1
|
Hida K, Maishi N, Matsuda A, Yu L. Beyond starving cancer: anti-angiogenic therapy. J Med Ultrason (2001) 2024; 51:605-610. [PMID: 37170042 PMCID: PMC11499530 DOI: 10.1007/s10396-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Tumor blood vessels contribute to cancer progression by supplying nutrients and oxygen to the tumor, removing waste products, and providing a pathway to distant organs. Current angiogenesis inhibitors primarily target molecules in the vascular endothelial growth factor (VEGF) signaling pathway, inhibiting cancer growth and metastasis by preventing the formation of blood vessels that feed cancer. They also normalize vascular structural abnormalities caused by excess VEGF and improve reflux, resulting in increased drug delivery to cancer tissue and immune cell mobilization. As a result, by normalizing blood vessels, angiogenesis inhibitors have been shown to enhance the effects of chemotherapy and immunotherapy. We present findings on the characteristics of tumor vascular endothelial cells that angiogenesis inhibitors target.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan.
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan
| | - Aya Matsuda
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan
| | - Li Yu
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan
| |
Collapse
|
2
|
Gamallat Y, Alwazan H, Turko R, Dang V, Seyedi S, Ghosh S, Bismar TA. Elevated LAMTOR4 Expression Is Associated with Lethal Prostate Cancer and Its Knockdown Decreases Cell Proliferation, Invasion, and Migration In Vitro. Int J Mol Sci 2024; 25:8100. [PMID: 39125671 PMCID: PMC11312415 DOI: 10.3390/ijms25158100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the β catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Huseen Alwazan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Rasoul Turko
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Vincent Dang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
- Alberta Precision Labs, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
3
|
Mi C, Zhang QL, Sun MJ, Lv Y, Sun QL, Geng SL, Wang TY. Acevaltrate promotes apoptosis and inhibits proliferation by suppressing HIF-1α accumulation in cancer cells. Int Immunopharmacol 2024; 133:112066. [PMID: 38615377 DOI: 10.1016/j.intimp.2024.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Acevaltrate is a natural product isolated from the roots of Valeriana glechomifolia F.G.Mey. (Valerianaceae) and has been shown to exhibit anti-cancer activity. However, the mechanism by which acevaltrate inhibits tumor growth is not fully understood. We here demonstrated the effect of acevaltrate on hypoxia-inducible factor-1α (HIF-1α) expression. Acevaltrate showed a potent inhibitory activity against HIF-1α induced by hypoxia in various cancer cells. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α protein dose-dependently. Further analysis revealed that acevaltrate inhibited HIF-1α protein synthesis and promoted degradation of HIF-1α protein, without affecting the expression level of HIF-1α mRNA. Moreover, the phosphorylation levels of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and eIF4E binding protein-1 (4E-BP1) were significantly suppressed by acevaltrate. In addition, acevaltrate promoted apoptosis and inhibited proliferation, which was potentially mediated by suppression of HIF-1α. We also found that acevaltrate administration inhibited tumor growth in mouse xenograft model. Taken together, these results suggested that acevaltrate was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of acevaltrate against cancers.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Valerian/chemistry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chunliu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Qiu-Li Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Meng-Jun Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - You Lv
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04257-7. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
5
|
Zhang C, Wang Y, Zhen Z, Li J, Su J, Wu C. mTORC1 Mediates Biphasic Mechano-Response to Orchestrate Adhesion-Dependent Cell Growth and Anoikis Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307206. [PMID: 38041494 PMCID: PMC10853740 DOI: 10.1002/advs.202307206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 12/03/2023]
Abstract
Cells constantly sense and respond to not only biochemical but also biomechanical changes in their microenvironment, demanding for dynamic metabolic adaptation. ECM stiffening is a hallmark of cancer aggressiveness, while survival under substrate detachment also associates with poor prognosis. Mechanisms underlying this, non-linear mechano-response of tumor cells may reveal potential double-hit targets for cancers. Here, an integrin-GSK3β-FTO-mTOR axis is reported, that can integrate stiffness sensing to ensure both the growth advantage endowed by rigid substrate and cell death resistance under matrix detachment. It is demonstrated that substrate stiffening can activate mTORC1 and elevate mTOR level through integrins and GSK3β-FTO mediated mRNA m6 A modification, promoting anabolic metabolism. Inhibition of this axis upon ECM detachment enhances autophagy, which in turn conveys resilience of tumor cells to anoikis, as it is demonstrated in human breast ductal carcinoma in situ (DCIS) and mice malignant ascites. Collectively, these results highlight the biphasic mechano-regulation of cellular metabolism, with implications in tumor growth under stiffened conditions such as fibrosis, as well as in anoikis-resistance during cancer metastasis.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Yuan Wang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Zifeng Zhen
