miR-24 regulation was finally validated by in situ miRNA/CDX2/MUC2 co-expression analysis in cardiac-type mucosa samples of Barrett's esophagus. RESULTS CDX2 positive glands were characterized by a unique miRNA profile with a significant downregulation of miR-24-3p, miR-30a-5p, miR-133a-3p, miR-520e-3p, miR-548a-1, miR-597-5p, miR-625-3p, miR-638, miR-1255b-1, and miR-1260a, as well as upregulation of miR-590-5p. miRNA-24-3p was identified as potential regulator of CDX2 gene expression in three databases and confirmed in esophageal adenocarcinoma cell lines. Furthermore, miR-24-3p expression showed a negative correlation with the expression of CDX2 in cardiac-type mucosa samples with different stages of mucosal intestinalization. CONCLUSION These results showed that miRNA-24-3p regulates CDX2 expression, and the downregulation of miRNA-24-3p was associated with the acquisition of the intestinal phenotype in esophageal cardiac-type epithelium.
Collapse
Affiliation(s)
- Gabriel Gil-Gómez
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Lara Nonell
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Garrido
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Climent
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Section of Gastrointestinal Surgery, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roger Anglada
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mar Iglesias
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Pathology, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Chiara Borga
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Luis Grande
- Section of Gastrointestinal Surgery, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme de Bolós
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Manuel Pera
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Section of Gastrointestinal Surgery, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Dong C, Yu J, Yang Y, Zhang F, Su W, Fan Q, Wu C, Wu S. Berberine, a potential prebiotic to indirectly promote Akkermansia growth through stimulating gut mucin secretion. Biomed Pharmacother 2021; 139:111595. [PMID: 33862492 DOI: 10.1016/j.biopha.2021.111595] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Akkermansia spp. plays important roles in maintenance of host health. Increasing evidence reveals that berberine (BBR) may exert its pharmacological effects via, at least partially, promotion of Akkermansia spp. However, how BBR stimulates Akkermansia remains largely unknown. PURPOSE In this study, we investigated the mechanism underlying the Akkermansia-promoting effect of BBR. MATERIALS AND METHODS The effect of BBR on Akkermansia was assessed in BBR-gavaged mice and direct incubation. The influence of BBR on intestinal mucin production was determined by alcian-blue staining and real-time PCR. The feces were analysis by gas chromatography-time-of-flight mass spectrometry (GC-TOF/MS) metabolomics. The role of polyamines in BBR-elicited mucin secretion and Akkermansia growth was evaluated by administration of difluoromethylornithine (DFMO) in mice. RESULTS Gavage of BBR dose-dependently and time-dependently increased the abundance of Akkermansia in mice. However, it did not stimulate Akkermansia growth in direct incubation, suggesting that BBR may promote Akkermansia in a host-dependent way. Oral administration of BBR significantly increased the transcription of mucin-producing genes and mucin secretion in colon. Untargeted metabolomics analysis showed that BBR increased polyamines production in feces which are known to stimulate goblet cell proliferation and differentiation, but treatment with eukaryotic polyamine synthase inhibitor DFMO did not abolish the stimulating effect of BBR on mucin secretion and Akkermansia growth, indicating that the gut bacteria-derived but not the host-derived polyamines may involve in the BBR-promoted Akkermansia growth. CONCLUSIONS Our results reveal that BBR is a promising prebiotic for Akkermansia, and it promotes Akkermansia growth via stimulating mucin secretion in colon.
