1
|
Protásio da Silva TDES, Alvarado-Arnez LE, Batista AM, Alves SMM, Melo G, Carrazzone CV, Moraes IDO, Pacheco AG, Sarteschi C, Moraes MO, Oliveira Jr W, Lannes-Vieira J. Influence of angiotensin II type 1 receptors and angiotensin-converting enzyme I/D gene polymorphisms on the progression of Chagas' heart disease in a Brazilian cohort: Impact of therapy on clinical outcomes. PLoS Negl Trop Dis 2024; 18:e0012703. [PMID: 39591456 PMCID: PMC11630595 DOI: 10.1371/journal.pntd.0012703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/10/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Chagas disease (CD), a neglected tropical disease, is caused by infection by the protozoan Trypanosoma cruzi. One-third of CD patients develop cardiac disease (CARD), an inflammatory and fibrotic process that may progress to heart failure associated with reduced left ventricular ejection fraction (LVEF). The determinants of CD progression are still uncertain. In non-infectious conditions, the angiotensin-converting enzyme (ACE) functional insertion (I)/deletion (D) and type 1 angiotensin II receptor (AT1R) +1166A>C gene polymorphisms have been linked to clinical outcomes. In a Brazilian cohort of 402 patients with positive serology for CD, in a case-control study we used PCR for genotyping the ACE rs4646994 I/D and AGTR1 rs5182C>T, rs275653 -119C>T, rs2131127A>G and rs5186 +1166A>C polymorphisms to evaluate association with CARD and progression to heart failure. Patients were classified as non-CARD (stage A; 109), and mild (stage B1; 161) or severe (stage C; 132) CARD. The groups were compared using unconditional logistic regression analysis and adjusted for non-genetic covariates (age, gender, and trypanocidal treatment). ACE II genotype appeared less frequent in C patients (15% in C vs 20% in B1 and 27% in A). After covariate adjustments, the ACE D allele showed a borderline association with susceptibility to severe CARD (C vs A: OR = 1.9; P = 0.08). AGTR1 +1166AC genotype showed a borderline association with protection against the progression and severity of CARD (C vs A: OR = 0.6; P = 0.09; C vs B1: OR = 0.6; P = 0.07; C vs A + B1: OR = 0.6; P = 0.05). However, adjustments for multiple comparisons showed no association of ACE I/D and AGTR1 polymorphisms with susceptibility and severity of CARD. The rs275653/rs2131127/rs5186/rs5182 T/A/C/T haplotype was protective against progression to the severe form of CARD (C vs B1: OR = 0.3; P = 0.03). Moreover, patients with ACE II and AGTR1 rs5186 +1166AC genotypes presented higher LVEF%. In C patients, TNF serum levels were higher in ACE D carriers than in II genotype. Although limited in number, a cross-sectional observation suggests that C-stage patients treated with benznidazole years prior to administration of ACE inhibitors/AT1R antagonists show reduced TNF serum levels and improved LVEF%. Therefore, variants of ACE and AGTR1 genes may influence the outcome of Chagas' heart disease and should be explored in precision medicine. Further, pharmacotherapies may improve immunological abnormality and clinical outcome in CD patients. Altogether, these data support prospective studies of this cohort and replication in other cohorts.
Collapse
Affiliation(s)
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Hanseníase, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angelica Martins Batista
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Marinho Martins Alves
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/UPE, Recife, Pernambuco, Brazil
- Instituto do Coração (InCor), Escola de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gloria Melo
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/UPE, Recife, Pernambuco, Brazil
| | - Cristina Veloso Carrazzone
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/UPE, Recife, Pernambuco, Brazil
| | | | - Antonio G. Pacheco
- Programa de Computação Científica, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Sarteschi
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/UPE, Recife, Pernambuco, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Oliveira Jr
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/UPE, Recife, Pernambuco, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Maissner FF, Silva CAO, Farias AB, Costa EP, Nepomuceno-Silva JL, da Silva JR, Mury FB. α-Glucosidase isoform G contributes to heme detoxification in Rhodnius prolixus and its knockdown affects Trypanosoma cruzi metacyclogenesis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100100. [PMID: 39507746 PMCID: PMC11539128 DOI: 10.1016/j.cris.2024.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024]
Abstract
The triatomine bug Rhodnius prolixus is a hematophagous hemipteran and a primary vector of Trypanosoma cruzi, the causative agent of Chagas' disease (CD), in Central America and Northern South America. Blood-feeding poses significant challenges for hematophagous organisms, particularly due to the release of high doses of pro-oxidant free heme during hemoglobin digestion. In this arthropod, most of the free heme in the gut is aggregated into hemozoin (Hz), an inert and non-oxidative biocrystal. Two major components present in the perimicrovillar membranes (PMM) of triatomine insects have been previously implicated in heme crystallization: lipids and the biochemical marker of the PMM, the enzyme α-glucosidase. In this study, we investigated the role of R. prolixus α-glucosidase isoform G (Rp-αGluG) in heme detoxification and the effects of its knockdown on the insect physiology. The effect of α-glucosidase isoform G (αGluG) knockdown on T. cruzi proliferation and metacyclogenesis was also investigated. Initially, a 3D structure of Rp-αGluG was predicted by comparative modeling and then subjected to molecular docking with the heme molecule, providing in silico support for understanding the process of Hz biocrystallization. Next, adult females of R. prolixus were challenged with RNAi against Rp-αGluG (dsαGluG) to assess physiological and phenotypic changes caused by its knockdown. Our data show that the group challenged with dsαGluG produced less Hz, resulting in more intact hemoglobin available in the digestive tract. These animals also laid fewer eggs, which had a lower hatching rate. In addition, T. cruzi metacyclogenesis was significantly lower in the dsαGluG group. The present work demonstrates the importance of Rp-αGluG in heme detoxification, the digestive and reproductive physiology of R. prolixus, as well as its influence on the life cycle of T. cruzi. Since heme neutralization is a vital process for hematophagous bugs, our study provides useful information for the development of new strategies targeting the Hz formation and potentially affecting the vectorial transmission of Chagas disease.
Collapse
Affiliation(s)
| | | | - André Borges Farias
- Laboratório Integrado de Computação Científica (LICC), CM/UFRJ, Macaé, RJ, Brazil
| | - Evenilton Pessoa Costa
- Laboratório Integrado de Biociências Translacionais (LIBT), NUPEM/UFRJ, Macaé, RJ, Brazil
| | | | - José Roberto da Silva
- Instituto Nacional de Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), NUPEM/UFRJ, Macaé, RJ, Brazil
| | - Flávia Borges Mury
- Laboratório Integrado de Biociências Translacionais (LIBT), NUPEM/UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Vázquez C, Matus-Meza AS, Nuñez-Moreno O, Barbosa-Sánchez BM, Farías-Gutiérrez VM, Mendoza-Conde M, Hernández-Luis F, Saavedra E. Exploring Quinazoline Nitro-Derivatives as Potential Antichagasic Agents: Synthesis and In Vitro Evaluation. Molecules 2024; 29:4501. [PMID: 39339496 PMCID: PMC11435156 DOI: 10.3390/molecules29184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. The current antichagasic drugs nifurtimox and benznidazole have inconveniences of toxicity; therefore, the search for alternative therapeutic strategies is necessary. The present study reports the synthesis, drug-likeness predictions, and in vitro anti-trypanosome activity of a series of 14 quinazoline 2,4,6-triamine derivatives. All compounds were tested against T. cruzi (epimastigotes and trypomastigotes) and in HFF1 human foreskin fibroblasts. The bioassays showed that compounds 2-4 containing nitrobenzoyl substituents at 6-position of the quinazoline 2,4,6-triamine nucleus were the most potent on its antiprotozoal activity. The effect was observed at 24 h and it was preserved for at least 5 days. Also, compounds 2-4 were not toxic to the human control cells, showing high selectivity index. The quinazoline nitro derivatives have potential use as antichagasic agents.