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jiayi Li
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jing Su
- Pathology DepartmentPeking University Third HospitalBeijing100191China
| | - Congying Wu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| |
Collapse
|
6
|
Tan B, Wikan N, Lin S, Thaklaewphan P, Potikanond S, Nimlamool W. Inhibitory actions of oxyresveratrol on the PI3K/AKT signaling cascade in cervical cancer cells. Biomed Pharmacother 2024; 170:115982. [PMID: 38056236 DOI: 10.1016/j.biopha.2023.115982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
The phosphatidyl inositol 3-kinase (PI3K)/AKT signaling plays a critical role in cancer cell proliferation, migration, and invasion. This signal transduction axis in HPV-positive cervical cancer has been proved to be directly activated by E6/E7 proteins of the virus enhancing cervical cancer progression. Hence, the PI3K/AKT pathway is one of the key therapeutic targets for HPV-positive cervical cancer. Here we discovered that oxyresveratrol (Oxy) at noncytotoxic concentration specifically suppressed the phosphorylation of AKT but not ERK1/2. This potent inhibitory effect of Oxy was still observed even when cells were stimulated with fetal bovine serum. Inhibition of AKT phosphorylation at serine 473 by Oxy resulted in a significant decrease in serine 9 phosphorylation of GSK-3β, a downstream target of AKT. Dephosphorylation of GSK-3β at this serine residue activates its function in promoting the degradation of MCL-1, an anti-apoptotic protein. Results clearly demonstrated that in association with GSK-3β activation, Oxy preferentially downregulated the expression of anti-apoptotic protein MCL-1. Furthermore, results from the functional analyses revealed that Oxy inhibited cervical cancer cell proliferation, at least in part through suppressing nuclear expression of Ki-67. Besides, the compound retarded cervical cancer cell migration even the cells were exposed to a potent enhancer of epithelial-mesenchymal transition, TGF-β1. In consistent with these data, Oxy reduced the expression of β-catenin, N-cadherin, and vimentin. In conclusion, the study disclosed that Oxy specifically inhibits the AKT/GSK-3β/MCL-1 axis resulting in reduction in cervical cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Bing Tan
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shike Lin
- Office for Science and Technology, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Aderinto N, Abdulbasit MO, Tangmi ADE, Okesanya JO, Mubarak JM. Unveiling the growing significance of metabolism in modulating immune cell function: exploring mechanisms and implications; a review. Ann Med Surg (Lond) 2023; 85:5511-5522. [PMID: 37915697 PMCID: PMC10617839 DOI: 10.1097/ms9.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Immunometabolism has emerged as a rapidly growing field of research, holding significant promise for personalised medicine and precision immunotherapy. This review explores the intricate relationship between immune function and metabolic processes, emphasising their profound impact on various immune-related disorders. Understanding how metabolic dysregulation contributes to the pathogenesis of these disorders remains a critical research gap. Therefore, this review aims to bridge that gap by examining the key metabolic pathways involved and their specific implications in immune cell function. Key metabolic pathways, including glycolysis, mitochondrial metabolism, fatty acid metabolism, and amino acid metabolism, are discussed in the context of immune cell function. Dysregulation of these pathways can disrupt immune cell activation, differentiation, and overall function, contributing to disease pathogenesis. Understanding these metabolic alterations' molecular mechanisms is essential for developing targeted therapeutic interventions. The review also emphasises the importance of personalised medicine in immune-related disorders. The unique metabolic profiles of individuals can influence treatment outcomes, highlighting the need for tailored approaches. Integrating metabolic profiling into clinical practice can enhance treatment efficacy and improve patient outcomes. Investigating the clinical significance of immunometabolism in diverse disease contexts will facilitate the translation of research findings into clinical practice. Moreover, refining treatment strategies based on individual metabolic profiles will contribute to advancing precision immunotherapy.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | | | | | | |
Collapse
|
8
|
Aguayo F, Perez-Dominguez F, Osorio JC, Oliva C, Calaf GM. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. BIOLOGY 2023; 12:biology12050672. [PMID: 37237486 DOI: 10.3390/biology12050672] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HR-HPVs) are the causal agents of cervical, anogenital and a subset of head and neck carcinomas (HNCs). Indeed, oropharyngeal cancers are a type of HNC highly associated with HR-HPV infections and constitute a specific clinical entity. The oncogenic mechanism of HR-HPV involves E6/E7 oncoprotein overexpression for promoting cell immortalization and transformation, through the downregulation of p53 and pRB tumor suppressor proteins, among other cellular targets. Additionally, E6/E7 proteins are involved in promoting PI3K/AKT/mTOR signaling pathway alterations. In this review, we address the relationship between HR-HPV and PI3K/AKT/mTOR signaling pathway activation in HNC with an emphasis on its therapeutic importance.