Collapse
Affiliation(s)
- Chaoran Dong
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yanan Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fang Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenquan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qinhua Fan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
46
|
Anand A, Fang HY, Mohammad-Shahi D, Ingermann J, Baumeister T, Strangmann J, Schmid RM, Wang TC, Quante M. Elimination of NF-κB signaling in Vimentin+ stromal cells attenuates tumorigenesis in a mouse model of Barrett's Esophagus. Carcinogenesis 2021; 42:405-413. [PMID: 33068426 DOI: 10.1093/carcin/bgaa109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation induces Barrett's Esophagus (BE) which can advance to esophageal adenocarcinoma. Elevated levels of interleukin (IL)-1b, IL-6 and IL-8 together with activated nuclear factor-kappaB (NF-κB), have been identified as important mediators of tumorigenesis. The inflammatory milieu apart from cancer cells and infiltrating immune cells contains myofibroblasts (MFs) that express aSMA and Vimentin. As we observed that increased NF-κB activation and inflammation correlates with increased MF recruitment and an accelerated phenotype we here analyze the role of NF-κB in MF during esophageal carcinogenesis in our L2-IL-1B mouse model. To analyze the effect of NF-κB signaling in MFs, we crossed L2-IL-1B mice to tamoxifen inducible Vim-Cre (Vim-CreTm) mice and floxed RelA (p65fl/fl) mice to specifically eliminate NF-κB signaling in MF (IL-1b.Vim-CreTm.p65fl/fl). The interaction of epithelial cells and stromal cells was further analyzed in mouse BE organoids and patient-derived human organoids. Histological scoring of IL-1b.Vim-CreTm.p65fl/fl mice showed a significantly attenuated phenotype compared with L2-IL-1B mice, with mild inflammation, decreased metaplasia and no dysplasia. This correlated with decreased proliferation and increased differentiation in cardia tissue of IL-1b.Vim-CreTm.p65fl/fl compared with L2-IL-1B mice. Distinct changes of cytokines and chemokines within the local microenvironment in IL-1b.Vim-CreTm.p65fl/fl mice reflected the histopathological abrogated phenotype. Co-cultured NF-κB inhibitor treated MF with mouse BE organoids demonstrated NF-κB-dependent growth and migration. MFs are essential to form an inflammatory and procarcinogenic microenvironment and NF-κB signaling in stromal cells emerges as an important driver of esophageal carcinogenesis. Our data suggest anti-inflammatory approaches as preventive strategies during surveillance of BE patients.
Collapse
Affiliation(s)
- Akanksha Anand
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Hsin-Yu Fang
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Donja Mohammad-Shahi
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Jonas Ingermann
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Theresa Baumeister
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Julia Strangmann
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Timothy C Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Quante
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany.,Universitätsklinikum Freiburg, Klinik für Innere Medizin II, Hugstetter Straße 55, Freiburg, Germany
| |
Collapse
|
47
|
Hayakawa Y, Nakagawa H, Rustgi AK, Que J, Wang TC. Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell 2021; 28:1343-1361. [PMID: 34129814 DOI: 10.1016/j.stem.2021.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The esophagus and stomach, joined by a unique transitional zone, contain actively dividing epithelial stem cells required for organ homeostasis. Upon prolonged inflammation, epithelial cells in both organs can undergo a cell fate switch leading to intestinal metaplasia, predisposing to malignancy. Here we discuss the biology of gastroesophageal stem cells and their role as cells of origin in cancer. We summarize the interactions between the stromal niche and gastroesophageal stem cells in metaplasia and early expansion of mutated stem-cell-derived clones during carcinogenesis. Finally, we review new approaches under development to better study gastroesophageal stem cells and advance the field.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo 113-8655, Japan
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Columbia Center for Human Development, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
48
|
Solfisburg QS, Sami SS, Gabre J, Soroush A, Dhaliwal L, Beveridge C, Jin Z, Poneros JM, Falk GW, Ginsberg GG, Wang KK, Lightdale CJ, Iyer PG, Abrams JA. Clinical significance of recurrent gastroesophageal junction intestinal metaplasia after endoscopic eradication of Barrett's esophagus. Gastrointest Endosc 2021; 93:1250-1257.e3. [PMID: 33144238 DOI: 10.1016/j.gie.2020.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS After endoscopic eradication of Barrett's esophagus (BE), recurrence of intestinal metaplasia at the gastroesophageal junction (GEJIM) is common. The clinical significance of this finding is unclear. We assessed whether recurrent GEJIM is associated with increased risk of subsequent dysplasia and whether endoscopic treatment lowers this risk. METHODS A retrospective, multicenter, cohort study was performed of treated BE patients who achieved complete eradication of intestinal metaplasia (IM). Postablation follow-up was performed at standard intervals. Recurrent GEJIM was defined as nondysplastic IM on gastroesophageal junction biopsy specimens without endoscopic evidence of BE. Patients were categorized as "never-GEJIM," "GEJIM-observed," or "GEJIM-treated." Endoscopic treatment for recurrent GEJIM was at the endoscopists' discretion. The primary outcome was dysplasia recurrence. Analyses were performed using log-rank tests and Cox proportional hazards modeling. RESULTS Six hundred thirty-three patients were analyzed; median follow-up was 47 months (interquartile range, 24-69). Most patients (81%) had high-grade dysplasia or intramucosal adenocarcinoma before treatment. Dysplasia recurrence was 2.2% per year. GEJIM-observed patients had the lowest rate of recurrence (.6%/y) followed by GEJIM-treated (2.2%/y) and never-GEJIM (2.6%/y) (log-rank P = .07). In multivariate analyses, compared with never-GEJIM, the risk of dysplasia recurrence was significantly lower in GEJIM-observed patients (adjusted hazard ratio, .19; 95% confidence interval, .05-.81) and not different in GEJIM-treated patients (adjusted hazard ratio, .81; 95% confidence interval, .39-1.67). Older age and longer initial BE length were independently associated with recurrence. CONCLUSIONS Recurrent GEJIM after endoscopic eradication of BE was not associated with an increased risk of subsequent dysplasia. Future studies are warranted to determine if observation is appropriate for this finding.
