1
|
Xi Y, Zhao Z, Wang F, Zhang D, Guo Y. IRTIDP: A simple integrated real-time isolation and detection platform for small extracellular vesicles Glypican-1 in pancreatic cancer patients. Talanta 2024; 280:126766. [PMID: 39191106 DOI: 10.1016/j.talanta.2024.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Glypican-1 (GPC-1) protein-positive small extracellular vesicles (GPC-1+-sEV) have been proposed as potential biomarkers for early diagnosis of pancreatic cancer. In this study, we present an integrated real-time isolation and detection platform (IRTIDP) to capture and analyze GPC-1+-sEV directly from sera of pancreatic cancer patients. First, CD63 antibody-modified metal-organic framework (MOF) materials were utilized to enrich sEVs with a capture efficiency of 93.93 %. Second, a SERS probe was constructed by Raman reporter 4-MBA and GPC-1 antibody modified SERS active silver nanoparticles (AgNPs), which formed a sandwich complex structure of "MOFs@GPC-1+-sEV@AgNPs-4-MBA" with MOFs-enriched sEVs. The IRTSDP can complete the capture and detection process within 35 min, with a detection limit for 1 GPC-1+-sEV/μL, and linear range between 105∼109 GPC-1+-sEV/mL. Furthermore, this approach has been applied to quantify serum sEV GPC-1 in clinical pancreatic cancer patients. Based on the SERS intensity analysis, pancreatic cancer patients can be distinguished from pancreatic cystadenoma patients and healthy individuals effectively using this innovative platform that provides highly specific and sensitive means for early diagnosis of pancreatic cancer as well as other tumor types.
Collapse
Affiliation(s)
- Yuge Xi
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China; Department of Laboratory Medicine, The People's Hospital of Chongging Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zijun Zhao
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Dan Zhang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
2
|
Pollini T, Todeschini L, Maker AV. Pancreas Cyst Diagnosis and Advances in Cyst Fluid Analysis. Surg Clin North Am 2024; 104:965-974. [PMID: 39237171 DOI: 10.1016/j.suc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Pancreatic Cystic Neoplasms (PCN) represent a diverse group of tumors, some of which may progress to pancreatic cancer. Considering their high prevalence in the general population, the development of reliable biomarkers is crucial. The ideal biomarker will accurately diagnose the subtype of PCN and assess the risk of high-grade dysplasia or invasive cancer. Cyst fluid analysis has emerged as a promising approach to accomplish this goal, yet no single marker has yet gained unanimous support for routine inclusion in PCN evaluation.
Collapse
Affiliation(s)
- Tommaso Pollini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco
| | - Letizia Todeschini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco.
| |
Collapse
|
3
|
Goggins M. The role of biomarkers in the early detection of pancreatic cancer. Fam Cancer 2024; 23:309-322. [PMID: 38662265 PMCID: PMC11309746 DOI: 10.1007/s10689-024-00381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic surveillance can detect early-stage pancreatic cancer and achieve long-term survival, but currently involves annual endoscopic ultrasound and MRI/MRCP, and is recommended only for individuals who meet familial/genetic risk criteria. To improve upon current approaches to pancreatic cancer early detection and to expand access, more accurate, inexpensive, and safe biomarkers are needed, but finding them has remained elusive. Newer approaches to early detection, such as using gene tests to personalize biomarker interpretation, and the increasing application of artificial intelligence approaches to integrate complex biomarker data, offer promise that clinically useful biomarkers for early pancreatic cancer detection are on the horizon.
Collapse
Affiliation(s)
- Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhang M, Ono M, Kawaguchi S, Iida M, Chattrairat K, Zhu Z, Nagashima K, Yanagida T, Yamaguchi J, Nishikawa H, Natsume A, Baba Y, Yasui T. On-Site Stimulation of Dendritic Cells by Cancer-Derived Extracellular Vesicles on a Core-Shell Nanowire Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29570-29580. [PMID: 38804616 PMCID: PMC11181270 DOI: 10.1021/acsami.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) contain a subset of proteins, lipids, and nucleic acids that maintain the characteristics of the parent cell. Immunotherapy using EVs has become a focus of research due to their unique features and bioinspired applications in cancer treatment. Unlike conventional immunotherapy using tumor fragments, EVs can be easily obtained from bodily fluids without invasive actions. We previously fabricated nanowire devices that were specialized for EV collection, but they were not suitable for cell culturing. In this study, we fabricated a ZnO/Al2O3 core-shell nanowire platform that could collect more than 60% of the EVs from the cell supernatant. Additionally, we could continue to culture dendritic cells (DCs) on the platform as an artificial lymph node to investigate cell maturation into antigen-presenting cells. Finally, using this platform, we reproduced a series of on-site immune processes that are among the pivotal immune functions of DCs and include such processes as antigen uptake, antigen presentation, and endocytosis of cancer-derived EVs. This platform provides a new ex vivo tool for EV-DC-mediated immunotherapies.
Collapse
Affiliation(s)
- Min Zhang
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Ono
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shota Kawaguchi
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Zetao Zhu
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Yamaguchi
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
- Division
of Cancer Immunology, Exploratory Oncology
Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
5
|
Halabi EA, Gessner I, Yang KS, Kim JJ, Jana R, Peterson HM, Spitzberg JD, Weissleder R. Magnetic Silica-Coated Fluorescent Microspheres (MagSiGlow) for Simultaneous Detection of Tumor-Associated Proteins. Angew Chem Int Ed Engl 2024; 63:e202318870. [PMID: 38578432 DOI: 10.1002/anie.202318870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Multiplexed bead assays for solution-phase biosensing often encounter cross-over reactions during signal amplification steps, leading to unwanted false positive and high background signals. Current solutions involve complex custom-designed and costly equipment, limiting their application in simple laboratory setup. In this study, we introduce a straightforward protocol to adapt a multiplexed single-bead assay to standard fluorescence imaging plates, enabling the simultaneous analysis of thousands of reactions per plate. This approach focuses on the design and synthesis of bright fluorescent and magnetic microspheres (MagSiGlow) with multiple fluorescent wavelengths serving as unique detection markers. The imaging-based, single-bead assay, combined with a scripted algorithm, allows the detection, segmentation, and co-localization on average of 7500 microspheres per field of view across five imaging channels in less than one second. We demonstrate the effectiveness of this method with remarkable sensitivity at low protein detection limits (100 pg/mL). This technique showed over 85 % reduction in signal cross-over to the solution-based method after the concurrent detection of tumor-associated protein biomarkers. This approach holds the promise of substantially enhancing high throughput biosensing for multiple targets, seamlessly integrating with rapid image analysis algorithms.
Collapse
Affiliation(s)
- Elias A Halabi
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
| | - Isabel Gessner
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
| | - Katherine S Yang
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
| | - Jae-Jun Kim
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
| | - Rupsa Jana
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
- CaNCURE Cancer Nanomedicine Research Program Mugar Life Sciences Bldg, Department of Biochemistry, Northeastern University, 330 Huntington Ave #203, 02115, Boston, MA, USA
| | - Hannah M Peterson
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
| | - Joshua D Spitzberg
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, 02114, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, 02115, Boston, MA, USA
| |
Collapse
|
6
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
7
|
Arrè V, Mastrogiacomo R, Balestra F, Serino G, Viti F, Rizzi F, Curri ML, Giannelli G, Depalo N, Scavo MP. Unveiling the Potential of Extracellular Vesicles as Biomarkers and Therapeutic Nanotools for Gastrointestinal Diseases. Pharmaceutics 2024; 16:567. [PMID: 38675228 PMCID: PMC11055174 DOI: 10.3390/pharmaceutics16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs), acting as inherent nanocarriers adept at transporting a range of different biological molecules such as proteins, lipids, and genetic material, exhibit diverse functions within the gastroenteric tract. In states of normal health, they participate in the upkeep of systemic and organ homeostasis. Conversely, in pathological conditions, they significantly contribute to the pathogenesis of gastrointestinal diseases (GIDs). Isolating EVs from patients' biofluids facilitates the discovery of new biomarkers that have the potential to offer a rapid, cost-effective, and non-invasive method for diagnosing and prognosing specific GIDs. Furthermore, EVs demonstrate considerable therapeutic potential as naturally targeted physiological carriers for the intercellular delivery of therapeutic cargo molecules or as nanoscale tools engineered specifically to regulate physio-pathological conditions or disease progression. Their attributes including safety, high permeability, stability, biocompatibility, low immunogenicity, and homing/tropism capabilities contribute to their promising clinical therapeutic applications. This review will delve into various examples of EVs serving as biomarkers or nanocarriers for therapeutic cargo in the context of GIDs, highlighting their clinical potential for both functional and structural gastrointestinal conditions. The versatile and advantageous properties of EVs position them as promising candidates for innovative therapeutic strategies in advancing personalized medicine approaches tailored to the gastroenteric tract, addressing both functional and structural GIDs.