Collapse
Affiliation(s)
- Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Perez-Dominguez
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
9
|
Management of Complex Pulmonary Vein Stenosis at Altitude Combining Comprehensive Percutaneous Interventional Treatment with Sirolimus, Pulmonary Hypertension Medications and Intraluminal Imaging with Optical Coherence Tomography. Pediatr Cardiol 2023; 44:1125-1134. [PMID: 36723625 DOI: 10.1007/s00246-023-03102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pulmonary vein stenosis (PVS) is a growing problem for the pediatric congenital heart population. Sirolimus has previously been shown to improve survival and slow down the progression of in-stent stenosis in patients with PVS. We evaluated patients before and after initiation of sirolimus to evaluate its effects on re-intervention and vessel patency utilizing Optical Coherence Tomography (OCT). METHODS We performed a retrospective study, reviewing the charts of patients with PVS, who had been prescribed sirolimus between October 2020 and December 2021. OCT was performed in the pulmonary vein of interest as per our published protocol. Angiographic and OCT imaging was retrospectively reviewed. Statistical analysis was performed using Chi square and Wilcoxon signed-rank test to compare pre-and post-sirolimus data. RESULTS Ten patients had been started and followed on sirolimus. Median age at sirolimus initiation was 25 months with median weight of 10.6 kg and average follow-up of 1 year. Median total catheterizations were 7 for patients prior to starting sirolimus and 2 after starting treatment (p = 0.014). Comparing pre- and post-sirolimus, patients were catheterized every 3 months vs every 11 months (p = 0.011), median procedure time was 203 min vs 145 min (p = 0.036) and fluoroscopy time, 80 min vs 57.2 min (p = 0.036). 23 veins had severe in-stent tissue ingrowth prior to SST (luminal diameter < 30% of stent diameter). Post-sirolimus, 23 pulmonary veins had moderate to severe in-stent tissue ingrowth that responded to non-compliant balloon inflation only with stent luminal improvement of > 75%. CONCLUSION Our study suggests that the addition of sirolimus in patients with moderate-severe PVS helps to decrease disease progression with decrease frequency of interventions. Reaching therapeutic levels for sirolimus is critical and medication interactions and side-effects need careful consideration. OCT continues to be important for evaluation and treatment guidance in this patient population.
Collapse
|
10
|
Ghareghomi S, Atabaki V, Abdollahzadeh N, Ahmadian S, Hafez Ghoran S. Bioactive PI3-kinase/Akt/mTOR Inhibitors in Targeted Lung Cancer Therapy. Adv Pharm Bull 2023; 13:24-35. [PMID: 36721812 PMCID: PMC9871280 DOI: 10.34172/apb.2023.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
One of the central signaling pathways with a regulatory effect on cell proliferation and survival is Akt/mTOR. In many human cancer types, for instance, lung cancer, the overexpression of Akt/mTOR has been reported. For this reason, either targeting cancer cells by synthetic or natural products affecting the Akt/mTOR pathway down-regulation is a useful strategy in cancer therapy. Direct inhibition of the signaling pathway or modulation of each related molecule could have significant feedback on the growth and proliferation of cancer cells. A variety of secondary metabolites has been identified to directly inhibit the AKT/mTOR signaling, which is important in the field of drug discovery. Naturally occurring nitrogenous and phenolic compounds can emerge as two pivotal classes of natural products possessing anticancer abilities. Herein, we have summarized the alkaloids and flavonoids for lung cancer treatment together with all the possible mechanisms of action relying on the Akt/mTOR pathway down-regulation. This review suggested that in search of new drugs, phytochemicals could be considered as promising scaffolds to be developed into efficient drugs for the treatment of cancer. In this review, the terms "Akt/mTOR", "Alkaloid", "flavonoid", and "lung cancer" were searched without any limitation in search criteria in Scopus, PubMed, Web of Science, and Google scholar engines.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Naseh Abdollahzadeh
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Corresponding Authors: Salar Hafez Ghoran and Shahin Ahmadian, and
| | - Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Corresponding Authors: Salar Hafez Ghoran and Shahin Ahmadian, and
| |
Collapse
|
11
|
Therapeutic Effect of Rapamycin on TDP-43-Related Pathogenesis in Ischemic Stroke. Int J Mol Sci 2022; 24:ijms24010676. [PMID: 36614118 PMCID: PMC9820757 DOI: 10.3390/ijms24010676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Stroke is a major cause of death and disability across the world, and its detrimental impact should not be underestimated. Therapies are available and effective for ischemic stroke (e.g., thrombolytic recanalization and mechanical thrombectomy); however, there are limitations to therapeutic interventions. Recanalization therapy has developed dramatically, while the use of adjunct neuroprotective agents as complementary therapies remains deficient. Pathological TAR DNA-binding protein (TDP-43) has been identified as a major component of insoluble aggregates in numerous neurodegenerative pathologies, including ALS, FTLD and Alzheimer's disease. Here, we show that increased pathological TDP-43 fractions accompanied by impaired mitochondrial function and increased gliosis were observed in an ischemic stroke rat model, suggesting a pathological role of TDP-43 in ischemic stroke. In ischemic rats administered rapamycin, the insoluble TDP-43 fraction was significantly decreased in the ischemic cortex region, accompanied by a recovery of mitochondrial function, the attenuation of cellular apoptosis, a reduction in infarct areas and improvements in motor defects. Accordingly, our results suggest that rapamycin provides neuroprotective benefits not only by ameliorating pathological TDP-43 levels, but also by reversing mitochondrial function and attenuating cell apoptosis in ischemic stroke.