Collapse
Affiliation(s)
- Citlali Vázquez
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Audifás-Salvador Matus-Meza
- Department of Pharmacy, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Oswaldo Nuñez-Moreno
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | | | | - Mariana Mendoza-Conde
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Francisco Hernández-Luis
- Department of Pharmacy, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emma Saavedra
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
4
|
Bethencourt-Estrella CJ, Delgado-Hernández S, López-Arencibia A, Serafín-Pérez I, Rodríguez-Santana P, Rodríguez-Camacho S, Fernández-Serafín C, Tejedor D, Lorenzo-Morales J, Piñero JE. E-Cyanoacrylamides and 5-Imino Pyrrolones against Trypanosoma cruzi: Activity and Induced Mechanisms of Cell Death. Trop Med Infect Dis 2024; 9:191. [PMID: 39330880 PMCID: PMC11436024 DOI: 10.3390/tropicalmed9090191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Chagas disease is caused by a protozoan parasite called Trypanosoma cruzi. The infection produces a first clinical phase, commonly asymptomatic or showing non-specific symptoms, and a second chronic phase characterized by cardiac and digestive dysfunctions in some individuals with the disease. This disease affects 7 million people and has been categorized by the World Health Organisation as a neglected tropical disease. In addition, the drugs used to combat it were developed in the 1970s and present major toxicity problems and limited efficacy in the chronicity of the disease. This has led to research into new active compounds that are effective against the disease, with studies on cyanoderivatives showing promising activity. In this work, eight active E-cyanoacrylamides/5-imino pyrrolones were studied. Compounds B and F showed excellent activity, while compounds C and G stood out for their lower cytotoxicity. After correlating the activity and cytotoxicity of the compounds, it was observed that compounds B, C, and G obtained the most favourable results. Various cell death studies were carried out with these compounds, and it was determined that all of them produced programmed cell death, with compound B standing out as being at a late stage in the process.
Collapse
Affiliation(s)
- Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Irene Serafín-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Paula Rodríguez-Santana
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Sara Rodríguez-Camacho
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Carolina Fernández-Serafín
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
5
|
Ribeiro IC, de Moraes JVB, Mariotini-Moura C, Polêto MD, da Rocha Torres Pavione N, de Castro RB, Miranda IL, Sartori SK, Alves KLS, Bressan GC, de Souza Vasconcellos R, Meyer-Fernandes JR, Diaz-Muñoz G, Fietto JLR. Synthesis of new non-natural L-glycosidic flavonoid derivatives and their evaluation as inhibitors of Trypanosoma cruzi ecto-nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase1). Purinergic Signal 2024; 20:399-419. [PMID: 37975950 PMCID: PMC11303637 DOI: 10.1007/s11302-023-09974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 μM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.
Collapse
Affiliation(s)
- Isadora Cunha Ribeiro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Christiane Mariotini-Moura
- General Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Medicine and Nursing Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Raissa Barbosa de Castro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Izabel Luzia Miranda
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suélen Karine Sartori
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kryssia Lohayne Santos Alves
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Costa Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - José Roberto Meyer-Fernandes
- Laboratory of Cellular Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Health Sciences Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gaspar Diaz-Muñoz
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Juliana Lopes Rangel Fietto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- General Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Aldfer MM, Hulpia F, van Calenbergh S, De Koning HP. Mapping the transporter-substrate interactions of the Trypanosoma cruzi NB1 nucleobase transporter reveals the basis for its high affinity and selectivity for hypoxanthine and guanine and lack of nucleoside uptake. Mol Biochem Parasitol 2024; 258:111616. [PMID: 38401850 DOI: 10.1016/j.molbiopara.2024.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Trypanosoma cruzi is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of T. cruzi, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the T. cruzi NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (Ki) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG0. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of Trypanosoma brucei spp. and Leishmania major and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.
Collapse
Affiliation(s)
- Mustafa M Aldfer
- School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, University of Glasgow, GlasgowG12 8TA, UK
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Harry P De Koning
- School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, University of Glasgow, GlasgowG12 8TA, UK.
| |
Collapse
|
7
|
Santos Ferreira DA, de Castro Levatti EV, Santa Cruz LM, Costa AR, Migotto ÁE, Yamada AY, Camargo CH, Christodoulides M, Lago JHG, Tempone AG. Saturated Iso-Type Fatty Acids from the Marine Bacterium Mesoflavibacter zeaxanthinifaciens with Anti-Trypanosomal Potential. Pharmaceuticals (Basel) 2024; 17:499. [PMID: 38675459 PMCID: PMC11053438 DOI: 10.3390/ph17040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera-Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 μg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 μg/mL and 23.8 μg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.
Collapse
Affiliation(s)
- Dayana Agnes Santos Ferreira
- Pathophysiology Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil; (D.A.S.F.); (E.V.d.C.L.)
| | | | - Lucas Monteiro Santa Cruz
- Centre of Organic Contaminants, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Sao Paulo 01246-000, SP, Brazil; (L.M.S.C.); (A.R.C.)
| | - Alan Roberto Costa
- Centre of Organic Contaminants, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Sao Paulo 01246-000, SP, Brazil; (L.M.S.C.); (A.R.C.)
| | - Álvaro E. Migotto
- Centre for Marine Biology, Universidade de São Paulo, Rodovia Doutor Manoel Hipólito do Rego, km. 131,5, Pitangueiras, Sao Sebastiao 11612-109, SP, Brazil;
| | - Amanda Yaeko Yamada
- Centre of Bacteriology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, Sao Paulo 01246-000, SP, Brazil; (A.Y.Y.); (C.H.C.)
| | - Carlos Henrique Camargo
- Centre of Bacteriology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, Sao Paulo 01246-000, SP, Brazil; (A.Y.Y.); (C.H.C.)
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - João Henrique G. Lago
- Centre of Natural Sciences and Humanities, Universidade Federal do ABC, Sao Paulo 09210-580, SP, Brazil
| | - Andre Gustavo Tempone
- Pathophysiology Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil; (D.A.S.F.); (E.V.d.C.L.)
| |
Collapse
|
8
|
Espinoza-Chávez RM, Oliveira Rezende Júnior CD, de Souza ML, Pauli I, Valli M, Gomes Ferreira LL, Chelucci RC, Michelan-Duarte S, Krogh R, Romualdo da Silva FB, Cruz FC, de Oliveira AS, Andricopulo AD, Dias LC. Structure-activity relationships of novel N-imidazoylpiperazines with potent anti- Trypanosoma cruzi activity. Future Med Chem 2024; 16:253-269. [PMID: 38193294 DOI: 10.4155/fmc-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Background: Chagas disease is caused by the parasite Trypanosoma cruzi, and the lack of effective and safe treatments makes identifying new classes of compounds with anti-T. cruzi activity of paramount importance. Methods: Hit-to-lead exploration of a metabolically stable N-imidazoylpiperazine was performed. Results: Compound 2, a piperazine derivative active against T. cruzi, was selected to perform the hit-to-lead exploration, which involved the design, synthesis and biological evaluation of 39 new derivatives. Conclusion: Compounds 6e and 10a were identified as optimized compounds with low micromolar in vitro activity, low cytotoxicity and suitable preliminary absorption, distribution, metabolism and excretion and physicochemical properties. Both compounds reduced parasitemia in mouse models of Chagas disease, providing a promising opportunity for further exploration of new antichagasic compounds.
Collapse
Affiliation(s)
- Rocío Marisol Espinoza-Chávez
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas-SP, 13084-971, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas-SP, 13084-971, Brazil
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia-MG, 38400-902, Brazil
| | - Mariana Laureano de Souza
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Ivani Pauli
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Marilia Valli
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Renata Krogh
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | | | - Fábio Cardoso Cruz
- Department of Pharmacology, Federal University of São Paulo - UNIFESP, São Paulo-SP, 04023-062, Brazil
| | - Aldo Sena de Oliveira
- Department of Exact Sciences & Education, Federal University of Santa Catarina, Campus of Blumenau, Santa Catarina-SC, 89036-256, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Luiz Carlos Dias
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas-SP, 13084-971, Brazil
| |
Collapse
|
9
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
10
|
Morales-Velásquez M, Barón-Vera JP, Pulgarín-Osorio MI, Sánchez-Jiménez MM, Ospina-Villa JD. Identification of the ATPase alpha subunit of Trypanosoma cruzi as a potential biomarker for the diagnosis of Chagas disease. Biomarkers 2023; 28:599-607. [PMID: 37667642 DOI: 10.1080/1354750x.2023.2255756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Chagas disease (CD) is considered by the World Health Organisation (WHO) a neglected disease endemic to the Americas, but it has spread throughout the world due to migrations. The disease is almost 100% curable if detected in time. Still, the lack of rapid diagnostic tests with sufficient sensitivity and specificity leads to a chronic phase with a mortality of about 50,000 people worldwide per year. METHODS Using the total proteins extracted from serum samples of patients confirmed with chronic phase CD; we performed the Bio-SELEX strategy. The best aptamers were selected using next-generation sequencing (NGS) based on their most abundant sequences (reads and rpm). Then, selected aptamers were used to isolate potential biomarkers directly from serum samples of patients with chronic phase CD using pull-down and mass spectrometry experiments. RESULTS CH1 aptamer was the aptamer selected after the NGS results analysis. The pull-down and mass spectrometry experiments identified the presence of the ATPase alpha subunit of T. cruzi circulating in serum samples of patients with chronic phase CD. CONCLUSIONS We report the ATPase alpha subunit of T. cruzi as a potential biomarker for chronic phase CD and CH1 aptamer as a potential tool for diagnosing CD.