Collapse
Affiliation(s)
- Valentina Arrè
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Federica Viti
- Institute of Biophysics—National Research Council (IBF-CNR), Via De Marini 6, 16149 Genova, Italy;
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| |
Collapse
|
8
|
Agostini A, Piro G, Inzani F, Quero G, Esposito A, Caggiano A, Priori L, Larghi A, Alfieri S, Casolino R, Scaglione G, Tondolo V, Cammarota G, Ianiro G, Corbo V, Biankin AV, Tortora G, Carbone C. Identification of spatially-resolved markers of malignant transformation in Intraductal Papillary Mucinous Neoplasms. Nat Commun 2024; 15:2764. [PMID: 38553466 PMCID: PMC10980816 DOI: 10.1038/s41467-024-46994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
The existing Intraductal Papillary Mucinous Neoplasm (IPMN) risk stratification relies on clinical and histological factors, resulting in inaccuracies and leading to suboptimal treatment. This is due to the lack of appropriate molecular markers that can guide patients toward the best therapeutic options. Here, we assess and confirm subtype-specific markers for IPMN across two independent cohorts of patients using two Spatial Transcriptomics (ST) technologies. Specifically, we identify HOXB3 and ZNF117 as markers for Low-Grade Dysplasia, SPDEF and gastric neck cell markers in borderline cases, and NKX6-2 and gastric isthmus cell markers in High-Grade-Dysplasia Gastric IPMN, highlighting the role of TNFα and MYC activation in IPMN progression and the role of NKX6-2 in the specific Gastric IPMN progression. In conclusion, our work provides a step forward in understanding the gene expression landscapes of IPMN and the critical transcriptional networks related to PDAC progression.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | - Frediano Inzani
- Department of Anatomic Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Quero
- Pancreatic Surgery Unit, Gemelli Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Digestive Surgery Unit, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Annachiara Esposito
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Alessia Caggiano
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Priori
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Alberto Larghi
- Digestive Endoscopy Unit, Fondazione Policlinico A. Gemelli IRCCS and Center for Endoscopic Research, Therapeutics and Training, Catholic University, Rome, Italy
| | - Sergio Alfieri
- Pancreatic Surgery Unit, Gemelli Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Digestive Surgery Unit, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Raffaella Casolino
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Giulia Scaglione
- Department of Anatomic Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vincenzo Tondolo
- General Surgery, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, 37134, Verona, Italy
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
9
|
Mishima T, Takano S, Takayashiki T, Kuboki S, Suzuki D, Sakai N, Hosokawa I, Konishi T, Nishino H, Nakada S, Kouchi Y, Kishimoto T, Ohtsuka M. Serum elastase-1 predicts malignancy in intraductal papillary mucinous neoplasm of the pancreas. Pancreatology 2024; 24:93-99. [PMID: 38102054 DOI: 10.1016/j.pan.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The indication for surgical resection of intraductal papillary mucinous neoplasms (IPMNs) is defined by imaging features, such as mural nodules. Although carbohydrate antigen (CA) 19-9 was selected as a parameter for worrisome features, no serum biomarkers were considered when deciding on surgical indications in the latest international consensus guideline. In this study, we assessed whether clinical factors, imaging findings, and serum biomarkers are useful in predicting malignant IPMNs. METHODS A total of 234 resected IPMN cases in Chiba University Hospital from July 2005 to December 2021 were retrospectively analyzed. RESULTS Among the 234 patients with resected IPMNs diagnosed by preoperative imaging, 117 were diagnosed with malignant pathologies (high-grade dysplasia and invasive IPMNs) according to the histological classification. In the multivariate analysis, cyst diameter ≥30 mm; p = 0.035), enhancing mural nodules on multidetector computed tomography (≥5 mm; p = 0.018), and high serum elastase-1 (≥230 ng/dl; p = 0.0007) were identified as independent malignant predictors, while CA19-9 was not. Furthermore, based on the receiver operator characteristic curve analyses, elastase-1 was superior to CA19-9 for predicting malignant IPMNs. Additionally, high serum elastase-1 levels (≥230 ng/dl; p = 0.0093) were identified as independent predictors of malignant IPMNs in patients without mural nodules on multidetector computed tomography (MDCT) in multivariate analysis. CONCLUSION The serum elastase-1 level was found to be a potentially useful biomarker for predicting malignant IPMNs.
Collapse
Affiliation(s)
- Takashi Mishima
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Daisuke Suzuki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Nozomu Sakai
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Isamu Hosokawa
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takanori Konishi
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hitoe Nishino
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Nakada
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yusuke Kouchi
- Department of Molecular Pathology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
10
|
Benke M, Zeöld A, Kittel Á, Khamari D, Hritz I, Horváth M, Keczer B, Borka K, Szücs Á, Wiener Z. MiR-200b categorizes patients into pancreas cystic lesion subgroups with different malignant potential. Sci Rep 2023; 13:19820. [PMID: 37963969 PMCID: PMC10646105 DOI: 10.1038/s41598-023-47129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Extracellular vesicles (EV) carry their cargo in a membrane protected form, however, their value in early diagnostics is not well known. Although pancreatic cysts are heterogeneous, they can be clustered into the larger groups of pseudocysts (PC), and serous and mucinous pancreatic cystic neoplasms (S-PCN and M-PCN, respectively). In contrast to PCs and S-PCNs, M-PCNs may progress to malignant pancreatic cancers. Since current diagnostic tools do not meet the criteria of high sensitivity and specificity, novel methods are urgently needed to differentiate M-PCNs from other cysts. We show that cyst fluid is a rich source of EVs that are positive and negative for the EV markers CD63 and CD81, respectively. Whereas we found no difference in the EV number when comparing M-PCN with other pancreatic cysts, our EV-based biomarker identification showed that EVs from M-PCNs had a higher level of miR-200b. We also prove that not only EV-derived, but also total cyst fluid miR-200b discriminates patients with M-PCN from other pancreatic cysts with a higher sensitivity and specificity compared to other diagnostic methods, providing the possibility for clinical applications. Our results show that measuring miR-200b in cyst fluid-derived EVs or from cyst fluid may be clinically important in categorizing patients.
Collapse
Affiliation(s)
- Márton Benke
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Anikó Zeöld
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, and HUN-REN-SU Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - István Hritz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Miklós Horváth
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Bánk Keczer
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Szücs
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary.
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Wood LD, Adsay NV, Basturk O, Brosens LAA, Fukushima N, Hong SM, Kim SJ, Lee JW, Luchini C, Noë M, Pitman MB, Scarpa A, Singhi AD, Tanaka M, Furukawa T. Systematic review of challenging issues in pathology of intraductal papillary mucinous neoplasms. Pancreatology 2023; 23:878-891. [PMID: 37604731 DOI: 10.1016/j.pan.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are a cystic precursor to pancreatic cancer. IPMNs deemed clinically to be at high-risk for malignant progression are frequently treated with surgical resection, and pathological examination of the pancreatectomy specimen is a key component of the clinical care of IPMN patients. METHODS Systematic literature reviews were conducted around eight topics of clinical relevance in the examination of pathological specimens in patients undergoing resection of IPMN. RESULTS This review provides updated perspectives on morphological subtyping of IPMNs, classification of intraductal oncocytic papillary neoplasms, nomenclature for high-grade dysplasia, assessment of T stage, distinction of carcinoma associated or concomitant with IPMN, role of molecular assessment of IPMN tissue, role of intraoperative assessment by frozen section, and preoperative evaluation of cyst fluid cytology. CONCLUSIONS This analysis provides the foundation for data-driven approaches to several challenging issues in the pathology of IPMNs.
Collapse
Affiliation(s)
- Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - N Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Noriyoshi Fukushima
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Joo Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae W Lee
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy; ARC-Net Research Center, University of Verona, 37134, Verona, Italy
| | - Michaël Noë
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martha B Pitman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy; ARC-Net Research Center, University of Verona, 37134, Verona, Italy
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Reynolds DE, Pan M, Yang J, Galanis G, Roh YH, Morales RT, Kumar SS, Heo S, Xu X, Guo W, Ko J. Double Digital Assay for Single Extracellular Vesicle and Single Molecule Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303619. [PMID: 37802976 PMCID: PMC10667851 DOI: 10.1002/advs.202303619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a promising source of biomarkers for disease diagnosis. However, current diagnostic methods for EVs present formidable challenges, given the low expression levels of biomarkers carried by EV samples, as well as their complex physical and biological properties. Herein, a highly sensitive double digital assay is developed that allows for the absolute quantification of individual molecules from a single EV. Because the relative abundance of proteins is low for a single EV, tyramide signal amplification (TSA) is integrated to increase the fluorescent signal readout for evaluation. With the integrative microfluidic technology, the technology's ability to compartmentalize single EVs is successfully demonstrated, proving the technology's digital partitioning capacity. Then the device is applied to detect single PD-L1 proteins from single EVs derived from a melanoma cell line and it is discovered that there are ≈2.7 molecules expressed per EV, demonstrating the applicability of the system for profiling important prognostic and diagnostic cancer biomarkers for therapy response, metastatic status, and tumor progression. The ability to accurately quantify protein molecules of rare abundance from individual EVs will shed light on the understanding of EV heterogeneity and discovery of EV subtypes as new biomarkers.