Collapse
|
12
|
Fu B, Dou X, Zou M, Lu H, Wang K, Liu Q, Liu Y, Wang W, Jin M, Kong D. Anticancer Effects of Amlodipine Alone or in Combination With Gefitinib in Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:902305. [PMID: 35721193 PMCID: PMC9198715 DOI: 10.3389/fphar.2022.902305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
Amlodipine is a Ca2+ channel blocker commonly used to cardiovascular diseases such as hypertension and angina; however, its anticancer effects in lung cancer A549 cells remain unknown. In the present study, we explored the antitumor effects and molecular mechanisms underlying the action of amlodipine in non-small cell lung cancer (NSCLC) A549 cells in vitro and in vivo. We observed that amlodipine suppressed the proliferation of A549 lung cancer cells by arresting the tumor cell cycle. Mechanistically, our results revealed that amlodipine could attenuate the phosphoinositide 3 kinase (PI3K)/Akt and Raf/MEK/extracellular signal-regulated kinase (ERK) pathways through epidermal growth factor receptor (EGFR) and modulated cell cycle-related proteins such as cyclin D1, p-Rb, p27, and p21. Subsequently, amlodipine combined with gefitinib could synergistically inhibit cell proliferation by arresting the cell cycle. Moreover, amlodipine combined with gefitinib effectively attenuated the growth of A549 lung cancer xenografts when compared with monotherapy, affording an excellent therapeutic effect. Collectively, our results indicate that amlodipine alone or combined with the novel anticancer drug gefitinib might be a potential therapeutic strategy for NSCLC patients with wild-type EGFR.
Collapse
Affiliation(s)
- Bingjie Fu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaojing Dou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Miao Zou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hao Lu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Kaixuan Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Qingxia Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Auditory Speech and Balance Medicine, Institute of Otolaryngology of Tianjin, Tianjin First Central Hospital, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Auditory Speech and Balance Medicine, Institute of Otolaryngology of Tianjin, Tianjin First Central Hospital, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Cao Y, Chen H, Sun Y, Fan Z, Cheng H. Quercetin inhibits fibroblasts proliferation and reduces surgery-induced epidural fibrosis via the autophagy-mediated PI3K/Akt/mTOR pathway. Bioengineered 2022; 13:9973-9986. [PMID: 35412948 PMCID: PMC9161887 DOI: 10.1080/21655979.2022.2062530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epidural fibrosis (EF) is a serious complication when the patients suffer from operations of lumbar laminectomy. It is reported that quercetin plays a positive role in the prevention of various fibrotic diseases. However, the role of quercetin in the prevention of epidural fibrosis (EF) and its possible mechanism are unclear. Fibroblast proliferation is considered to be the main cause of epidural fibrosis.Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development, and homeostasis.Although autophagy has been associated with fibrosis of different tissues, the effect of autophagy on epidural fibrosis is still unknown.The aim of this study was to investigate the function and mechanism of autophagy induced by quercetin, a polyphenol derived from plants. In vivo, the effect of quercetin on reducing epidural fibrosis was confirmed via histological staining and immunohistochemical analysis. The results showed that quercetin had significant suppressive effects on epidural fibrosis following laminectomy in rats.In vitro,, cell counting kit-8 (CCK-8), Western blot analysis, immunofluorescence and Edu staining, TUNEL staining and transmission electron microscopy were used to detect the effects of quercetin on the proliferation and apoptosis of fibroblasts and explore the possible signal transduction pathway. Results indicated that quercetin could induce autophagy and inhibit proliferation in fibroblasts. In conclusion, Quercetin could regulate fibroblast proliferation, apoptosis, migration and other biological behaviors through autophagy, thereby preventing epidural fibrosis. The specific corresponding pathway may be the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yile Cao
- Department of Clinical Medicine, School of Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Hui Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhehao Fan
- School of Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, China Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| |
Collapse
|
14
|
Rystsov GK, Antipova TV, Zaitsev KV, Zemskova MY. Antitumor Activity of Monasnicotinic Acid Isolated from the Fungus Aspergillus cavernicola. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
16
|
Han Z, Yang B, Wang Q, Hu Y, Wu Y, Tian Z. Comprehensive analysis of the transcriptome-wide m 6A methylome in invasive malignant pleomorphic adenoma. Cancer Cell Int 2021; 21:142. [PMID: 33653351 PMCID: PMC7923655 DOI: 10.1186/s12935-021-01839-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Invasive malignant pleomorphic adenoma (IMPA) is a highly invasive parotid gland tumor and lacks effective therapy. N6-Methyladenosine (m6A) is the most prevalent post-transcriptional modification of mRNAs in eukaryotes and plays an important role in the pathogenesis of multiple tumors. However, the significance of m6A-modified mRNAs in IMPA has not been elucidated to date. Hence, in this study, we attempted to profile the effect of IMPA in terms of m6A methylation in mRNA. Methods Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were utilized to acquire the first transcriptome-wide profiling of the m6A methylome map in IMPA followed by bioinformatics analysis. Results In this study, we obtained m6A methylation maps of IMPA samples and normal adjacent tissues through MeRIP-seq. In total, 25,490 m6A peaks associated with 13,735 genes were detected in the IMPA group, whereas 33,930 m6A peaks associated with 18,063 genes were detected in the control group. Peaks were primarily enriched within coding regions and near stop codons with AAACC and GGAC motifs. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in cancer and metabolism relevant pathways. Furthermore, we identified a relationship between the m6A methylome and the RNA transcriptome, indicating a mechanism by which m6A modulates gene expression. Conclusions Our study is the first to provide comprehensive and transcriptome-wide profiles to determine the potential roles played by m6A methylation in IMPA. These results may open new avenues for in-depth research elucidating the m6A topology of IMPA and the molecular mechanisms governing the formation and progression of IMPA.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Qin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuhua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
17
|
Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life (Basel) 2021; 11:life11020105. [PMID: 33573162 PMCID: PMC7911715 DOI: 10.3390/life11020105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are molecules involved in signal transduction pathways with both beneficial and detrimental effects on human cells. ROS are generated by many cellular processes including mitochondrial respiration, metabolism and enzymatic activities. In physiological conditions, ROS levels are well-balanced by antioxidative detoxification systems. In contrast, in pathological conditions such as cardiovascular, neurological and cancer diseases, ROS production exceeds the antioxidative detoxification capacity of cells, leading to cellular damages and death. In this review, we will first describe the biology and mechanisms of ROS mediated oxidative stress in cardiovascular disease. Second, we will review the role of oxidative stress mediated by oncological treatments in inducing cardiovascular disease. Lastly, we will discuss the strategies that potentially counteract the oxidative stress in order to fight the onset and progression of cardiovascular disease, including that induced by oncological treatments.
Collapse
|
18
|
Silwal P, Paik S, Kim JK, Yoshimori T, Jo EK. Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Front Cell Infect Microbiol 2021; 11:633360. [PMID: 33828998 PMCID: PMC8019938 DOI: 10.3389/fcimb.2021.633360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of phagosomal maturation. Indeed, several autophagy-modulating agents show promise as host-directed therapeutics for Mtb infection. In this Review, we discuss recent progress in our understanding the molecular mechanisms underlying the action of autophagy-modulating agents to overcome the immune escape strategies mediated by Mtb. The factors and pathways that govern such mechanisms include adenosine 5'-monophosphate-activated protein kinase, Akt/mammalian TOR kinase, Wnt signaling, transcription factor EB, cathelicidins, inflammation, endoplasmic reticulum stress, and autophagy-related genes. A further understanding of these mechanisms will facilitate the development of host-directed therapies against tuberculosis as well as infections with other intracellular bacteria targeted by autophagic degradation.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
19
|
Acute Conditioning of Antigen-Expanded CD8 + T Cells via the GSK3β-mTORC Axis Differentially Dictates Their Immediate and Distal Responses after Antigen Rechallenge. Cancers (Basel) 2020; 12:cancers12123766. [PMID: 33327544 PMCID: PMC7765077 DOI: 10.3390/cancers12123766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Expanded, antigen-experienced CD8+ T cells are utilized in immunotherapy to treat infections and cancers. Antigen rechallenge of these cells leads to their re-expansion. The effector functions of re-expanded CD8+ T cells are critical for their therapeutic efficacy. We found that acute conditioning of the cells, before antigen rechallenge, impacts their effector function after re-expansion. Our data showed that acute pharmacological modulation of the GSK3β-mTORC axis with TWS119 or rapamycin, but not Torin1, before antigen rechallenge promotes the effector functions of re-expanded CD8+ T cells. These findings suggest that acute conditioning of the GSK3β-mTORC axis in expanded CD8+ T cells, before antigen rechallenge, can promote the therapeutic performance of re-expanded CD8+ T cells. Abstract CD8+ T cells protect against tumors and intracellular pathogens. The inflammatory cytokines IL-2, IL-15, and IL-7 are necessary for their expansion. However, elevated serum levels of these cytokines are often associated with cancer, poorer prognosis of cancer patients, and exhaustion of antigen-expanded CD8+ T cells. The impact of acute conditioning of antigen-expanded CD8+ T cells with these cytokines is unknown. Here, we generated antigen-expanded CD8+ T cells using dendritic cells and PC-3 cells. The cells were acutely (18–24 h) conditioned with IL-2 and either the GSK3β inhibitor TWS119, the mTORC1 inhibitor rapamycin, or the mTORC1/2 inhibitor Torin1, then their immediate and post-re-expansion (distal) cytokine responses after antigen rechallenge were evaluated. We found that acute IL-2 conditioning upregulated the immediate antigen-induced cytokine response of the tested cells. Following their re-expansion, however, the cells showed a decreased cytokine response. These IL-2 conditioning-mediated impacts were counteracted with TWS119 or rapamycin but not with Torin1. Our data revealed that the acute conditioning of antigen-expanded CD8+ T cells with IL-2 modulates the GSK3β-mTORC signaling axis. This modulation differentially affected the immediate and distal cytokine responses of the cells. The acute targeting of this signaling axis could, therefore, represent a novel strategy for the modulation of antigen-expanded CD8+ T cells.