Collapse
Affiliation(s)
- M Morales-Velásquez
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - J P Barón-Vera
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - M I Pulgarín-Osorio
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - M M Sánchez-Jiménez
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| | - J D Ospina-Villa
- Tropical Medicine, Instituto Colombiano de Medicina Tropical - ICMT, Universidad CES, Medellin, Colombia
| |
Collapse
|
11
|
Meira C, Silva J, Quadros H, Silva L, Barreto B, Rocha V, Bomfim L, Santos E, Soares M. Galectins in Protozoan Parasitic Diseases: Potential Applications in Diagnostics and Therapeutics. Cells 2023; 12:2671. [PMID: 38067100 PMCID: PMC10705098 DOI: 10.3390/cells12232671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Neglected tropical diseases (NTDs) constitute a group of diseases that generally develop in tropical or subtropical climatic conditions and are related to poverty. Within the spectrum of NTDs, diseases caused by protozoa such as malaria, Chagas disease, and leishmaniasis exhibit elevated mortality rates, thereby constituting a substantial public health concern. Beyond their protozoan etiology, these NTDs share other similarities, such as the challenge of control and the lack of affordable, safe, and effective drugs. In view of the above, the need to explore novel diagnostic predictors and therapeutic targets for the treatment of these parasitic diseases is evident. In this context, galectins are attractive because they are a set of lectins bound to β-galactosides that play key roles in a variety of cellular processes, including host-parasite interaction such as adhesion and entry of parasites into the host cells, and participate in antiparasitic immunity in either a stimulatory or inhibitory manner, especially the galectins-1, -2, -3, and -9. These functions bestow upon galectins significant therapeutic prospects in the context of managing and diagnosing NTDs. Thus, the present review aims to elucidate the potential role of galectins in the diagnosis and treatment of malaria, leishmaniasis, and Chagas disease.
Collapse
Affiliation(s)
- Cássio Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Jaqueline Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Helenita Quadros
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Laís Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Breno Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40170-110, Bahia, Brazil
| | - Vinícius Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Larissa Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Emanuelle Santos
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Milena Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| |
Collapse
|
12
|
Moreira LR, Silva AC, da Costa Oliveira CN, da Silva Júnior CD, Nascimento AV, Oliveira KKDS, Soares AKDA, Saraiva KLA, de Paiva Cavalcanti M, de Lorena VMB. Benznidazole treatment decreases IL-6 levels in Trypanosoma cruzi-infected human adipocytes differentiated from adipose tissue-derived stem cells. Mem Inst Oswaldo Cruz 2023; 118:e220295. [PMID: 37878830 PMCID: PMC10599316 DOI: 10.1590/0074-02760220295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.
Collapse
Affiliation(s)
- Leyllane Rafael Moreira
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em
Medicina Tropical, Recife, PE, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Laboratório de Imunoparasitologia, Recife, PE, Brasil
| | - Ana Carla Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Laboratório de Imunoparasitologia, Recife, PE, Brasil
| | | | - Claudeir Dias da Silva Júnior
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em
Medicina Tropical, Recife, PE, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Laboratório de Imunoparasitologia, Recife, PE, Brasil
| | | | | | | | | | - Milena de Paiva Cavalcanti
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães,
Departamento de Microbiologia, Recife, PE, Brasil
| | | |
Collapse
|
13
|
Yıldırım A, Özbilgin A, Yereli K. Antiprotozoal activity of auranofin on Trypanosoma cruzi, Leishmania tropica and Toxoplasma gondii: in vitro and ex vivo study. Trans R Soc Trop Med Hyg 2023; 117:733-740. [PMID: 37377375 DOI: 10.1093/trstmh/trad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Three obligate intracellular protozoan parasite species, which are responsible for significant morbidity and mortality and settle in macrophage cells, affect more than one-half of the world's population, namely, Trypanosoma cruzi, Leishmania tropica and Toxoplasma gondii, which are causative agents of Chagas disease, leishmaniasis and toxoplasmosis, respectively. In the current study, it was aimed to investigate the in vitro and ex vivo antiprotozoal activity of auranofin on T. cruzi, L. tropica and T. gondii. METHODS The in vitro drug efficacy (IC50) of auranofin was investigated by haemocytometry and the CellTiter-Glo assay methods and the ex vivo drug efficacy (IC50) by light microscopic examination of Giemsa-stained slides. Also, the cytotoxic activity (CC50) of auranofin was examined by the CellTiter-Glo assay. The selectivity index (SI) was calculated for auranofin. RESULTS According to IC50, CC50 and SI data, auranofin did not exhibit cytotoxic activity on Vero cells, but exhibited antiprotozoal activity on epimastigotes and intracellular amastigotes of T. cruzi, promastigotes and intracellular amastigotes of L. tropica and intracellular tachyzoites of T. gondii (p<0.05). CONCLUSIONS The detection antiprotozoal activity of auranofin on T. cruzi, L. tropica and T. gondii according to the IC50, CC50 and SI values is considered an important and promising development. This is significant because auranofin may be an effective alternative treatment for Chagas disease, leishmaniasis and toxoplasmosis in the future.
Collapse
Affiliation(s)
- Ahmet Yıldırım
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Uncubozköy, 45030 Manisa, Turkey
| | - Ahmet Özbilgin
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Uncubozköy, 45030 Manisa, Turkey
| | - Kor Yereli
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Uncubozköy, 45030 Manisa, Turkey
| |
Collapse
|
14
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
15
|
López-García A, Gilabert JA. Oral transmission of Chagas disease from a One Health approach: A systematic review. Trop Med Int Health 2023; 28:689-698. [PMID: 37488635 DOI: 10.1111/tmi.13915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
OBJECTIVE To analyse acute Chagas disease (CD) outbreaks through a qualitative systematic review and discuss the determinants for its prevention and control. METHODS Review of studies in which clinical cases of oral transmission were confirmed by parasitological and/or serological tests that included an epidemiological investigation of sources of infection, vectors and reservoirs. RESULTS Thirty-two outbreaks (1965-2022) were analysed. The main foods involved in oral transmission outbreaks are homemade fruit juices. Different species of vectors were identified. Reservoirs were mainly dogs, rodents and large American opossums (didelphids). CONCLUSION Under a One Health approach, environmental changes are one of the factors responsible of the rise of oral transmission of CD. Entomological surveillance of vectors and control of the changes in wild and domestic reservoirs and reinforcement of hygiene measures around food in domestic and commercial sites are needed.
Collapse
Affiliation(s)
- Alejandra López-García
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan A Gilabert
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Pardali V, Giannakopoulou E, Mpekoulis G, Tsopela V, Panos G, Taylor MC, Kelly JM, Vassilaki N, Zoidis G. Novel Lipophilic Hydroxamates Based on Spirocarbocyclic Hydantoin Scaffolds with Potent Antiviral and Trypanocidal Activity. Pharmaceuticals (Basel) 2023; 16:1046. [PMID: 37513957 PMCID: PMC10385743 DOI: 10.3390/ph16071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Flaviviridae infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites Trypanosoma brucei and Trypanosoma cruzi cause enormous socioeconomic burdens in Sub-Saharan Africa and Latin America. Anti-HCV chemotherapy has severe adverse effects and is expensive, whereas dengue has no clinically authorized treatment. Antiparasitic medicines are often toxic and difficult to administer, and treatment failures are widely reported. There is an urgent need for new chemotherapies. Based on our previous research, we have undertaken structural modification of lead compound V with the goal of producing derivatives with both antiviral and trypanocidal activity. The novel spirocarbocyclic-substituted hydantoin analogs were designed, synthesized, and tested for antiviral activity against three HCV genotypes (1b, 3a, 4a), DENV, yellow fever virus (YFV), and two trypanosome species (T. brucei, T. cruzi). The optimization was successful and led to compounds with significant antiviral and trypanocidal activity and exceptional selectivity. Several modifications were made to further investigate the structure-activity relationships (SARs) and confirm the critical role of lipophilicity and conformational degrees of freedom.