Collapse
Affiliation(s)
- David E. Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Menghan Pan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jingbo Yang
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - George Galanis
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yoon Ho Roh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | | | | | - Su‐Jin Heo
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Orthopaedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Wei Guo
- Department of BiologySchool of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jina Ko
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
13
|
Kwak TJ, Son T, Hong JS, Winter UA, Jeong MH, McLean C, Weissleder R, Lee H, Castro CM, Im H. Electrokinetically enhanced label-free plasmonic sensing for rapid detection of tumor-derived extracellular vesicles. Biosens Bioelectron 2023; 237:115422. [PMID: 37301179 PMCID: PMC10527155 DOI: 10.1016/j.bios.2023.115422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
ANALYSIS of rare circulating extracellular vesicles (EV) from early cancers or different types of host cells requires extremely sensitive EV sensing technologies. Nanoplasmonic EV sensing technologies have demonstrated good analytical performances, but their sensitivity is often limited by EVs' diffusion to the active sensor surface for specific target EV capture. Here, we developed an advanced plasmonic EV platform with electrokinetically enhanced yields (KeyPLEX). The KeyPLEX system effectively overcomes diffusion-limited reactions with applied electroosmosis and dielectrophoresis forces. These forces bring EVs toward the sensor surface and concentrate them in specific areas. Using the keyPLEX, we showed significant improvements in detection sensitivity by ∼100-fold, leading to the sensitive detection of rare cancer EVs from human plasma samples in 10 min. The keyPLEX system could become a valuable tool for point-of-care rapid EV analysis.
Collapse
Affiliation(s)
- Tae Joon Kwak
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Taehwang Son
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ursula Andrea Winter
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Charlotte McLean
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Health Science, Northeastern University Boston, MA, 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Zhu J, Wu F, Li C, Mao J, Wang Y, Zhou X, Xie H, Wen C. Application of Single Extracellular Vesicle Analysis Techniques. Int J Nanomedicine 2023; 18:5365-5376. [PMID: 37750091 PMCID: PMC10518151 DOI: 10.2147/ijn.s421342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid containers that are actively released by cells and contain complex molecular cargoes. These cargoes include abundant material such as genomes and proteins from cells of origin. They are involved in intercellular communication and various pathological processes, showing excellent potential for diagnosing and treating diseases. Given the significant heterogeneity of EVs in complex physiopathological processes, unveiling their composition is essential to understanding their function. Bulk detection methods have been previously used to analyze EVs, but they often mask their heterogeneity, leading to the loss of valuable information. To overcome this limitation, single extracellular vesicle (SEV) analysis techniques have been developed and advanced. These techniques allow for analyzing EVs' physical information and biometric molecules at the SEV level. This paper reviews recent advances in SEV detection methods and summarizes some clinical applications for SEV detection strategies.
Collapse
Affiliation(s)
- Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
15
|
Takahashi K, Takeda Y, Ono Y, Isomoto H, Mizukami Y. Current status of molecular diagnostic approaches using liquid biopsy. J Gastroenterol 2023; 58:834-847. [PMID: 37470859 PMCID: PMC10423147 DOI: 10.1007/s00535-023-02024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, and developing an efficient and reliable approach for its early-stage diagnosis is urgently needed. Precancerous lesions of PDAC, such as pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMN), arise through multiple steps of driver gene alterations in KRAS, TP53, CDKN2A, SMAD4, or GNAS. Hallmark mutations play a role in tumor initiation and progression, and their detection in bodily fluids is crucial for diagnosis. Recently, liquid biopsy has gained attention as an approach to complement pathological diagnosis, and in addition to mutation signatures in cell-free DNA, cell-free RNA, and extracellular vesicles have been investigated as potential diagnostic and prognostic markers. Integrating such molecular information to revise the diagnostic criteria for pancreatic cancer can enable a better understanding of the pathogenesis underlying inter-patient heterogeneity, such as sensitivity to chemotherapy and disease outcomes. This review discusses the current diagnostic approaches and clinical applications of genetic analysis in pancreatic cancer and diagnostic attempts by liquid biopsy and molecular analyses using pancreatic juice, duodenal fluid, and blood samples. Emerging knowledge in the rapidly advancing liquid biopsy field is promising for molecular profiling and diagnosing pancreatic diseases with significant diversity.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yohei Takeda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Ono
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
16
|
Jo A, Green A, Medina JE, Iyer S, Ohman AW, McCarthy ET, Reinhardt F, Gerton T, Demehin D, Mishra R, Kolin DL, Zheng H, Cheon J, Crum CP, Weinberg RA, Rueda BR, Castro CM, Dinulescu DM, Lee H. Inaugurating High-Throughput Profiling of Extracellular Vesicles for Earlier Ovarian Cancer Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301930. [PMID: 37485618 PMCID: PMC10520636 DOI: 10.1002/advs.202301930] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Detecting early cancer through liquid biopsy is challenging due to the lack of specific biomarkers for early lesions and potentially low levels of these markers. The current study systematically develops an extracellular-vesicle (EV)-based test for early detection, specifically focusing on high-grade serous ovarian carcinoma (HGSOC). The marker selection is based on emerging insights into HGSOC pathogenesis, notably that it arises from precursor lesions within the fallopian tube. This work thus establishes murine fallopian tube (mFT) cells with oncogenic mutations and performs proteomic analyses on mFT-derived EVs. The identified markers are then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood of tumor-bearing mice, mFT-EV markers increase with tumor initiation, supporting their potential use in early cancer detection. A pilot clinical study (n = 51) further narrows EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. The combined expression of these markers distinguishes HGSOC from non-cancer with 89% sensitivity and 93% specificity. The same markers are also effective in classifying three groups (non-cancer, early-stage HGSOC, and late-stage HGSOC). The developed approach, for the first time inaugurated in fallopian tube-derived EVs, could be a minimally invasive tool to monitor women at high risk of ovarian cancer for timely intervention.
Collapse
Affiliation(s)
- Ala Jo
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Allen Green
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jamie E. Medina
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Sonia Iyer
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Anders W. Ohman
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Eric T. McCarthy
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Ferenc Reinhardt
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Thomas Gerton
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Daniel Demehin
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Ranjan Mishra
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - David L. Kolin
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Hui Zheng
- Biostatistics CenterMassachusetts General HospitalBostonMA02114USA
| | - Jinwoo Cheon
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Christopher P. Crum
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Robert A. Weinberg
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Bo R. Rueda
- Division of Gynecologic OncologyDepartment of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Cancer CenterMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Daniela M. Dinulescu
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| |
Collapse
|
17
|
Fong ZV, Hernandez-Barco YG, Castillo CFD. A Clinical Guide to the Management of Intraductal Papillary Mucinous Neoplasms: the Need for a More Graded Approach in Clinical Decision-making. J Gastrointest Surg 2023; 27:1988-1998. [PMID: 37495820 DOI: 10.1007/s11605-022-05536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/30/2022] [Indexed: 07/28/2023]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) have become a very common diagnosis and represent a spectrum of disease that ranges from benign to malignant lesions. Presently, clinical and radiographic features are used to predict the presence of high-grade dysplasia and invasive cancer to inform treatment decisions of whether to pursuit surgical resection or continued surveillance. However, the natural history of IPMNs is still not completely understood, with guidelines from different societies providing contradictory recommendations. This underscores the challenge in balancing the risk of missing cancer with long-term surveillance and the morbidity associated with surgical resection. In this review, we aim to reconcile the differences in the guidelines' recommendations and provide a clinical framework to the management of IPMNs with hopes of adding clarity to how treatment decisions should be made. We also highlight recent advances made in the field and future efforts that can minimize rates of missing cancer while also reducing the number of unnecessary operations.
Collapse
Affiliation(s)
- Zhi Ven Fong
- Department of Surgery, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114-3117, USA
| | - Yasmin G Hernandez-Barco
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
18
|
Yang KS, O'Shea A, Zelga P, Liss AS, Del Castillo CF, Weissleder R. Extracellular vesicle analysis of plasma allows differential diagnosis of atypical pancreatic serous cystadenoma. Sci Rep 2023; 13:10969. [PMID: 37414831 PMCID: PMC10325992 DOI: 10.1038/s41598-023-37966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Increased use of cross-sectional imaging has resulted in frequent detection of incidental cystic pancreatic lesions. Serous cystadenomas (SCAs) are benign cysts that do not require surgical intervention unless symptomatic. Unfortunately, up to half of SCAs do not have typical imaging findings ("atypical SCAs"), overlap with potentially malignant precursor lesions, and thus pose a diagnostic challenge. We tested whether the analysis of circulating extracellular vesicle (EV) biomarkers using a digital EV screening technology (DEST) could enhance the discrimination of cystic pancreatic lesions and avoid unnecessary surgical intervention in these atypical SCAs. Analysis of 25 different protein biomarkers in plasma EV from 68 patients identified a putative biomarker signature of Das-1, Vimentin, Chromogranin A, and CAIX with high discriminatory power (AUC of 0.99). Analysis of plasma EV for multiplexed markers may thus be helpful in clinical decision-making.
Collapse
Affiliation(s)
- Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, 32 Fruit St, Boston, MA, 02114, USA
| | - Aileen O'Shea
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, 32 Fruit St, Boston, MA, 02114, USA
| | - Piotr Zelga
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA, 02114, USA
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA, 02114, USA
| | | | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, 32 Fruit St, Boston, MA, 02114, USA.