Collapse
|
20
|
Zhang Y, Liang Y, Liu H, Huang Y, Li H, Chen B. Paeoniflorin attenuates gestational diabetes via Akt/mTOR pathway in a rat model. Food Nutr Res 2020; 64:4362. [PMID: 33240030 PMCID: PMC7672451 DOI: 10.29219/fnr.v64.4362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is a type of diabetes associated with pregnancy and may impose risks on both mother and fetus. Akt paeoniflorin was shown to have anti-inflammatory and anti-hyperglycemia properties and has a potential ability to suppress mammalian target of rapamycin (mTOR) signaling. The current study aimed to study the effect of paeoniflorin on GDM maternal, fetal, and placental characteristics in vivo. Methods Streptozotocin (STZ)-induced gestational diabetes rat model was used in our study. The expression levels of phosphorylation (p-) and total protein expression levels of protein kinase B (Akt), mTOR, serum/glucocorticoid regulated kinase 1 (SGK1), and eIF4E-binding protein 1 (4E-BP1) in the placenta were determined by Western blot assay. The blood glucose, insulin, and leptin levels were assessed using enzyme-linked immunosorbent assay (ELISA). Results We found that placental Akt/mTOR signaling was substantially upregulated in GDM patients compared with healthy donors. Paeoniflorin administration alleviates the dysregulation of blood glucose, leptin, and insulin levels in both maternal and fetal GDM rats. Paeoniflorin treatment suppressed the overactivation of Akt/mTOR signaling in placental tissues. More importantly, administration of paeoniflorin was beneficial for normalization of fetal size and body weight in the GDM rats. Conclusion Our study suggested that application of paeoniflorin may serve as a potential therapeutical strategy for patients with GDM.
Collapse
Affiliation(s)
- Yonghua Zhang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Yulin Liang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Huiqiao Liu
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Ying Huang
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Hongmei Li
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| | - Bo Chen
- Department of Obstetrics and Gynecology, Heze Municipal Hospital of Shandong Province, Heze, Shandong, China
| |
Collapse
|
21
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
22
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Recent Advances and Challenges in the Treatment of Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12071758. [PMID: 32630642 PMCID: PMC7409313 DOI: 10.3390/cancers12071758] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma, the most common soft tissue sarcoma noted in childhood, requires multimodality treatment, including chemotherapy, surgical resection, and/or radiation therapy. The majority of the patients with localized rhabdomyosarcoma can be cured; however, the long-term outcomes in patients with metastatic rhabdomyosarcoma remain poor. The standard chemotherapy regimen for patients with rhabdomyosarcoma is the combination of vincristine, actinomycin, and cyclophosphamide/ifosfamide. In recent clinical trials, modifications of the standard chemotherapy protocol have shown improvements in the outcomes in patients with rhabdomyosarcoma. In various type of malignancies, new treatments, such as molecular targeted drugs and immunotherapies, have shown superior clinical outcomes compared to those of standard treatments. Therefore, it is necessary to assess the benefits of these treatments in patients with rhabdomyosarcoma. Moreover, recent basic and clinical studies on rhabdomyosarcoma have reported promising therapeutic targets and novel therapeutic approaches. This article reviews the recent challenges and advances in the management of rhabdomyosarcoma.