Collapse
Affiliation(s)
- Quinn S Solfisburg
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sarmed S Sami
- Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Joel Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ali Soroush
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Lovekirat Dhaliwal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Claire Beveridge
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhezhen Jin
- Departments of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - John M Poneros
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles J Lightdale
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
49
|
Wang F, Zhang L, Xu Y, Xie Y, Li S. Comprehensive Analysis and Identification of Key Driver Genes for Distinguishing Between Esophageal Adenocarcinoma and Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:676156. [PMID: 34124063 PMCID: PMC8194272 DOI: 10.3389/fcell.2021.676156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Esophageal cancer (EC) is one of the deadliest cancers in the world. However, the mechanism that drives the evolution of EC is still unclear. On this basis, we identified the key genes and molecular pathways that may be related to the progression of esophageal adenocarcinoma and squamous cell carcinoma to find potential markers or therapeutic targets. Methods: GSE26886 were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) among normal samples, EA, and squamous cell carcinoma were determined using R software. Then, potential functions of DEGs were determined using the Database for Annotation, Visualization and Integrated Discovery (DAVID). The STRING software was used to identify the most important modules in the protein-protein interaction (PPI) network. The expression levels of hub genes were confirmed using UALCAN database. Kaplan-Meier plotters were used to confirm the correlation between hub genes and outcomes in EC. Results: In this study, we identified 1,098 genes induced in esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC), and 669 genes were reduced in EA and ESCC, suggesting that these genes may play an important role in the occurrence and development of EC tumors. Bioinformatics analysis showed that these genes were involved in cell cycle regulation and p53 and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. In addition, we identified 147 induced genes and 130 reduced genes differentially expressed in EA and ESCC. The expression of ESCC in the EA group was different from that in the control group. By PPI network analysis, we identified 10 hub genes, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, SCP2, and NLN. TCGA validation showed that these genes were present in the dysfunctional samples between EC and normal samples and between EA and ESCC. Kaplan-Meier analysis showed that MAPK1, ACOX1, SCP2, and NLN were associated with overall survival in patients with ESCC and EA. Conclusions: In this study, we identified a series of DEGs between EC and normal samples and between EA and ESCC samples. We also identified 10 key genes involved in the EC process. We believe that this study may provide a new biomarker for the prognosis of EA and ESCC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yue Xu
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yilin Xie
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Sachdeva UM, Shimonosono M, Flashner S, Cruz-Acuña R, Gabre JT, Nakagawa H. Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Lett 2021; 509:39-52. [PMID: 33838281 DOI: 10.1016/j.canlet.2021.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) organoids are a novel tool to model epithelial cell biology and human diseases of the esophagus. 3D organoid culture systems have been utilized to investigate the pathobiology of esophageal cancer, including both squamous cell carcinoma and adenocarcinoma. Additional organoid-based approaches for study of esophageal development and benign esophageal diseases have provided key insights into esophageal keratinocyte differentiation and mucosal regeneration. These investigations have implications for the identification of esophageal cancer stem cells, as well as the potential to halt malignant progression through induction of differentiation pathways. Patient-derived organoids (PDOs) from human tissue samples allow for unique and faithful in vitro modeling of esophageal cancers, and provide an exciting platform for investigation into personalized medicine and targeted treatment approaches, as well as new models for understanding therapy resistance and recurrent disease. Future directions include high-throughput genomic screening using PDOs, and study of tumor-microenvironmental interactions through co-culture with immune and stromal cells and novel extracellular matrix complexes.
Collapse
Affiliation(s)
- Uma M Sachdeva
- Divison of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joel T Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|