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Liou GY, Byrd CJ. Diagnostic Bioliquid Markers for Pancreatic Cancer: What We Have vs. What We Need. Cancers (Basel) 2023; 15:2446. [PMID: 37173913 PMCID: PMC10177101 DOI: 10.3390/cancers15092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, currently has a dismal five-year survival rate of approximately 10% due to late diagnosis and a lack of efficient treatment options such as surgery. Furthermore, the majority of PDAC patients have surgically unresectable cancer, meaning cancer cells have either reached the surrounding blood vessels or metastasized to other organs distant from the pancreas area, resulting in low survival rates as compared to other types of cancers. In contrast, the five-year survival rate of surgically resectable PDAC patients is currently 44%. The late diagnosis of PDAC is a result of little or no symptoms in its early stage of development and a lack of specific biomarkers that may be utilized in routine examinations in the clinic. Although healthcare professionals understand the importance of early detection of PDAC, the research on the subject has lagged and no significant changes in the death toll of PDAC patients has been observed. This review is focused on understanding potential biomarkers that may increase the early diagnosis of PDAC patients at its surgically resectable stage. Here, we summarize the currently available biomarkers used in the clinic as well as those being developed with the hope of providing insight into the future of liquid biomarkers to be used in routine examinations for the early diagnosis of PDAC.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
20
|
Amaral MJ, Oliveira RC, Donato P, Tralhão JG. Pancreatic Cancer Biomarkers: Oncogenic Mutations, Tissue and Liquid Biopsies, and Radiomics-A Review. Dig Dis Sci 2023:10.1007/s10620-023-07904-6. [PMID: 36988759 DOI: 10.1007/s10620-023-07904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Pancreatic cancer is one of the most fatal malignancies, as approximately 80% of patients are at advanced stages by the time of diagnosis. The main reason for the poor overall survival is late diagnosis that is partially due to the lack of tools for early-stage detection. In addition, there are several challenges in evaluating response to treatment and predicting prognosis. In this article, we do a review of the most common pancreatic cancer biomarkers with emphasis in new and promising approaches. Liquid biopsies seem to have important clinical applications in early detection, screening, prognosis, and longitudinal monitoring of on-treatment patients. Together with biomarkers in imaging, can represent valuable alternative non-invasive tools in order to achieve a more effective management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Maria João Amaral
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Rui Caetano Oliveira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Donato
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Radiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Biophysics Institute, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Shockley KE, To B, Chen W, Lozanski G, Cruz-Monserrate Z, Krishna SG. The Role of Genetic, Metabolic, Inflammatory, and Immunologic Mediators in the Progression of Intraductal Papillary Mucinous Neoplasms to Pancreatic Adenocarcinoma. Cancers (Basel) 2023; 15:1722. [PMID: 36980608 PMCID: PMC10046238 DOI: 10.3390/cancers15061722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMN) have the potential to progress to pancreatic ductal adenocarcinoma (PDAC). As with any progression to malignancy, there are a variety of genetic and metabolic changes, as well as other disruptions to the cellular microenvironment including immune alterations and inflammation, that can contribute to tumorigenesis. Previous studies further characterized these alterations, revealing changes in lipid and glucose metabolism, and signaling pathways that mediate the progression of IPMN to PDAC. With the increased diagnosis of IPMNs and pancreatic cysts on imaging, the opportunity to attenuate risk with the removal of high-risk lesions is possible with the understanding of what factors accelerate malignant progression and how they can be clinically utilized to determine the level of dysplasia and stratify the risk of progression. Here, we reviewed the genetic, metabolic, inflammatory, and immunologic pathways regulating the progression of IPMN to PDAC.
Collapse
Affiliation(s)
- Kylie E. Shockley
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Briana To
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, and The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, and The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
23
|
Spitzberg JD, Ferguson S, Yang KS, Peterson HM, Carlson JCT, Weissleder R. Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nat Commun 2023; 14:1239. [PMID: 36870999 PMCID: PMC9985597 DOI: 10.1038/s41467-023-36932-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Exosomes and extracellular vesicles (EV) are increasingly being explored as circulating biomarkers, but their heterogenous composition will likely mandate the development of multiplexed EV technologies. Iteratively multiplexed analyses of near single EVs have been challenging to implement beyond a few colors during spectral sensing. Here we developed a multiplexed analysis of EV technique (MASEV) to interrogate thousands of individual EVs during 5 cycles of multi-channel fluorescence staining for 15 EV biomarkers. Contrary to the common belief, we show that: several markers proposed to be ubiquitous are less prevalent than believed; multiple biomarkers concur in single vesicles but only in small fractions; affinity purification can lead to loss of rare EV subtypes; and deep profiling allows detailed analysis of EV, potentially improving the diagnostic content. These findings establish the potential of MASEV for uncovering fundamental EV biology and heterogeneity and increasing diagnostic specificity.
Collapse
Affiliation(s)
- Joshua D Spitzberg
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Scott Ferguson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Hannah M Peterson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA. .,Cancer Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA. .,Cancer Center, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
"Evolving Trends in Pancreatic Cystic Tumors: A 3-Decade Single-Center Experience With 1290 Resections". Ann Surg 2023; 277:491-497. [PMID: 34353996 DOI: 10.1097/sla.0000000000005142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to describe our institutional experience with resected cystic tumors of the pancreas with emphasis on changes in clinical presentation and accuracy of preoperative diagnosis. SUMMARY BACKGROUND DATA Incidental discovery of pancreatic cystic lesions has increased and has led to a rise in pancreatic resections. It is important to analyze surgical outcomes from these procedures, and the prevalence of malignancy, pre-malignancy and resections for purely benign lesions, some of which may be unintended. METHODS Retrospective review of a prospective database spanning 3 decades. Presence of symptoms, incidental discovery, diagnostic studies, type of surgery, postoperative outcomes, and concordance between presumptive diagnosis and final histopathology were recorded. RESULTS A total of 1290 patients were identified, 62% female with mean age of 60 years. Fifty-seven percent of tumors were incidentally discovered. Ninety-day operative mortality was 0.9% and major morbidity 14.4%. There were 23 different diagnosis, but IPMN, MCN, and serous cystadenoma comprised 80% of cases. Concordance between preoperative and final histopathological diagnosis increased by decade from 45%, to 68%, and is presently 80%, rising in parallel with the use of endoscopic ultrasound, cytology, and molecular analysis. The addition of molecular analysis improved accuracy to 91%. Of misdiagnosed cases, half were purely benign and taken to surgery with the presumption of malignancy or premalignancy. The majority of these were serous cystadenomas. CONCLUSIONS Indications and diagnostic work-up of cystic tumors of the pancreas have changed over time. Surgical resection can be performed with very low mortality and acceptable morbidity and diagnostic accuracy is presently 80%. About 10% of patients are still undergoing surgery for purely benign lesions that were presumed to be malignant or premalignant. Further refinements in diagnostic tests are required to improve accuracy.
Collapse
|
25
|
Jeong MH, Son T, Tae YK, Park CH, Lee HS, Chung MJ, Park JY, Castro CM, Weissleder R, Jo JH, Bang S, Im H. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205148. [PMID: 36698298 PMCID: PMC10015870 DOI: 10.1002/advs.202205148] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/01/2023] [Indexed: 05/20/2023]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease often detected late in unresectable stages. Currently, there are no effective diagnostic methods or biomarkers to detect CCA early with high confidence. Analysis of tumor-derived extracellular vesicles (tEVs) harvested from liquid biopsies can provide a new opportunity to achieve this goal. Here, an advanced nanoplasmonic sensing technology is reported, termed FLEX (fluorescence-amplified extracellular vesicle sensing technology), for sensitive and robust single EV analysis. In the FLEX assay, EVs are captured on a plasmonic gold nanowell surface and immunolabeled for cancer-associated biomarkers to identify tEVs. The underlying plasmonic gold nanowell structures then amplify EVs' fluorescence signals, an effective amplification process at the single EV level. The FLEX EV analysis revealed a wide heterogeneity of tEVs and their marker levels. FLEX also detected small tEVs not detected by conventional EV fluorescence imaging due to weak signals. Tumor markers (MUC1, EGFR, and EPCAM) are identified in CCA, and this marker combination is applied to detect tEVs in clinical bile samples. The FLEX assay detected CCA with an area under the curve of 0.93, significantly better than current clinical markers. The sensitive and accurate nanoplasmonic EV sensing technology can aid in early CCA diagnosis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoo Keung Tae
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chan Hee Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hee Seung Lee
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Moon Jae Chung
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeong Youp Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - Jung Hyun Jo
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seungmin Bang
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
26
|
Chin LK, Yang JY, Chousterman B, Jung S, Kim DG, Kim DH, Lee S, Castro CM, Weissleder R, Park SG, Im H. Dual-Enhanced Plasmonic Biosensing for Point-of-Care Sepsis Detection. ACS NANO 2023; 17:3610-3619. [PMID: 36745820 PMCID: PMC10150330 DOI: 10.1021/acsnano.2c10371] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid, sensitive, simultaneous quantification of multiple biomarkers in point-of-care (POC) settings could improve the diagnosis and management of sepsis, a common, potentially life-threatening condition. Compared to high-end commercial analytical systems, POC systems are often limited by low sensitivity, limited multiplexing capability, or low throughput. Here, we report an ultrasensitive, multiplexed plasmonic sensing technology integrating chemifluorescence signal enhancement with plasmon-enhanced fluorescence detection. Using a portable imaging system, the dual chemical and plasmonic amplification enabled rapid analysis of multiple cytokine biomarkers in 1 h with sub-pg/mL sensitivities. Furthermore, we also developed a plasmonic sensing chip based on nanoparticle-spiked gold nanodimple structures fabricated by wafer-scale batch processes. We used the system to detect six cytokines directly from clinical plasma samples (n = 20) and showed 100% accuracy for sepsis detection. The described technology could be employed in rapid, ultrasensitive, multiplexed plasmonic sensing in POC settings for myriad clinical conditions.