Collapse
|
23
|
The Ras-ERK1/2 signaling pathway regulates H3K9ac through PCAF to promote the development of pancreatic cancer. Life Sci 2020; 256:117936. [PMID: 32531376 DOI: 10.1016/j.lfs.2020.117936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 05/21/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
AIMS The regulation of the Ras-ERK pathway is the crucial point in pancreatic carcinogenesis, and the Ras kinase is an essential regulatory upstream signal molecule of the ERK1/2 pathway. H3K9ac is a vital histone modification, but its specific role in pancreatic cancer remains unclear. This research aims to study whether the modification level of H3K9ac can regulate the characteristic phenotype of the pancreatic cancer cells by affecting the downstream expression, proliferation, migration, and other related genes. MAIN METHODS The RasG12V/T35S were used to transfect pancreatic cancer cells, and the levels of phosphorylated ERK1/2 and H3K9ac were detected by western blotting. The colony formation assay, transwell assay, and chromatin immunoprecipitation assay were used to study cell viability, migration, and the downstream genes of the ERK1/2 pathway. KEY FINDINGS The results showed that Ras ERK1/2 reduced H3K9ac expression in ASPC-1 cells, and H3K9ac significantly repressed the viability of cells, colony formation, and ASPC-1 cell movement induced by Ras ERK1/2. Besides, HDAC1 silencing increased H3K9ac expression, and changed the effect of Ras ERK1/2 on ASPC-1 cells proliferation, its movement, and mRNAs of ERK1/2 downstream genes. Moreover, Ras ERK1/2 inhibited H3K9ac expression by the degradation of PCAF via MDM2. SIGNIFICANCE Ras ERK1/2 promotes pancreatic carcinogenesis cell movement, through down-regulating H3K9ac via MDM2 mediated PCAF degradation.
Collapse
|
24
|
Next-generation RNA Sequencing-based Biomarker Characterization of Chromophobe Renal Cell Carcinoma and Related Oncocytic Neoplasms. Eur Urol 2020; 78:63-74. [PMID: 32299640 DOI: 10.1016/j.eururo.2020.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Renal cell carcinomas (RCCs) are a heterogeneous group of neoplasms. Recent sequencing studies revealed various molecular features associated with histologic RCC subtypes, including chromophobe renal cell carcinoma (ChRCC). OBJECTIVE To characterize the gene expression and biomarker signatures associated with ChRCC. DESIGN, SETTING, AND PARTICIPANTS We performed integrative analysis on RNA sequencing data available from 1049 RCC specimens from The Cancer Genome Atlas and in-house studies. Our workflow identified genes relatively enriched in ChRCC, including Forkhead box I1 (FOXI1), Rh family C glycoprotein (RHCG), and LINC01187. We assessed the expression pattern of FOXI1 and RHCG protein by immunohistochemistry (IHC) and LINC01187 mRNA by RNA in situ hybridization (RNA-ISH) in whole tissue sections representing a cohort of 197 RCC cases, including both primary and metastatic tumors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The FOXI1 and RHCG IHC staining, as well as the LINC01187 RNA-ISH staining, was evaluated in each case for intensity, pattern, and localization of expression. RESULTS AND LIMITATIONS All primary and metastatic classic ChRCCs demonstrated homogeneous positive labeling for FOXI1, RHCG proteins, and LINC01187 transcript. Unclassified RCC with oncocytic features, oncocytoma, and hybrid oncocytic tumor, as well as all but two cases of eosinophilic ChRCC also stained positive. Importantly, metastatic and primary RCC of all other subtypes did not demonstrate any unequivocal staining for FOXI1, RHCG, or LINC01187. In normal kidney, FOXI1, RHCG, and LINC01187 were detected in the distal nephron segment, specifically in intercalated cells. Two cases of eosinophilic ChRCC with focal expression of FOXI1 and LINC01187, and Golgi-like RHCG staining were found to contain MTOR gene mutations upon DNA sequencing. CONCLUSIONS We demonstrate a pipeline for the identification and validation of RCC subtype-specific biomarkers that can aid in the confirmation of cell of origin and may facilitate accurate classification and diagnosis of renal tumors. PATIENT SUMMARY FOXI1, RHCG, and LINC01187 are lineage-specific signature genes for chromophobe renal cell carcinoma.