Collapse
Affiliation(s)
- Vasiliki Pardali
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Erofili Giannakopoulou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - George Mpekoulis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Vassilina Tsopela
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Georgios Panos
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
17
|
Jimenez A, Winokur EJ. Chagas Disease Cardiomyopathy. Dimens Crit Care Nurs 2023; 42:202-210. [PMID: 37219474 DOI: 10.1097/dcc.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chagas disease is a prominent neglected tropical disease endemic to many countries in Latin America. Cardiomyopathy is the most serious manifestation due to the severity and complications of heart failure. As a result of expanded immigration and globalization, there is an increased number of patients with Chagas cardiomyopathy who are being admitted to hospitals in the United States. It is imperative as a critical care nurse to be educated on the nature of Chagas cardiomyopathy as it differs from the more commonly seen ischemic and nonischemic forms. This article provides an overview of the clinical course, management, and treatment options of Chagas cardiomyopathy.
Collapse
|
18
|
Laureano de Souza M, Lapierre TJWJD, Vitor de Lima Marques G, Ferraz WR, Penteado AB, Henrique Goulart Trossini G, Murta SMF, de Oliveira RB, de Oliveira Rezende C, Ferreira RS. Molecular targets for Chagas disease: validation, challenges and lead compounds for widely exploited targets. Expert Opin Ther Targets 2023; 27:911-925. [PMID: 37772733 DOI: 10.1080/14728222.2023.2264512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Chagas disease (CD) imposes social and economic burdens, yet the available treatments have limited efficacy in the disease's chronic phase and cause serious adverse effects. To address this challenge, target-based approaches are a possible strategy to develop new, safe, and active treatments for both phases of the disease. AREAS COVERED This review delves into target-based approaches applied to CD drug discovery, emphasizing the studies from the last five years. We highlight the proteins cruzain (CZ), trypanothione reductase (TR), sterol 14 α-demethylase (CPY51), iron superoxide dismutase (Fe-SOD), proteasome, cytochrome b (Cytb), and cleavage and polyadenylation specificity factor 3 (CPSF3), chosen based on their biological and chemical validation as drug targets. For each, we discuss its biological relevance and validation as a target, currently related challenges, and the status of the most promising inhibitors. EXPERT OPINION Target-based approaches toward developing potential CD therapeutics have yielded promising leads in recent years. We expect a significant advance in this field in the next decade, fueled by the new options for Trypanosoma cruzi genetic manipulation that arose in the past decade, combined with recent advances in computational chemistry and chemical biology.
Collapse
Affiliation(s)
- Mariana Laureano de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Gabriel Vitor de Lima Marques
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Witor Ribeiro Ferraz
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - André Berndt Penteado
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
20
|
Bethencourt-Estrella CJ, Delgado-Hernández S, López-Arencibia A, San Nicolás-Hernández D, Tejedor D, García-Tellado F, Lorenzo-Morales J, Piñero JE. In vitro activity and mechanism of cell death induction of cyanomethyl vinyl ethers derivatives against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 2023; 22:72-80. [PMID: 37311268 PMCID: PMC10276036 DOI: 10.1016/j.ijpddr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Chagas disease causes a problematic pathology that can lead to megacolon and heart disease, and can even cause the death of the patient. Current therapies for this disease are the same as they were 50 years ago, are not fully effective and have strong side effects. The lack of a safe and effective therapy makes it necessary to search for new, less toxic and totally effective compounds against this parasite. In this work, the antichagasic activity of 46 novel cyanomethyl vinyl ether derivatives was studied. In addition, to elucidate the type of cell death that these compounds produce in parasites, several events related to programmed cell death were studied. The results highlight four more selective compounds, E63, E64, E74 and E83, which also appear to trigger programmed cell death, and are therefore postulated as good candidates to use in future therapeutics for Chagas disease.
Collapse
Affiliation(s)
- Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain.
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain.
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain.
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206, La Laguna, Tenerife, Islas Canarias, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| |
Collapse
|
21
|
Silva-Oliveira R, Sangenito LS, Reddy A, Velasco-Torrijos T, Santos ALS, Branquinha MH. In Vitro Effects of Aminopyridyl Ligands Complexed to Copper(II) on the Physiology and Interaction Process of Trypanosoma cruzi. Trop Med Infect Dis 2023; 8:tropicalmed8050288. [PMID: 37235336 DOI: 10.3390/tropicalmed8050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease is derived from the infection by the protozoan Trypanosoma cruzi. In many countries, benznidazole is the only drug approved for clinical use despite several side effects and the emergence of resistant parasite strains. In this context, our group has previously pointed out that two novel aminopyridine derivatives complexed with Cu2+, namely, cis-aquadichloro(N-[4-(hydroxyphenyl)methyl]-2-pyridinemethamino)copper (3a) and its glycosylated ligand cis-dichloro (N-{[4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)pheny]lmethyl}-2-pyridinemethamino)copper (3b), are effective against T. cruzi trypomastigote forms. With this result in mind, the present work aimed to investigate the effects of both compounds on trypomastigotes physiology and on the interaction process with host cells. Apart from loss of plasma membrane integrity, an increased generation of reactive oxygen species (ROS) and decreased mitochondrial metabolism were observed. Pretreatment of trypomastigotes with these metallodrugs inhibited the association index with LLC-MK2 cells in a typical dose-dependent manner. Both compounds showed low toxicity on mammalian cells (CC50 > 100 µM), and the IC50 values calculated for intracellular amastigotes were determined as 14.4 µM for 3a and 27.1 µM for 3b. This set of results demonstrates the potential of these aminopyridines complexed with Cu2+ as promising candidates for further antitrypanosomal drug development.
Collapse
Affiliation(s)
- Rafaela Silva-Oliveira
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leandro S Sangenito
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis 26530-060, Brazil
| | - Andrew Reddy
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University, W23VP22 Maynooth, Co. Kildare, Ireland
- The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23VP22 Maynooth, Co. Kildare, Ireland
| | - André L S Santos
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
22
|
Timm BL, da Gama ANS, Batista MM, Batista DDGJ, Boykin DW, De Koning HP, Correia Soeiro MDN. Arylimidamides Have Potential for Chemoprophylaxis against Blood-Transmitted Chagas Disease. Pathogens 2023; 12:pathogens12050701. [PMID: 37242371 DOI: 10.3390/pathogens12050701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) affects over 6 million people worldwide and can be transmitted iatrogenically. Crystal violet (CV) was previously used for pathogen reduction but has harmful side-effects. In the present study, three arylimidamides (AIAs) and CV were used to sterilize mice blood samples experimentally contaminated with bloodstream trypomastigotes (BT) of Trypanosoma cruzi, at non hemolytic doses. All AIAs were not toxic to mouse blood cells until the highest tested concentration (96 µM). The previous treatment of BT with the AIAs impaired the infection establishment of cardiac cell cultures. In vivo assays showed that pre-incubation of mouse blood samples with the AIAs and CV (96 µM) significantly suppressed the parasitemia peak, but only the AIA DB1831 gave ≥90% animal survival, while vehicle treated samples reached 0%. Our findings support further studies regarding the potential use of AIAs for blood bank purposes.
Collapse
Affiliation(s)
- Bruno Lisboa Timm
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, UK
| | | |
Collapse
|
23
|
Faral-Tello P, Greif G, Romero S, Cabrera A, Oviedo C, González T, Libisch G, Arévalo AP, Varela B, Verdes JM, Crispo M, Basmadjián Y, Robello C. Trypanosoma cruzi Isolates Naturally Adapted to Congenital Transmission Display a Unique Strategy of Transplacental Passage. Microbiol Spectr 2023; 11:e0250422. [PMID: 36786574 PMCID: PMC10100920 DOI: 10.1128/spectrum.02504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Chagas disease is mainly transmitted by vertical transmission (VT) in nonendemic areas and in endemic areas where vector control programs have been successful. For the present study, we isolated natural Trypanosoma cruzi strains vertically transmitted through three generations and proceeded to study their molecular mechanism of VT using mice. No parasitemia was detected in immunocompetent mice, but the parasites were able to induce an immune response and colonize different organs. VT experiments revealed that infection with different strains did not affect mating, pregnancy, or resorption, but despite low parasitemia, VT strains reached the placenta and resulted in higher vertical transmission rates than strains of either moderate or high virulence. While the virulent strain modulated more than 2,500 placental genes, VT strains modulated 150, and only 29 genes are shared between them. VT strains downregulated genes associated with cell division and replication and upregulated immunomodulatory genes, leading to anti-inflammatory responses and tolerance. The virulent strain stimulated a strong proinflammatory immune response, and this molecular footprint correlated with histopathological analyses. We describe a unique placental response regarding the passage of T. cruzi VT isolates across the maternal-fetal interphase, challenging the current knowledge derived mainly from studies of laboratory-adapted or highly virulent strains. IMPORTANCE The main findings of this study are that we determined that there are Trypanosoma cruzi strains adapted to transplacental transmission and completely different from the commonly used laboratory reference strains. This implies a specific strategy for the vertical transmission of Chagas disease. It is impressive that the strains specialized for vertical transmission modify the gene expression of the placenta in a totally different way than the reference strains. In addition, we describe isolates of T. cruzi that cannot be transmitted transplacentally. Taken together, these results open up new insights into the molecular mechanisms of this insect vector-independent transmission form.