Collapse
Affiliation(s)
- Lip Ket Chin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Jun-Yeong Yang
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Benjamin Chousterman
- Département d’Anesthésie-Réanimation, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | - Sunghoon Jung
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Do-Geun Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Dong-Ho Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Seunghun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
- Corresponding authors: Hyungsoon Im (), Sung-Gyu Park ()
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Corresponding authors: Hyungsoon Im (), Sung-Gyu Park ()
| |
Collapse
|
27
|
Zhao Y, Tang J, Jiang K, Liu SY, Aicher A, Heeschen C. Liquid biopsy in pancreatic cancer - Current perspective and future outlook. Biochim Biophys Acta Rev Cancer 2023; 1878:188868. [PMID: 36842769 DOI: 10.1016/j.bbcan.2023.188868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer is a lethal condition with a rising incidence and often presents at an advanced stage, contributing to abysmal five-year survival rates. Unspecific symptoms and the current lack of biomarkers and screening tools hamper early diagnosis. New technologies for liquid biopsies and their respective evaluation in pancreatic cancer patients have emerged over recent years. The term liquid biopsy summarizes the sampling and analysis of circulating tumor cells (CTCs), small extracellular vesicles (sEVs), and tumor DNA (ctDNA) from body fluids. The major advantages of liquid biopsies rely on their minimal invasiveness and repeatability, allowing serial sampling for dynamic insights to aid diagnosis, particularly early detection, risk stratification, and precision medicine in pancreatic cancer. However, liquid biopsies have not yet developed into a new pillar for clinicians' routine armamentarium. Here, we summarize recent findings on the use of liquid biopsy in pancreatic cancer patients. We discuss current challenges and future perspectives of this potentially powerful alternative to conventional tissue biopsies.
Collapse
Affiliation(s)
- Yaru Zhao
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Jiang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shin-Yi Liu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Research and Development Center for Immunology, China Medical University, Taichung, Taiwan
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
28
|
Pu N, Chen Q, Zhang J, Yin H, Wang D, Ji Y, Rao S, Kuang T, Xu X, Wu W, Lou W. Circulating cytokines allow for identification of malignant intraductal papillary mucinous neoplasms of the pancreas. Cancer Med 2023; 12:3919-3930. [PMID: 35871313 PMCID: PMC9972143 DOI: 10.1002/cam4.5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are the precursor lesions of pancreatic cancers, requiring active surgical intervention during cancer development. However, the current criteria for predicting malignant IPMNs remain challenging and limited. Hence, this study aimed to assess the discriminatory performance of circulating cytokines, including TNF-α, IL-2R, IL-6, and IL-8, then build a novel predictive model to improve the diagnostic accuracy. METHOD A total of 131 retrospective (from March 2016 to December 2019) and 53 prospective (from March 2020 to January 2021) patients who were histologically confirmed as IPMNs were consecutively collected and analyzed. RESULT The circulating levels of TNF-α, IL-2R, IL-6, and IL-8 were significantly elevated in malignant IPMNs, and were verified as independent factors for malignant IPMNs (p < 0.05). Then, a novel score, the circulating cytokine score (CCS), was calculated and demonstrated as an independent predictive indicator with a higher area under the curve (AUC) than each cytokine alone (p < 0.001). Besides the CCS, two high-risk stigmata features, the presence of solid component (PSC), and main pancreatic duct (MPD) dilation ≥10 mm were also demonstrated as independent indicators for predicting malignant IPMNs. Finally, a novel nomogram incorporating the CCS and these two high-risk stigmata features presented a remarkable diagnostic performance, both in the training and validation cohorts with AUCs of 0.928 and 0.873, respectively. CONCLUSION The CCS can be considered a novel independent predictive indicator for malignant IPMNs. Additionally, the formulated nomogram model integrating the CCS, PSC, and MPD ≥10 mm can be a valuable and promising tool for predicting the malignant transformation of IPMNs during long-term follow-ups to assist in timely and accurate surgical decisions.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Jo A, Green A, Medina JE, Iyer S, Ohman AW, McCarthy ET, Reinhardt F, Gerton T, Demehin D, Mishra R, Kolin DL, Zheng H, Crum CP, Weinberg RA, Rueda BR, Castro CM, Dinulescu DM, Lee H. Profiling extracellular vesicles in circulation enables the early detection of ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524549. [PMID: 36711872 PMCID: PMC9882285 DOI: 10.1101/2023.01.19.524549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovarian cancer is a heterogeneous group of tumors in both cell type and natural history. While outcomes are generally favorable when detected early, the most common subtype, high-grade serous carcinoma (HGSOC), typically presents at an advanced stage and portends less favorable prognoses. Its aggressive nature has thwarted early detection efforts through conventional detection methods such as serum CA125 and ultrasound screening and thus inspired the investigation of novel biomarkers. Here, we report the systematic development of an extracellular-vesicle (EV)-based test to detect early-stage HGSOC. Our study is based on emerging insights into HGSOC biology, notably that it arises from precursor lesions within the fallopian tube before traveling to ovarian and/or peritoneal surfaces. To identify HGSOC marker candidates, we established murine fallopian tube (mFT) cells with oncogenic mutations in Brca1/2, Tp53 , and Pten genes, and performed proteomic analyses on mFT EVs. The identified markers were then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood samples of tumor-bearing mice, mFT-EV markers increased with tumor initiation, supporting their potential use in early cancer detection. A pilot human clinical study ( n = 51) further narrowed EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. Combined expression of these markers achieved high OvCa diagnostic accuracy (cancer vs. non-cancer) with a sensitivity of 0.89 and specificity of 0.93. The same five markers were also effective in a three-group classification: non-cancer, early-stage (I & II) HGSOC, and late-stage (III & IV) HGSOC. In particular, they differentiated early-stage HGSOC from the rest with a specificity of 0.91. Minimally invasive and repeatable, this EV-based testing could be a versatile and serial tool for informing patient care and monitoring women at high risk for ovarian cancer.
Collapse
|
30
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Nicoletti A, Negri M, Paratore M, Vitale F, Ainora ME, Nista EC, Gasbarrini A, Zocco MA, Zileri Dal Verme L. Diagnostic and Prognostic Role of Extracellular Vesicles in Pancreatic Cancer: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24010885. [PMID: 36614326 PMCID: PMC9821035 DOI: 10.3390/ijms24010885] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumors, with a dismal prognosis due to poor detection rates at early stages, rapid progression, post-surgical complications, and limited effectiveness of conventional oncologic therapies. There are no consistently reliable biomarkers or imaging modalities to accurately diagnose, classify, and predict the biological behavior of this tumor. Therefore, it is imperative to develop new and improved strategies to detect pancreatic lesions in the early stages of cancerization with greater sensitivity and specificity. Extracellular vesicles, including exosome and microvesicles, are membrane-coated cellular products that are released in the outer environment. All cells produce extracellular vesicles; however, this process is enhanced by inflammation and tumorigenesis. Based on accumulating evidence, extracellular vesicles play a crucial role in pancreatic cancer progression and chemoresistance. Moreover, they may represent potential biomarkers and promising therapy targets. The aim of the present review is to review the current evidence on the role of extracellular vesicles in pancreatic cancer.
Collapse
|
32
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
33
|
Jeong MH, Son T, Im H. Plasmon-Enhanced Characterization of Single Extracellular Vesicles. Methods Mol Biol 2023; 2668:3-13. [PMID: 37140785 PMCID: PMC10394726 DOI: 10.1007/978-1-0716-3203-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular vesicles (EVs) represent heterogeneous populations of membrane-bound vesicles shed from almost all kinds of cells. Although superior to conventional methods, most newly developed EV sensing platforms still require a certain number of EVs, measuring bulk signals from a group of vesicles. A new analytical approach that enables single EV analysis could be extremely valuable for understanding EVs' subtypes, heterogeneity, and production dynamics during disease development and progression. Here, we describe a new nanoplasmonic sensing platform for sensitive single EV analysis. Termed nPLEX-FL (nano-plasmonic EV analysis with enhanced fluorescence detection), the system amplifies EVs' fluorescence signals using periodic gold nanohole structures, enabling sensitive, multiplexed analysis of single EVs.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Taehwang Son
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
34
|
Epithelial to Mesenchymal Transition as Mechanism of Progression of Pancreatic Cancer: From Mice to Men. Cancers (Basel) 2022; 14:cancers14235797. [PMID: 36497278 PMCID: PMC9735867 DOI: 10.3390/cancers14235797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Owed to its aggressive yet subtle nature, pancreatic cancer remains unnoticed till an advanced stage so that in most cases the diagnosis is made when the cancer has already spread to other organs with deadly efficiency. The progression from primary tumor to metastasis involves an intricate cascade of events comprising the pleiotropic process of epithelial to mesenchymal transition (EMT) facilitating cancer spread. The elucidation of this pivotal phenotypic change in cancer cell morphology, initially heretic, moved from basic studies dissecting the progression of pancreatic cancer in animal models to move towards human disease, although no clinical translation of the concept emerged yet. Despite this transition, a full-blown mesenchymal phenotype may not be accomplished; rather, the plasticity of the program and its dependency on heterotopic signals implies a series of fluctuating modifications of cancer cells encompassing mesenchymal and epithelial features. Despite the evidence supporting the activation of EMT and MET during cancer progression, our understanding of the relationship between tumor microenvironment and EMT is not yet mature for a clinical application. In this review, we attempt to resume the knowledge on EMT and pancreatic cancer, aiming to include the EMT among the hallmarks of cancer that could potentially modify our clinical thinking with the purpose of filling the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers, as well as their application for prognostic and predictive purposes.