Collapse
Affiliation(s)
- Paula Faral-Tello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Selva Romero
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Cabrera
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Unidad de Microbiología, Instituto de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Cristina Oviedo
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Telma González
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Paula Arévalo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Belén Varela
- Unidad de Patología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - José Manuel Verdes
- Unidad de Patología, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Yester Basmadjián
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
24
|
Evaluation of the Chagas VirClia ® and Chagas TESA VirClia ® for the Diagnosis of Trypanosoma cruzi Infection. Pathogens 2022; 12:pathogens12010050. [PMID: 36678398 PMCID: PMC9864210 DOI: 10.3390/pathogens12010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is an important problem of public health even in regions where it is not endemic. Spain ranks second worldwide in terms of imported cases of T. cruzi infection in the chronic phase. The diagnosis in this stage is made via the detection of antibodies against T. cruzi. Therefore, we aimed to evaluate the sensitivity and specificity of two fully automated chemiluminescence immunoassays, Chagas VirClia® (CHR), which uses a mixture of recombinant antigens, and Chagas TESA VirClia® (TESA), the first chemiluminescence assay based on excretion-secretion antigens of trypomastigotes, both designed in monotest format. A retrospective case-control study was performed using 105 well-characterized samples: 49 from patients with CD, 22 from uninfected individuals, and 32 from patients with other pathologies. Sensitivity was 98% for CHR and 92% for TESA. In contrast, the specificity in both was 100%. Cross-reactivity was observed in leishmaniasis (2/10). CHR meets the criteria to become a tool for serological screening, while TESA has the potential for confirmation and cross-reaction discrimination. The monotest format allows its application in laboratories with a small number of samples. The high specificity of both assays is useful in areas where leishmaniasis is endemic.
Collapse
|
25
|
Reséndiz-Mora A, Barrera-Aveleida G, Sotelo-Rodríguez A, Galarce-Sosa I, Nevárez-Lechuga I, Santiago-Hernández JC, Nogueda-Torres B, Meza-Toledo S, Gómez-Manzo S, Wong-Baeza I, Baeza I, Wong-Baeza C. Effect of B-NIPOx in Experimental Trypanosoma cruzi Infection in Mice. Int J Mol Sci 2022; 24:ijms24010333. [PMID: 36613783 PMCID: PMC9820238 DOI: 10.3390/ijms24010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi and represents a major public health problem, which is endemic in Latin America and emerging in the rest of the world. The two drugs that are currently available for its treatment, Benznidazole and Nifurtimox, are partially effective in the chronic phase of the disease. In this study, we designed and synthesized the benzyl ester of N-isopropyl oxamic acid (B-NIPOx), which is a non-polar molecule that crosses cell membranes. B-NIPOx is cleaved inside the parasite by carboxylesterases, releasing benzyl alcohol (a molecule with antimicrobial activity), and NIPOx, which is an inhibitor of α-hydroxy acid dehydrogenase isozyme II (HADH-II), a key enzyme in T. cruzi metabolism. We evaluated B-NIPOx cytotoxicity, its toxicity in mice, and its inhibitory activity on purified HADH-II and on T. cruzi homogenates. We then evaluated the trypanocidal activity of B-NIPOx in vitro and in vivo and its effect in the intestine of T. cruzi-infected mice. We found that B-NIPOx had higher trypanocidal activity on epimastigotes and trypomastigotes than Benznidazole and Nifurtimox, that it was more effective to reduce blood parasitemia and amastigote nests in infected mice, and that, in contrast to the reference drugs, it prevented the development of Chagasic enteropathy.
Collapse
Affiliation(s)
- Albany Reséndiz-Mora
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Giovanna Barrera-Aveleida
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Anahi Sotelo-Rodríguez
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Iván Galarce-Sosa
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Irene Nevárez-Lechuga
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan Carlos Santiago-Hernández
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Benjamín Nogueda-Torres
- Laboratorio de Helmintología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Isabel Wong-Baeza
- Laboratorio de Inmunología Molecular II, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Isabel Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (I.B.); (C.W.-B.); Tel.: +52-55-5729-6000 (ext. 62326) (I.B. & C.W.-B.)
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (I.B.); (C.W.-B.); Tel.: +52-55-5729-6000 (ext. 62326) (I.B. & C.W.-B.)
| |
Collapse
|
26
|
Piazzesi A, Pane S, Putignani L. How Modulations of the Gut Microbiota May Help in Preventing or Treating Parasitic Diseases. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Fiuza LFDA, Batista DGJ, Girão RD, Hulpia F, Finamore-Araújo P, Aldfer MM, Elmahallawy EK, De Koning HP, Moreira O, Van Calenbergh S, Soeiro MDNC. Phenotypic Evaluation of Nucleoside Analogues against Trypanosoma cruzi Infection: In Vitro and In Vivo Approaches. Molecules 2022; 27:molecules27228087. [PMID: 36432189 PMCID: PMC9695592 DOI: 10.3390/molecules27228087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease.
Collapse
Affiliation(s)
- Ludmila F. de A. Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Roberson D. Girão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Paula Finamore-Araújo
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Ehab Kotb Elmahallawy
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Otacílio Moreira
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
- Correspondence: ; Tel.: +55-21-2562-1368
| |
Collapse
|
28
|
de Lederkremer RM, Giorgi ME, Marino C. The α-Galactosyl Carbohydrate Epitope in Pathogenic Protozoa. ACS Infect Dis 2022; 8:2207-2222. [PMID: 36083842 DOI: 10.1021/acsinfecdis.2c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The α-gal epitope, which refers to the carbohydrate α-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-d-GlcNAc-R, was first described in the glycoconjugates of mammals other than humans. Evolution caused a mutation that resulted in the inactivation of the α-1,3-galactosyltransferase gene. For that reason, humans produce antibodies against α-d-Galp containing glycoproteins and glycolipids of other species. We summarize here the glycoconjugates with α-d-Galp structures in Trypanosoma, Leishmania, and Plasmodium pathogenic protozoa. These were identified in infective stages of Trypanosoma cruzi and in Plasmodium sporozoites. In Leishmania, α-d-Galp is linked differently in the glycans of glycoinositolphospholipids (GIPLs). Chemically synthesized neoglycoconjugates have been proposed as diagnostic tools and as antigens for vaccines. Several syntheses reported for the α-gal trisaccharide, also called the Galili epitope, and the glycans of GIPLs found in Leishmania, the preparation of neoglycoconjugates, and the studies in which they were involved are also included in this Review.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| | - María Eugenia Giorgi
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| | - Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428Buenos Aires, Argentina
| |
Collapse
|
29
|
da Costa KM, Valente RDC, da Fonseca LM, Freire-de-Lima L, Previato JO, Mendonça-Previato L. The History of the ABC Proteins in Human Trypanosomiasis Pathogens. Pathogens 2022; 11:pathogens11090988. [PMID: 36145420 PMCID: PMC9505544 DOI: 10.3390/pathogens11090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| | - Raphael do Carmo Valente
- Núcleo de Pesquisa Multidisciplinar em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25250-470, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| |
Collapse
|
30
|
Paula AT, Ribeiro KVG, Cardoso KF, Bastos DSS, Santos EC, Novaes RD, Cardoso SA, Oliveira LL. Protective immunity triggered by ectonucleoside triphosphate diphosphohydrolase-based biopharmaceuticals attenuates cardiac parasitism and prevents mortality in Trypanosoma cruzi infection. Bioorg Med Chem 2022; 72:116966. [PMID: 35998390 DOI: 10.1016/j.bmc.2022.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Chagas disease is a potentially fatal infection in 21 endemic Latin America countries for which the effectiveness of reference antiparasitic chemotherapy is limited. Thus, we developed three biopharmaceuticals and evaluated the effectiveness of different immunization strategies (recombinant protein NTPDase-1 [rNTPDase-1], DNA plasmid encoding Trypanosoma cruzi NTPDase-1 [TcNTPDase-1] and DNA-NTPDase-1 prime/rNTPDase-1 boost [Prime-boost]) based on the surface ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) enzyme of T. cruzi in animals challenged with a virulent strain (Y) of this parasite. BALB/c mice were immunized three times at 30 days intervals, challenged with T. cruzi 15 days after the last immunization, and euthanized 30 days after T. cruzi challenge. Our results showed limited polarization of specific anti-ecto-NTPDase immunoglobulins in mice receiving both immunization protocols. Conversely, the Prime-boost strategy stimulated the Th1 protective phenotype, upregulating TNF-α and downregulating IL-10 production while increasing the activation/distribution of CD3+/CD8+, CD4+/CD44hi and CD8+/CD44hi/CD62L cells in immunized and infected mice. Furthermore, IL-6 and IL10 levels were reduced, while the distribution of CD4+/CD44hi and CD3+/CD8+ cells was increased from rNTPDase-1 and DNA-NTPDase1-based immunization strategies. Animals receiving DNA-NTPDase1 and Prime-boost protocols before T. cruzi challenged exhibited an enhanced immunological response associated with IL-17 upregulation and remarkable downregulation of heart parasitism (T. cruzi DNA) and mortality. These findings indicated that NTPDase-1 with Prime-boost strategy induced a protective and sustained Th17 response, enhancing host resistance against T. cruzi. Thus, ecto-NTPDase is a potentially relevant and applicable in the development of biopharmaceuticals with greater immunoprophylactic potential for Chagas disease.