Collapse
|
35
|
Nagai K, Kuwatani M, Hirata K, Suda G, Hirata H, Takishin Y, Furukawa R, Kishi K, Yonemura H, Nozawa S, Sugiura R, Kawakubo K, Sakamoto N. Genetic Analyses of Cell-Free DNA in Pancreatic Juice or Bile for Diagnosing Pancreatic Duct and Biliary Tract Strictures. Diagnostics (Basel) 2022; 12:2704. [PMID: 36359547 PMCID: PMC9689036 DOI: 10.3390/diagnostics12112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 08/30/2023] Open
Abstract
Poor prognosis of pancreaticobiliary malignancies is attributed to intrinsic biological aggressiveness and the lack of reliable methods for early diagnosis. This study aimed to evaluate the feasibility and availability of pancreatic juice- and bile-derived cell-free DNA (cfDNA) for diagnosing pancreaticobiliary strictures. From October 2020 to February 2022, pancreatic juice or bile was obtained from 50 patients with pancreaticobiliary strictures during endoscopic retrograde cholangiopancreatography. cfDNAs extracted from the samples were analyzed using next-generation sequencing and a cancer gene panel. The obtained cfDNAs, genetic data and clinical information were analyzed for diagnosis. cfDNA concentrations in pancreatic juice were higher in the intraductal papillary mucinous neoplasm group than in the other groups, whereas those in bile were similar in all groups. In pancreatic juice, the sensitivity, specificity and positive and negative predictive values of cfDNA analyses were 33%, 100%, 100% and 71.4%, respectively, whereas those of cytological analyses were 0%, 100%, 0% and 62.5%, respectively. In bile, those of cell-free DNA analyses were 53%, 75%, 89.5% and 28.6%, respectively, whereas those of cytological analyses were 19%, 100%, 100% and 16%, respectively. In conclusion, pancreatic juice- and bile-derived cfDNA is a novel liquid biopsy tool that can diagnose pancreaticobiliary strictures.
Collapse
Affiliation(s)
- Kosuke Nagai
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Koji Hirata
- Department of Gastroenterology and Hepatology, Hakodate Municipal Hospital, Hakodate 041-8680, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Hajime Hirata
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Yunosuke Takishin
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Ryutaro Furukawa
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Kazuma Kishi
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Hiroki Yonemura
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Shunichiro Nozawa
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Ryo Sugiura
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo 060-8648, Japan
| |
Collapse
|
36
|
Qian Y, Gong Y, Luo G, Liu Y, Wang R, Zou X, Deng S, Lin X, Chen Y, Wang X, Yu X, Cheng H, Liu C. Carbohydrate antigen 125 supplements carbohydrate antigen 19-9 for the prediction of invasive intraductal papillary mucinous neoplasms of the pancreas. World J Surg Oncol 2022; 20:310. [PMID: 36155113 PMCID: PMC9511782 DOI: 10.1186/s12957-022-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are characterized by their abundant mucin production and malignant potential. IPMNs of the pancreas are mainly managed according to their radiographic indications, but this approach lacks accuracy with regard to IPMN grading. Therefore, serological biomarkers such as CA19-9 and CA125 (MUC16) should be employed to assist in predicting the invasiveness of IPMNs. METHODS We investigated the preoperative serum levels of CA19-9, CA125 and CEA in 381 surgical patients with a definite pathological diagnosis of IPMN from July 2010 to December 2019 at the Shanghai Cancer Center. We calculated the Youden indices of each point on the receiver operating characteristic (ROC) curves to identify the most appropriate cut-off values of CA19-9, CA125 and CEA for recognizing malignant IPMNs. Serological biomarker differences were correlated with clinicopathological features of IPMNs, and diagnostic indices of different scenarios were calculated to find the optimum strategy. RESULTS The malignant group had higher serum levels of CA19-9, CA125 and CEA. According to the ROC curves, the cut-off values of CA19-9, CA125 and CEA were readjusted to 38.3 U/ml, 13.4 U/ml and 5.3 μg/L. CA19-9 elevation was significantly associated with vascular invasion and perineural infiltration. CA125 showed good efficacy in predicting invasive IPMN in the CA19-9-negative subgroup. CONCLUSIONS Serological biomarkers are useful and sensitive indicators for recognizing invasive IPMNs. CA19-9 is the most important diagnostic index among all routinely measured serum biomarkers for differentiating malignant from benign IPMNs. CA19-9 should be combined with CA125 to enable more accurate predictions of IPMN malignancy.
Collapse
Affiliation(s)
- Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Xu Y, Xie C, Gao Z, Zhang M, Zhan M. Nomogram to predict malignancy in branch duct type intraductal papillary mucinous neoplasms. Medicine (Baltimore) 2022; 101:e30627. [PMID: 36197166 PMCID: PMC9509101 DOI: 10.1097/md.0000000000030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Prediction of malignancy in branch duct (BD)-type intraductal papillary mucinous neoplasms (BD-IPMNs) is difficult. In this retrospective study, we showed the performance of imaging biomarker and biochemical biomarker in identifying the malignant BD-IPMNs. A total of 97 patients with pathological proved BD-IPMNs were included in this study. Imaging data were collected from magnetic resonance imaging (MRI). Malignant BD-IPMNs were defined as those with high grade dysplasia and invasive carcinoma. There were 10 patients with malignant BD-IPMNs (10.3%). Significant difference was found in prevalence of mural nodule and tumor size >3.0 cm between patients with and without malignant BD-IPMNs (44.4% vs 3.1%, P < .01; 80.0% vs 33.3%, P < .01). Significant differences were observed in mural nodule and elevated carbohydrate antigen 19-9 (CA19-9) between patients with and without invasive carcinoma (40.0% vs 7.6, P = .05; 60% vs 15.3%, P = .04). Mural nodule and tumor size >3.0 cm were the independent associated factor for malignant BD-IPMNs. The odds ratio (OR) was 5.22 (95% confidence interval [CI]: 1.04-31.16) for mural nodule and was 6.80 (95% CI: 1.16-39.71) for cyst size >3.0 cm. The combined model of mural nodule and tumor size showed good performance in identifying malignant BD-IPMNs (area under the curve [AUC] = 0.82, 95%CI: 0.67-0.97). Our data show that mural nodule and cystic size can be used as predictor of malignancy in BD-IPMN. The predictive performance is acceptable.
Collapse
Affiliation(s)
- Yisheng Xu
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou Zhenjiang, China
| | - Chunmei Xie
- Department of Radiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou Zhenjiang, China
| | - Zhiqin Gao
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou Zhenjiang, China
| | - Meihua Zhang
- Department of Radiology, Hangzhou Ninth People’s Hospital, Hangzhou Zhenjiang, China
| | - Ming Zhan
- Department of Radiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou Zhenjiang, China
- *Correspondence: Ming Zhan, Department of Radiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 Yucai North Road, Xiaoshan District, Hangzhou Zhenjiang 311201, China (e-mail: )
| |
Collapse
|
38
|
Jiao Z, He Z, Liu N, Lai Y, Zhong T. Multiple roles of neuronal extracellular vesicles in neurological disorders. Front Cell Neurosci 2022; 16:979856. [PMID: 36204449 PMCID: PMC9530318 DOI: 10.3389/fncel.2022.979856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathy is a growing public health problem in the aging, adolescent, and sport-playing populations, and the number of individuals at risk of neuropathy is growing; its risks include aging, violence, and conflicts between players. The signal pathways underlying neuronal aging and damage remain incompletely understood and evidence-based treatment for patients with neuropathy is insufficiently delivered; these are two of the reasons that explain why neuropathy is still not completely curable and why the progression of the disease cannot be inhibited. Extracellular vesicles (EVs) shuttling is an important pathway in disease progression. Previous studies have focused on the EVs of cells that support and protect neurons, such as astrocytes and microglia. This review aims to address the role of neuronal EVs by delineating updated mechanisms of neuronal damage and summarizing recent findings on the function of neuronal EVs. Challenges and obstacles in isolating and analyzing neuronal EVs are discussed, with an emphasis on neuron as research object and modification of EVs on translational medicine.
Collapse
Affiliation(s)
- Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Branch of National Geriatric Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Zhigang Jiao,
| | - Zhengyi He
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Nanhai Liu
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanwei Lai
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
39
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Brindl N, Boekhoff H, Bauer AS, Gaida MM, Dang HT, Kaiser J, Hoheisel JD, Felix K. Use of Autoreactive Antibodies in Blood of Patients with Pancreatic Intraductal Papillary Mucinous Neoplasms (IPMN) for Grade Distinction and Detection of Malignancy. Cancers (Basel) 2022; 14:cancers14153562. [PMID: 35892825 PMCID: PMC9332220 DOI: 10.3390/cancers14153562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: A reliable non-invasive distinction between low- and high-risk pancreatic intraductal papillary mucinous neoplasms (IPMN) is needed to effectively detect IPMN with malignant potential. This would improve preventative care and reduce the risk of developing pancreatic cancer and overtreatment. The present study aimed at exploring the presence of autoreactive antibodies in the blood of patients with IPMN of various grades of dysplasia. (2) Methods: A single-center cohort was studied composed of 378 serum samples from patients with low-grade IPMN (n = 91), high-grade IPMN (n = 66), IPMN with associated invasive cancer (n = 30), pancreatic ductal adenocarcinoma (PDAC) stages T1 (n = 24) and T2 (n = 113), and healthy controls (n = 54). A 249 full-length recombinant human protein microarray was used for profiling the serum samples. (3) Results: 14 proteins were identified as potential biomarkers for grade distinction in IPMN, yielding high specificity but mediocre sensitivity. (4) Conclusions: The identified autoantibodies are potential biomarkers that may assist in the detection of malignancy in IPMN patients.
Collapse
Affiliation(s)
- Niall Brindl
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- TRON, Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hien T. Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA;
| | - Jörg Kaiser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| |
Collapse
|
41
|
Lin T, Chen X, Liu J, Cao Y, Cui W, Wang Z, Wang C, Chen X. MRI-Based Pancreatic Atrophy Is Associated With Malignancy or Invasive Carcinoma in Intraductal Papillary Mucinous Neoplasm. Front Oncol 2022; 12:894023. [PMID: 35719938 PMCID: PMC9204001 DOI: 10.3389/fonc.2022.894023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background Abrupt change in the caliber of the main pancreatic duct (MPD) with distal pancreatic atrophy (PA) was considered as one of worrisome features in the International Association of Pancreatology guideline and American College of Gastroenterology guideline for the management of intraductal papillary mucinous neoplasms (IPMNs). However, this feature was not included in other guidelines. Moreover, the association between PA alone and malignancy in IPMNs has not been fully evaluated. In the present study, we investigated the role of image-based PA in identifying malignant IPMNs or invasive carcinoma. Methods A total of 186 patients with IPMNs were included for analysis. The tumor size, location, MPD diameter, presence of a mural nodule (MN), and PA were evaluated using magnetic resonance imaging. Demographic information and serum carbohydrate antigen 19-9 and carcinoembryonic antigen (CEA) levels were also collected. IPMNs with high-grade dysplasia and associated invasive carcinoma were regarded as malignant IPMNs. Results PA was observed in 34 cases (18.3%). The occurrence of malignant IPMNs or invasive carcinoma in patients with PA were significantly higher than in those without PA (52.9% vs. 22.3%; 44.1% vs. 8.9%, all P < 0.01). Multivariate logistic regression analysis showed that PA was an independently associated factor for malignant IPMNs [odds ratio (OR) = 2.69, 95% confidence interval (CI): 1.07-6.78] or invasive carcinoma (OR = 7.78, 95%CI: 2.62-23.10) after modified with confounders. Subgroup analysis in MPD-involved IPMNs also indicated that PA was an independently associated factor for invasive carcinoma (OR = 9.72, 95%CI: 2.43-38.88). PA had a similar performance with MPD plus MN [the area under the curve (AUC) was both 0.71] in identifying malignancy. PA had a higher performance in identifying invasive carcinoma in MPD-involved IPMNs than MN (AUC = 0.71 vs. 0.65, P = 0.02). Conclusion Our data showed that imaging-based PA was associated with malignancy or invasive carcinoma regardless of abrupt change in the caliber of MPD in IPMNs. PA had an acceptable performance in identifying malignant IPMNs.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Chen
- Department of Radiology, Shanghai Sixth People's Hospital, Shanghai, China
| | - Jingjing Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Cao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Li J, Li Y, Chen S, Duan W, Kong X, Wang Y, Zhou L, Li P, Zhang C, Du L, Wang C. Highly Sensitive Exosome Detection for Early Diagnosis of Pancreatic Cancer Using Immunoassay Based on Hierarchical Surface-Enhanced Raman Scattering Substrate. SMALL METHODS 2022; 6:e2200154. [PMID: 35460217 DOI: 10.1002/smtd.202200154] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Exosomes have emerged as potential biomarkers for pancreatic cancer (PaC). However, it is still challenging to get quantitative detection of exosomes with the specific surface receptors. In this study, a highly sensitive detection system is first constructed for the direct quantitation of specific exosomes in real samples using hierarchical surface-enhanced Raman scattering substrate (H-SERS substrate) and rapid enrichment strategy magnetic beads @ exosomes @ SERS detection probes (MEDP). It is found that the detection system (MEDP @ H-SERS substrate) could provide a 3.5 times higher SERS intensity compared with MEDP sandwich immunocomplex only. Moreover, LRG1-positive exosomes (LRG1-Exos) and GPC1-positive exosomes (GPC1-Exos) are chosen to distinguish PaC through exosome proteomics and database screening. The lower limit of detection (LOD) is 15 particles µL-1 using the MEDP @ H-SERS substrate. Significantly, the detection in clinical samples shows that the innovative combination of LRG1-Exos and GPC1-Exos could improve the diagnostic efficiency of PaC, with an area under the operating characteristic curve (AUC) of 0.95. Even for the early-stage PaC, the diagnostic accuracy is still high (AUC = 0.95). Collectively, the findings indicate that the MEDP @ H-SERS substrate has great potential for the early diagnosis of PaC.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Shuai Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, No. 17923, Jingshi Road Jinan, Shandong, 250061, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88, Keling Road Suzhou, Suzhou, 215163, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, No. 17923, Jingshi Road Jinan, Shandong, 250061, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| |
Collapse
|
43
|
Jia E, Ren N, Shi X, Zhang R, Yu H, Yu F, Qin S, Xue J. Extracellular vesicle biomarkers for pancreatic cancer diagnosis: a systematic review and meta-analysis. BMC Cancer 2022; 22:573. [PMID: 35606727 PMCID: PMC9125932 DOI: 10.1186/s12885-022-09463-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/28/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Extracellular vesicle (EV) biomarkers have promising diagnosis and screening capacity for several cancers, but the diagnostic value for pancreatic cancer (PC) is controversial. The aim of our study was to review the diagnostic performance of EV biomarkers for PC. METHODS We performed a systematic review of PubMed, Medline, and Web Of Science databases from inception to 18 Feb 2022. We identified studies reporting the diagnostic performance of EV biomarkers for PC and summarized the information of sensitivity, specificity, area under the curve (AUC), or receiver operator characteristic (ROC) curve) in according to a pre-designed data collection form. Pooled sensitivity and specificity was calculated using a random-effect model. RESULTS We identified 39 studies, including 2037 PC patients and 1632 noncancerous, seven of which were conducted independent validation tests. Seventeen studies emphasized on EV RNAs, sixteen on EV proteins, and sixteen on biomarker panels. MiR-10b, miR-21, and GPC1 were the most frequently reported RNA and protein for PC diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 79% (95% CI: 77-81%) and 87% (95% CI: 85-89%), 72% (95% CI: 69-74%) and 77% (95% CI: 74-80%), respectively. the pooled sensitivity and specificity of EV RNA combined with protein panels were 84% (95% CI: 81-86%) and 89% (95% CI: 86-91%), respectively. Surprisingly, for early stage (stage I and II) PC EV biomarkers showed excellent diagnostic performance with the sensitivity of 90% (95% CI: 87-93%) and the specificity of 94% (95% CI: 92-95%). Both in sensitivity and subgroup analyses, we did not observe notable difference in pooled sensitivity and specificity. Studies might be limited by the isolation and detection techniques of EVs to a certain extent. CONCLUSIONS EV biomarkers showed appealing diagnostic preference for PC, especially for early stage PC. Solving the deficiency of technologies of isolation and detection EVs has important implications for application these novel noninvasive biomarkers in clinical practice.