Collapse
Affiliation(s)
| | | | | | | | - Eliziária Cardoso Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Silvia Almeida Cardoso
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | |
Collapse
|
31
|
Vanrell MC, Martinez SJ, Muñoz LI, Salassa BN, Gambarte Tudela J, Romano PS. Induction of Autophagy by Ursolic Acid Promotes the Elimination of Trypanosoma cruzi Amastigotes From Macrophages and Cardiac Cells. Front Cell Infect Microbiol 2022; 12:919096. [PMID: 36004334 PMCID: PMC9394444 DOI: 10.3389/fcimb.2022.919096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is an infectious illness endemic to Latin America and still lacks an effective treatment for the chronic stage. In a previous study in our laboratory, we established the protective role of host autophagy in vivo during T. cruzi infection in mice and proposed this process as one of the mechanisms involved in the innate immune response against this parasite. In the search for an autophagy inducer that increases the anti-T. cruzi response in the host, we found ursolic acid (UA), a natural pentacyclic triterpene with many biological actions including autophagy induction. The aim of this work was to study the effect of UA on T. cruzi infection in vitro in the late infection stage, when the nests of intracellular parasites are forming, in both macrophages and cardiac cells. To test this effect, the cells were infected with T. cruzi for 24 h and then treated with UA (5–10 µM). The data showed that UA significantly decreased the number of amastigotes found in infected cells in comparison with non-treated cells. UA also induced the autophagy response in both macrophages and cardiac cells under the studied conditions, and the inhibition of this pathway during UA treatment restored the level of infection. Interestingly, LC3 protein, the main marker of autophagy, was recruited around amastigotes and the acidic probe LysoTracker localized with them, two key features of xenophagy. A direct cytotoxic effect of UA was also found on trypomastigotes of T. cruzi, whereas epimastigotes and amastigotes displayed more resistance to this drug at the studied concentrations. Taken together, these data showed that this natural compound reduces T. cruzi infection in the later stages by promoting parasite damage through the induction of autophagy. This action, in addition to the effect of this compound on trypomastigotes, points to UA as an interesting lead for Chagas disease treatment in the future.
Collapse
Affiliation(s)
- María Cristina Vanrell
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: María Cristina Vanrell, ; Patricia Silvia Romano,
| | - Santiago José Martinez
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Lucila Ibel Muñoz
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Patricia Silvia Romano
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: María Cristina Vanrell, ; Patricia Silvia Romano,
| |
Collapse
|
32
|
Mora-Criollo P, Basu R, Qian Y, Costales JA, Guevara-Aguirre J, Grijalva MJ, Kopchick JJ. Growth hormone modulates Trypanosoma cruzi infection in vitro. Growth Horm IGF Res 2022; 64:101460. [PMID: 35490602 DOI: 10.1016/j.ghir.2022.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Chagas disease (CD) is caused by the protozoan parasite, Trypanosoma cruzi. It affects 7 to 8 million people worldwide and leads to approximately 50,000 deaths per year. In vitro and in vivo studies had demonstrated that Trypanosoma cruziinfection causes an imbalance in the hypothalamic-pituitary-adrenal (HPA) axis that is accompanied by a progressive decrease in growth hormone (GH) and prolactin (PRL) production. In humans, inactivating mutations in the GH receptor gene cause Laron Syndrome (LS), an autosomal recessive disorder. Affected subjects are short, have increased adiposity, decreased insulin-like growth factor-I (IGFI), increased serum GH levels, are highly resistant to diabetes and cancer, and display slow cognitive decline. In addition, CD incidence in these individuals is diminished despite living in highly endemic areas. Consequently, we decided to investigate the in vitro effect of GH/IGF-I on T. cruzi infection. DESIGN We first treated the parasite and/or host cells with different peptide hormones including GH, IGFI, and PRL. Then, we treated cells using different combinations of GH/IGF-I attempting to mimic the GH/IGF-I serum levels observed in LS subjects. RESULTS We found that exogenous GH confers protection against T. cruzi infection. Moreover, this effect is mediated by GH and not IGFI. The combination of relatively high GH (50 ng/ml) and low IGF-I (20 ng/ml), mimicking the hormonal pattern seen in LS individuals, consistently decreased T. cruzi infection in vitro. CONCLUSIONS The combination of relatively high GH and low IGF-I serum levels in LS individuals may be an underlying condition providing partial protection against T. cruzi infection.
Collapse
Affiliation(s)
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime Guevara-Aguirre
- Colegio de ciencias de la salud, Universidad San Francisco de Quito, Cumbaya, Quito, Ecuador
| | - Mario J Grijalva
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, USA; Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
33
|
Resveratrol and Curcumin for Chagas Disease Treatment—A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15050609. [PMID: 35631435 PMCID: PMC9143057 DOI: 10.3390/ph15050609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/08/2023] Open
Abstract
Chagas disease (CD) is a neglected protozoan infection caused by Trypanosoma cruzi, which affects about 7 million people worldwide. There are two available drugs in therapeutics, however, they lack effectiveness for the chronic stage—characterized mainly by cardiac (i.e., cardiomyopathy) and digestive manifestations (i.e., megaesophagus, megacolon). Due to the involvement of the immuno-inflammatory pathways in the disease’s progress, compounds exhibiting antioxidant and anti-inflammatory activity seem to be effective for controlling some clinical manifestations, mainly in the chronic phase. Resveratrol (RVT) and curcumin (CUR) are natural compounds with potent antioxidant and anti-inflammatory properties and their cardioprotective effect have been proposed to have benefits to treat CD. Such effects could decrease or block the progression of the disease’s severity. The purpose of this systematic review is to analyze the effectiveness of RVT and CUR in animal and clinical research for the treatment of CD. The study was performed according to PRISMA guidelines and it was registered on PROSPERO (CDR42021293495). The results did not find any clinical study, and the animal research was analyzed according to the SYRCLES risk of bias tools and ARRIVE 2.0 guidelines. We found 9 eligible reports in this study. We also discuss the potential RVT and CUR derivatives for the treatment of CD as well.
Collapse
|
34
|
Worldwide Control and Management of Chagas Disease in a New Era of Globalization: a Close Look at Congenital Trypanosoma cruzi Infection. Clin Microbiol Rev 2022; 35:e0015221. [PMID: 35239422 PMCID: PMC9020358 DOI: 10.1128/cmr.00152-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Population movements have turned Chagas disease (CD) into a global public health problem. Despite the successful implementation of subregional initiatives to control vectorial and transfusional Trypanosoma cruzi transmission in Latin American settings where the disease is endemic, congenital CD (cCD) remains a significant challenge. In countries where the disease is not endemic, vertical transmission plays a key role in CD expansion and is the main focus of its control. Although several health organizations provide general protocols for cCD control, its management in each geopolitical region depends on local authorities, which has resulted in a multitude of approaches. The aims of this review are to (i) describe the current global situation in CD management, with emphasis on congenital infection, and (ii) summarize the spectrum of available strategies, both official and unofficial, for cCD prevention and control in countries of endemicity and nonendemicity. From an economic point of view, the early detection and treatment of cCD are cost-effective. However, in countries where the disease is not endemic, national health policies for cCD control are nonexistent, and official regional protocols are scarce and restricted to Europe. Countries of endemicity have more protocols in place, but the implementation of diagnostic methods is hampered by economic constraints. Moreover, most protocols in both countries where the disease is endemic and those where it is not endemic have yet to incorporate recently developed technologies. The wide methodological diversity in cCD diagnostic algorithms reflects the lack of a consensus. This review may represent a first step toward the development of a common strategy, which will require the collaboration of health organizations, governments, and experts in the field.