Collapse
Affiliation(s)
- Erna Jia
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Na Ren
- Department of Thoracic Surgery, The Third Hospital of Jilin University, No. 126, Xiantai Street, Jilin, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Rongkui Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Haixin Yu
- Department of General Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yu
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Shaoyou Qin
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Jinru Xue
- Department of Thoracic Surgery, The Third Hospital of Jilin University, No. 126, Xiantai Street, Jilin, Changchun, China.
| |
Collapse
|
44
|
Ferguson S, Yang KS, Weissleder R. Single extracellular vesicle analysis for early cancer detection. Trends Mol Med 2022; 28:681-692. [DOI: 10.1016/j.molmed.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
|
45
|
Ferguson S, Yang KS, Zelga P, Liss AS, Carlson JCT, del Castillo CF, Weissleder R. Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer. SCIENCE ADVANCES 2022; 8:eabm3453. [PMID: 35452280 PMCID: PMC9032977 DOI: 10.1126/sciadv.abm3453] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 05/02/2023]
Abstract
Tumor cell-derived extracellular vesicles (EVs) are being explored as circulating biomarkers, but it is unclear whether bulk measurements will allow early cancer detection. We hypothesized that a single-EV analysis (sEVA) technique could potentially improve diagnostic accuracy. Using pancreatic cancer (PDAC), we analyzed the composition of putative cancer markers in 11 model lines. In parental PDAC cells positive for KRASmut and/or P53mut proteins, only ~40% of EVs were also positive. In a blinded study involving 16 patients with surgically proven stage 1 PDAC, KRASmut and P53mut protein was detectable at much lower levels, generally in <0.1% of vesicles. These vesicles were detectable by the new sEVA approach in 15 of the 16 patients. Using a modeling approach, we estimate that the current PDAC detection limit is at ~0.1-cm3 tumor volume, below clinical imaging capabilities. These findings establish the potential for sEVA for early cancer detection.
Collapse
Affiliation(s)
- Scott Ferguson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Katherine S. Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Piotr Zelga
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA 02114, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA 02114, USA
| | - Jonathan C. T. Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carlos Fernandez del Castillo
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
46
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Saez MA, Barquero-Pozanco I, Del Hierro-Marlasca L, de Castro Martinez P, Romero-Bazán A, Alvarez-Mon MA, Monserrat J, García-Honduvilla N, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers (Basel) 2022; 14:1866. [PMID: 35454771 PMCID: PMC9029823 DOI: 10.3390/cancers14081866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
The incidence and prevalence of pancreatic adenocarcinoma have increased in recent years. Pancreatic cancer is the seventh leading cause of cancer death, but it is projected to become the second leading cause of cancer-related mortality by 2040. Most patients are diagnosed in an advanced stage of the disease, with very limited 5-year survival. The discovery of different tissue markers has elucidated the underlying pathophysiology of pancreatic adenocarcinoma and allowed stratification of patient risk at different stages and assessment of tumour recurrence. Due to the invasive capacity of this tumour and the absence of screening markers, new immunohistochemical and serological markers may be used as prognostic markers for recurrence and in the study of possible new therapeutic targets because the survival of these patients is low in most cases. The present article reviews the currently used main histopathological and serological markers and discusses the main characteristics of markers under development.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Ines Barquero-Pozanco
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Del Hierro-Marlasca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Patricia de Castro Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Adoración Romero-Bazán
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
47
|
Kawabata H, Ono Y, Tamamura N, Oyama K, Ueda J, Sato H, Takahashi K, Taniue K, Okada T, Fujibayashi S, Hayashi A, Goto T, Enomoto K, Konishi H, Fujiya M, Miyakawa K, Tanino M, Nishikawa Y, Koga D, Watanabe T, Maeda C, Karasaki H, Liss AS, Mizukami Y, Okumura T. Mutant GNAS limits tumor aggressiveness in established pancreatic cancer via antagonizing the KRAS-pathway. J Gastroenterol 2022; 57:208-220. [PMID: 35018527 DOI: 10.1007/s00535-021-01846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mutations in GNAS drive pancreatic tumorigenesis and frequently occur in intraductal papillary mucinous neoplasm (IPMN); however, their value as a therapeutic target is yet to be determined. This study aimed at evaluating the involvement of mutant GNAS in tumor aggressiveness in established pancreatic cancer. METHODS CRISPR/Cas9-mediated GNAS R201H silencing was performed using human primary IPMN-associated pancreatic cancer cells. The role of oncogenic GNAS in tumor maintenance was evaluated by conducting cell culture and xenograft experiments, and western blotting and transcriptome analyses were performed to uncover GNAS-driven signatures. RESULTS Xenografts of GNAS wild-type cells were characterized by a higher Ki-67 labeling index relative to GNAS-mutant cells. Phenotypic alterations in the GNAS wild-type tumors resulted in a significant reduction in mucin production accompanied by solid with massive stromal components. Transcriptional profiling suggested an apparent conflict of mutant GNAS with KRAS signaling. A significantly higher Notch intercellular domain (NICD) was observed in the nuclear fraction of GNAS wild-type cells. Meanwhile, inhibition of protein kinase A (PKA) induced NICD in GNAS-mutant IPMN cells, suggesting that NOTCH signaling is negatively regulated by the GNAS-PKA pathway. GNAS wild-type cells were characterized by a significant invasive property relative to GNAS-mutant cells, which was mediated through the NOTCH regulatory pathway. CONCLUSIONS Oncogenic GNAS induces mucin production, not only via MUC2 but also via MUC5AC/B, which may enlarge cystic lesions in the pancreas. The mutation may also limit tumor aggressiveness by attenuating NOTCH signaling; therefore, such tumor-suppressing effects must be considered when therapeutically inhibiting the GNAS pathway.
Collapse
Affiliation(s)
- Hidemasa Kawabata
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yusuke Ono
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Nobue Tamamura
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kyohei Oyama
- Department of Cardiovascular Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroki Sato
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kenji Takahashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kenzui Taniue
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tetsuhiro Okada
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Syugo Fujibayashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Akihiro Hayashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takuma Goto
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuro Enomoto
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroaki Konishi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Keita Miyakawa
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mishie Tanino
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Chiho Maeda
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Andrew S Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yusuke Mizukami
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan.
| | - Toshikatsu Okumura
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
48
|
Sunami Y, Häußler J, Zourelidis A, Kleeff J. Cancer-Associated Fibroblasts and Tumor Cells in Pancreatic Cancer Microenvironment and Metastasis: Paracrine Regulators, Reciprocation and Exosomes. Cancers (Basel) 2022; 14:cancers14030744. [PMID: 35159011 PMCID: PMC8833704 DOI: 10.3390/cancers14030744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts in the stromal tumor microenvironment play a key role in cancer progression, invasion, metastasis, and therapy resistance. Cancer-associated fibroblasts communicate with tumor cells through diverse factors, such as growth factors, hedgehog proteins, cytokines, and chemokines, regulating signaling activity in paracrine as well as paracrine-reciprocal ways. Furthermore, cancer-associated fibroblasts, not only tumor cells, secrete exosomes that drive pre-metastatic niche formation and metastasis. Abstract Pancreatic cancer is currently the fourth leading cause of cancer deaths in the United States, and the overall 5 year survival rate is still only around 10%. Pancreatic cancer exhibits a remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, in part due to the dense stromal tumor microenvironment, where cancer-associated fibroblasts are the major stromal cell type. Cancer-associated fibroblasts further play a key role in cancer progression, invasion, and metastasis. Cancer-associated fibroblasts communicate with tumor cells, not only through paracrine as well as paracrine-reciprocal signaling regulators but also by way of exosomes. In the current manuscript, we discuss intercellular mediators between cancer-associated fibroblasts and pancreatic cancer cells in a paracrine as well as paracrine-reciprocal manner. Further recent findings on exosomes in pancreatic cancer and metastasis are summarized.
Collapse
|
49
|
Wu C, Dougan TJ, Walt DR. High-Throughput, High-Multiplex Digital Protein Detection with Attomolar Sensitivity. ACS NANO 2022; 16:1025-1035. [PMID: 35029381 PMCID: PMC9499451 DOI: 10.1021/acsnano.1c08675] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A major challenge in many clinical diagnostic applications is the measurement of low-abundance proteins and other biomolecules in biological fluids. Digital technologies such as the digital enzyme-linked immunosorbent assay (ELISA) have enabled 1000-fold increases in sensitivity over conventional protein detection methods. However, current digital ELISA technologies still possess insufficient sensitivities for many rare protein biomarkers and require specialized instrumentation or time-consuming workflows that have limited their widespread implementation. To address these challenges, we have developed a more sensitive and streamlined digital ELISA platform, Molecular On-bead Signal Amplification for Individual Counting (MOSAIC), which attains low attomolar limits of detection, with an order of magnitude enhancement in sensitivity over these other methods. MOSAIC uses a rapid, automatable flow cytometric readout that vastly increases throughput and is easily integrated into existing laboratory infrastructure. As MOSAIC provides high sampling efficiencies for rare target molecules, assay bead number can readily be tuned to enhance signal-to-background with high measurement precision. Furthermore, the solution-based signal readout of MOSAIC expands the number of analytes that can simultaneously be measured for higher-order multiplexing with femtomolar sensitivities or below, compared with microwell- or droplet-based digital methods. As a proof of principle, we apply MOSAIC toward improving the detectability of low-abundance cytokines in saliva and ultrasensitive multiplexed measurements of eight protein analytes in plasma and saliva. The attomolar sensitivity, high throughput, and broad multiplexing abilities of MOSAIC provide highly accessible and versatile ultrasensitive capabilities that can potentially accelerate protein biomarker discovery and diagnostic testing for diverse disease applications.
Collapse
Affiliation(s)
- Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Tyler J Dougan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|