Collapse
|
35
|
Chloride substitution on 2-hydroxy-3,4,6-trimethoxyphenylchalcones improves in vitro selectivity on Trypanosoma cruzi strain Y. Chem Biol Interact 2022; 361:109920. [DOI: 10.1016/j.cbi.2022.109920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/12/2023]
|
36
|
Selenium and protozoan parasitic infections: selenocompounds and selenoproteins potential. Parasitol Res 2022; 121:49-62. [PMID: 34993638 PMCID: PMC8735723 DOI: 10.1007/s00436-021-07400-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
The current drug treatments against protozoan parasitic diseases including Chagas, malaria, leishmaniasis, and toxoplasmosis represent good examples of drug resistance mechanisms and have shown diverse side effects. Therefore, the identification of novel therapeutic strategies and drug compounds against such life-threatening diseases is urgent. According to the successful usage of selenium (Se) compounds-based therapy against some diseases, this therapeutic strategy has been recently further underlined against these parasitic diseases by targeting different parasite´s essential pathways. On the other hand, due to the important functions played by parasite selenoproteins in their biology (such as modulating the host immune response), they can be also considered as a novel therapeutic strategy by designing specific inhibitors against these important proteins. In addition, the immunomodulatory potentiality of these compounds to trigger T helper type 1 (Th1) cells and cytokine-mediated immune response for the substantial induction of proinflammatory cytokines, thus, Se, selenoproteins, and parasite selenoproteins could be further investigated to find possible vaccine antigens. Herein, we collect and present the results of some studies regarding Se-based therapy against protozoan parasitic diseases and highlight relevant information and some viewpoints that might be insightful to advance toward more effective studies in the future.
Collapse
|
37
|
Carmona-Peña S, Contreras-Garduño J, Castro D, Manjarrez J, Vázquez-Chagoyán J. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Acta Trop 2021; 224:106108. [PMID: 34450058 DOI: 10.1016/j.actatropica.2021.106108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The present work aimed to review the immune response from different triatomines against Trypanosoma cruzi and Trypanosoma rangeli and propose the study of immune memory in such insects. Trypanosoma use triatomines as vectors to reach and infect mammals. A key question to be answered about vector-parasite interaction is why the immune defense and resistance of the insect against the parasites vary. Up to date data shows that the defense of triatomines against parasites includes cellular (phagocytosis, nodulation and encapsulation) and humoral (antimicrobial peptides, phenoloxidase and reactive oxygen and nitrogen species) responses. The immune response varies depending on the triatomine species, the trypanosome strain and species, and the insect intestinal microbiota. Despite significant advances to understand parasite-insect interaction, it is still unknown if triatomines have immune memory against parasites and if this memory may derive from tolerance to parasites attack. Therefore, a closer study of such interaction could contribute and establish new proposals to control the parasite at the vector level to reduce parasite transmission to mammals, including men. For instance, if immune memory exists in the triatomines, it would be interesting to induce weak infections in insects to find out if subsequent infections are less intense and if the insects succeed in eliminating the parasites.
Collapse
|
38
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
39
|
Acrylonitrile Derivatives against Trypanosoma cruzi: In Vitro Activity and Programmed Cell Death Study. Pharmaceuticals (Basel) 2021; 14:ph14060552. [PMID: 34207767 PMCID: PMC8228537 DOI: 10.3390/ph14060552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/29/2023] Open
Abstract
The neglected infection known as Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, results in more than 7000 deaths per year, with an increasing number of cases in non-endemic areas such as Europe or the United States. Moreover, with the current available therapy, only two compounds which are active against the acute phase of the disease are readily available. In addition, these therapeutic agents display multiple undesired side effects such as high toxicity, they are expensive, the treatment is lengthy and the resistant strain has emerged. Therefore, there is a need to find new compounds against Chagas disease which should be active against the parasite but also cause low toxicity to the patients. In the present work, the activity of novel acrylonitriles against Trypanosoma cruzi was evaluated as well as the analysis of the physiological events induced in the treated parasites related to the cell death process. Hence, the characteristic features of an apoptosis-like process such as chromatin condensation and mitochondrial membrane potential, among others, were studied. From the 32 compounds tested against the epimastigote stage of T. cruzi, 11 were selected based on their selectivity index to determine if these compounds were able to induce programmed cell death (PCD) in the treated parasites. Furthermore, acrylonitriles Q5, Q7, Q19, Q27 and Q29 were shown to trigger physiological events related in the PCD. Therefore, this study highlights the therapeutic potential of acrylonitriles as novel trypanocidal agents.
Collapse
|
40
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
41
|
Teixeira de Alencar Filho JM, Sampaio PA, Silva de Carvalho I, Rocha da Silva A, Pereira ECV, Araujo E Amariz I, Nishimura RHV, Cavalcante da Cruz Araújo E, Rolim-Neto PJ, Rolim LA. Metal organic frameworks (MOFs) with therapeutic and biomedical applications: a patent review. Expert Opin Ther Pat 2021; 31:937-949. [PMID: 33915072 DOI: 10.1080/13543776.2021.1924149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Metal organic frameworks (MOFs) are a recent group of nano porous materials with exceptional physical properties, such as large surface areas, high pore volumes, low densities and well-defined pores. This type of material has been used frequently for biomedical and therapeutic applications, such as drug delivery systems and theranostic materials.Areas covered: In this review, the authors searched for patents filed in the last 10 years, found in different databases, related to the therapeutic or biomedical application of MOFs for use in different health fields. The possibility of these new materials becoming new therapeutic possibilities available to the population was emphasized.Expert opinion: The advances in research with MOFs have grown in the last 10 years and with that many possibilities for their applications have emerged in several areas, especially biomedical. The possibility of using these materials in drug delivery systems is the most common form of possibility of use in the health area, mainly due to easy obtaining and high reproducibility, which are seen very positively by the drug development technology sector.
Collapse
Affiliation(s)
| | - Pedrita Alves Sampaio
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | - Iure Silva de Carvalho
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Isabela Araujo E Amariz
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Pedro José Rolim-Neto
- Laboratório de Tecnologia de Medicamentos, Universidade Federal de Pernambuco, Recife-PE, Brasil
| | - Larissa Araújo Rolim
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| |
Collapse
|
42
|
In vitro anti-Trypanosoma cruzi activity enhancement of curcumin by its monoketone tetramethoxy analog diveratralacetone. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100031. [PMID: 35284878 PMCID: PMC8906099 DOI: 10.1016/j.crpvbd.2021.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
Chagas disease is a tropical disease caused by the protozoan parasite Trypanosoma cruzi and currently affects millions of people worldwide. Curcumin (CUR), the major constituent of turmeric spice (dry powder of Curcuma longa L. plant rhizomes and roots), exhibits antiparasitic activity against protozoan parasites in vitro. However, because of its chemical instability, poor cellular uptake and limited bioavailability it is not suitable for clinical use. The objective of this study was to synthesize and evaluate in vitro CUR monoketone analog dibenzalacetone (DBA 1) and its non-phenolic, methoxy (2–4) and chloro (5) derivatives for better stability and bioavailability against T. cruzi. Diveratralacetone, the tetramethoxy DBA (DBA 3), was found to be the CUR analog with most enhanced activity against the amastigote forms of four strains of T. cruzi tested (Brazil, CA-I/72, Sylvio X10/4 and Sylvio X10/7) with 50% inhibitory concentration (IC50) < 10 μM (1.51–9.63 μM) and selectivity index (SI) > 10 (C2C12 non-infected mammalian cells). This was supplemented by time-course assessment of its anti-T. cruzi activity. DBA 1 and its dimethoxy (DBA 2) and hexamethoxy (DBA 4) derivatives were substantially less active. The inactivity of dichloro-DBA (DBA 5) was indicative of the important role played by oxygenated groups such as methoxy in the terminal aromatic rings in the DBA molecule, particularly at para position to form reactive oxygen species essential for anti-T. cruzi activity. Although the DBAs and CUR were toxic to infected mammalian cells in vitro, in a mouse model, both DBA 3 and CUR did not exhibit acute toxicity or mortality. These results justify further optimization and in vivo anti-T. cruzi activity evaluation of the inexpensive diveratralacetone for its potential use in treating Chagas disease, a neglected parasitic disease in economically challenged tropical countries. First report on in vitro activity of dibenzalacetone and its methoxy derivatives against Trypanosoma cruzi. Diveratralacetone (tetramethoxy DBA 3) was the most active against four strains tested. DBA 3 showed values of IC50 < 10 μM against all strains evaluated. DBA 3 showed SI > 10 in non-infected C2C12 cell lines. DBA 3 is a hit compound for further in vivo studies against T. cruzi parasites.
Collapse
|
43
|
Detection of Trypanosoma cruzi DNA in false negative samples of collected triatomines, xenodiagnosis material, and biopsies of experimentally infected animals. Int Microbiol 2020; 24:141-147. [PMID: 33156443 DOI: 10.1007/s10123-020-00149-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Direct test over the gut material from triatomine vectors and xenodiagnosis over mammalian hosts are classical techniques for Trypanosoma cruzi parasitological diagnosis. Nevertheless, negative results can be a source of uncertainty. Experimental models have allowed evaluating the tissue invasion of different strains of T. cruzi, but conventional techniques for tissue biopsies involve time-consuming and elaborated procedures and have low sensitivity. Gut material of collected triatomines (microscopically negative) (n = 114), material of mammal xenodiagnoses (microscopically negative) (n = 138), and biopsy material (microscopically negative) from experimentally infected animals (n = 34) with isolates from endemic areas of Chagas' disease from Venezuela were used for DNA extraction and PCR for the amplification of kinetoplast DNA (kDNA) and satellite DNA (sDNA) of T. cruzi. Positive PCR was observed in 53.6% of collected triatomine material, 15.8% of parasitological negative xenodiagnosis material, and 70.6% in biopsies, revealing underestimation by the parasitological tests and the valour of this analysis with preserved material. Anzoátegui was the state with the highest percentage of infection, and the triatomine species Rhodnius prolixus and Panstrongylus geniculatus had the highest percentages of infection. Didelphis marsupialis and Canis familiaris were the most infected by T. cruzi revealed by PCR of xenodiagnosis material. In addition, the PCR technique allowed demonstrating the invasion of T. cruzi in all tissues analyzed, constituting a molecular marker of tissue invasion.
Collapse
|
44
|
Avendaño C, Patarroyo MA. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int J Mol Sci 2020; 21:ijms21217981. [PMID: 33126446 PMCID: PMC7662217 DOI: 10.3390/ijms21217981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The World Health Organisation (WHO) has placed twenty diseases into a group known as neglected tropical diseases (NTDs), twelve of them being parasitic diseases: Chagas’ disease, cysticercosis/taeniasis, echinococcosis, food-borne trematodiasis, human African trypanosomiasis (sleeping sickness), leishmaniasis, lymphatic filariasis, onchocerciasis (river blindness), schistosomiasis, soil-transmitted helminthiasis (ascariasis, hookworm, trichuriasis), guinea-worm and scabies. Such diseases affect millions of people in developing countries where one of the main problems concerning the control of these diseases is diagnosis-based due to the most affected areas usually being far from laboratories having suitable infrastructure and/or being equipped with sophisticated equipment. Advances have been made during the last two decades regarding standardising and introducing techniques enabling diagnoses to be made in remote places, i.e., the loop-mediated isothermal amplification (LAMP) technique. This technique’s advantages include being able to perform it using simple equipment, diagnosis made directly in the field, low cost of each test and the technique’s high specificity. Using this technique could thus contribute toward neglected parasite infection (NPI) control and eradication programmes. This review describes the advances made to date regarding LAMP tests, as it has been found that even though several studies have been conducted concerning most NPI, information is scarce for others.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: ; Tel.: +57-1-3244672
| |
Collapse
|
45
|
Avila-Sorrosa A, Bando-Vázquez AY, Alvarez-Alvarez V, Suarez-Contreras E, Nieto-Meneses R, Nogueda-Torres B, Vargas-Díaz ME, Díaz-Cedillo F, Reyes-Martínez R, Hernandez-Ortega S, Morales-Morales D. Synthesis, characterization and preliminary in vitro trypanocidal activity of N-arylfluorinated hydroxylated-Schiff bases. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
The Glycan Structure of T. cruzi mucins Depends on the Host. Insights on the Chameleonic Galactose. Molecules 2020; 25:molecules25173913. [PMID: 32867240 PMCID: PMC7504415 DOI: 10.3390/molecules25173913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Trypanosoma cruzi, the protozoa that causes Chagas disease in humans, is transmitted by insects from the Reduviidae family. The parasite has developed the ability to change the structure of the surface molecules, depending on the host. Among them, the mucins are the most abundant glycoproteins. Structural studies have focused on the epimastigotes and metacyclic trypomastigotes that colonize the insect, and on the mammal trypomastigotes. The carbohydrate in the mucins fulfills crucial functions, the most important of which being the accepting of sialic acid from the host, a process catalyzed by the unique parasite trans-sialidase. The sialylation of the parasite influences the immune response on infection. The O-linked sugars have characteristics that differentiate them from human mucins. One of them is the linkage to the polypeptide chain by the hexosamine, GlcNAc, instead of GalNAc. The main monosaccharide in the mucins oligosaccharides is galactose, and this may be present in three configurations. Whereas β-d-galactopyranose (β-Galp) was found in the insect and the human stages of Trypanosoma cruzi, β-d-galactofuranose (β-Galf) is present only in the mucins of some strains of epimastigotes and α-d-galactopyranose (α-Galp) characterizes the mucins of the bloodstream trypomastigotes. The two last configurations confer high antigenic properties. In this review we discuss the different structures found and we pose the questions that still need investigation on the exchange of the configurations of galactose.
Collapse
|
47
|
Molina B, Pogossian A, De Moreuil C, Rouvière B, Le Berre R. [Infectious myositis]. Rev Med Interne 2020; 41:241-249. [PMID: 32113637 DOI: 10.1016/j.revmed.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023]
Abstract
Infectious myositis is a rare condition that can be caused by bacteria, viruses, parasites or fungi. Muscle pain or weakness are symptoms shared by all type of myositis. Diagnosis is made on clinical presentation: fever and poor general state is found in bacterial myositis, diffuse muscle pain with flu-like symptoms in viral causes, eosinophilia and a tropical travel history can be related to parasitic etiology, and immunocompromising condition suggests fungal infection. Rhabdomyolysis, leukocytosis and elevated C-reactive protein are common. Imaging (computed tomography or magnetic resonance imaging) can be useful to detect which muscle is affected. The causative organism can be identified on blood cultures, skeletal muscle biopsy, serology or any other pathogen specific test. Treatment depends on the causative organism. Open surgical or imaging-guided drainage is usually necessary in bacterial myositis.
Collapse
Affiliation(s)
- B Molina
- Service de médecine interne, vasculaire et pneumologie, hôpital de la Cavale Blanche, CHRU de Brest, boulevard Tanguy-Prigent, 29609 Brest cedex, France
| | - A Pogossian
- Service de médecine interne, vasculaire et pneumologie, hôpital de la Cavale Blanche, CHRU de Brest, boulevard Tanguy-Prigent, 29609 Brest cedex, France
| | - C De Moreuil
- Service de médecine interne, vasculaire et pneumologie, hôpital de la Cavale Blanche, CHRU de Brest, boulevard Tanguy-Prigent, 29609 Brest cedex, France; EA 3878, GETBO, université de Brest, Brest, France
| | - B Rouvière
- Service de médecine interne, vasculaire et pneumologie, hôpital de la Cavale Blanche, CHRU de Brest, boulevard Tanguy-Prigent, 29609 Brest cedex, France; UMR 1227 « Lymphocytes B et auto-immunité », université de Brest, Brest, France
| | - R Le Berre
- Service de médecine interne, vasculaire et pneumologie, hôpital de la Cavale Blanche, CHRU de Brest, boulevard Tanguy-Prigent, 29609 Brest cedex, France; Inserm, UMR 1078, université de Brest, Brest, France.
| |
Collapse
|
48
|
Mosquillo MF, Smircich P, Ciganda M, Lima A, Gambino D, Garat B, Pérez-Díaz L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020; 12:813-828. [DOI: 10.1039/d0mt00030b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.
Collapse
Affiliation(s)
- M. Florencia Mosquillo
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | | | - Analía Lima
- Instituto de Investigaciones Biológicas Clemente Estable
- Montevideo
- Uruguay
- Unidad de Bioquímica y Proteómica Analíticas
- Institut Pasteur de Montevideo
| | - Dinorah Gambino
- Área Química Inorgánica
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|