Collapse
|
25
|
Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De la Mata M. Activation of mTOR Signaling Pathway in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21041266. [PMID: 32070029 PMCID: PMC7072933 DOI: 10.3390/ijms21041266] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and occurs mainly in patients with liver cirrhosis. The mammalian target of rapamycin (mTOR) signaling pathway is involved in many hallmarks of cancer including cell growth, metabolism re-programming, proliferation and inhibition of apoptosis. The mTOR pathway is upregulated in HCC tissue samples as compared with the surrounding liver cirrhotic tissue. In addition, the activation of mTOR is more intense in the tumor edge, thus reinforcing its role in HCC proliferation and spreading. The inhibition of the mTOR pathway by currently available pharmacological compounds (i.e., sirolimus or everolimus) is able to hamper tumor progression both in vitro and in animal models. The use of mTOR inhibitors alone or in combination with other therapies is a very attractive approach, which has been extensively investigated in humans. However, results are contradictory and there is no solid evidence suggesting a true benefit in clinical practice. As a result, neither sirolimus nor everolimus are currently approved to treat HCC or to prevent tumor recurrence after curative surgery. In the present comprehensive review, we analyzed the most recent scientific evidence while providing some insights to understand the gap between experimental and clinical studies.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
| | - Marta Guerrero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Víctor Amado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-617854692
| | - Manuel De la Mata
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain; (G.F.); (M.G.); (V.A.); (M.D.l.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 14004 Córdoba, Spain
- Department of Hepatology and Liver Transplantaton, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| |
Collapse
|
26
|
Kotlyar A, Taylor HS, D'Hooghe TM. Use of immunomodulators to treat endometriosis. Best Pract Res Clin Obstet Gynaecol 2019; 60:56-65. [DOI: 10.1016/j.bpobgyn.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
|
27
|
Sharma V, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin Cancer Biol 2019; 59:133-146. [PMID: 31408722 DOI: 10.1016/j.semcancer.2019.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is the major cause of deaths in women worldwide. Detection and treatment of breast cancer at earlier stages of the disease has shown encouraging results. Modern genomic technologies facilitated several therapeutic options however the diagnosis of the disease at an advanced stage claim more deaths. Therefore more research directed towards genomics and proteomics into this area may lead to novel biomarkers thereby enhancing the survival rates in breast cancer patients. Phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was shown to be hyperactivated in most of the breast carcinomas resulting in excessive growth, proliferation, and tumor development. Development of nanotechnology has provided many interesting avenues to target the PI3K/Akt/mTOR pathway both at the pre-clinical and clinical stages. Therefore, the current review summarizes the underlying mechanism and the importance of targeting PI3K/Akt/mTOR pathway, novel biomarkers and use of nanotechnological interventions in breast cancer.
Collapse
Affiliation(s)
- VarRuchi Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, LA USA
| | - Panneerselvam Priya
- Department of Electrical and Electronics Engineering, Thiruvalluvar College of Engineering and Technology, Vandavasi, 604505, Tamil Nadu, India
| |
Collapse
|
28
|
Cellular Effects of Butyrate on Vascular Smooth Muscle Cells are Mediated through Disparate Actions on Dual Targets, Histone Deacetylase (HDAC) Activity and PI3K/Akt Signaling Network. Int J Mol Sci 2019; 20:ijms20122902. [PMID: 31197106 PMCID: PMC6628026 DOI: 10.3390/ijms20122902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular remodeling is a characteristic feature of cardiovascular diseases. Altered cellular processes of vascular smooth muscle cells (VSMCs) is a crucial component in vascular remodeling. Histone deacetylase inhibitor (HDACI), butyrate, arrests VSMC proliferation and promotes cell growth. The objective of the study is to determine the mechanism of butyrate-induced VSMC growth. Using proliferating VSMCs exposed to 5 mM butyrate, immunoblotting studies are performed to determine whether PI3K/Akt pathway that regulates different cellular effects is a target of butyrate-induced VSMC growth. Butyrate inhibits phosphorylation-dependent activation of PI3K, PDK1, and Akt, eliciting differential effects on downstream targets of Akt. Along with previously reported Ser9 phosphorylation-mediated GSK3 inactivation leading to stability, increased expression and accumulation of cyclin D1, and epigenetic histone modifications, inactivation of Akt by butyrate results in: transcriptional activation of FOXO1 and FOXO3 promoting G1 arrest through p21Cip1/Waf1 and p15INK4B upregulation; inactivation of mTOR inhibiting activation of its targets p70S6K and 4E-BP1 impeding protein synthesis; inhibition of caspase 3 cleavage and downregulation of PARP preventing apoptosis. Our findings imply butyrate abrogates Akt activation, causing differential effects on Akt targets promoting convergence of cross-talk between their complimentary actions leading to VSMC growth by arresting proliferation and inhibiting apoptosis through its effect on dual targets, HDAC activity and PI3K/Akt pathway network.
Collapse
|
29
|
Discovery of NV-5138, the first selective Brain mTORC1 activator. Sci Rep 2019; 9:4107. [PMID: 30858438 PMCID: PMC6412019 DOI: 10.1038/s41598-019-40693-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has been linked to several important chronic medical conditions many of which are associated with advancing age. A variety of inputs including the amino acid leucine are required for full mTORC1 activation. The cytoplasmic proteins Sestrin1 and Sestrin2 specifically bind to the multiprotein complex GATOR2 and communicate leucine sufficiency to the mTORC1 pathway activation complex. Herein, we report NV-5138, a novel orally bioavailable compound that binds to Sestrin2 and activates mTORC1 both in vitro and in vivo. NV-5138 like leucine transiently activates mTORC1 in several peripheral tissues, but in contrast to leucine uniquely activates this complex in the brain due lack of metabolism and utilization in protein synthesis. As such, NV-5138 will permit the exploration in areas of unmet medical need including neuropsychiatric conditions and cognition which have been linked to the activation status of mTORC1.
Collapse
|
30
|
Zhu JX, Xiao JR. SF2523 inhibits human chondrosarcoma cell growth in vitro and in vivo. Biochem Biophys Res Commun 2019; 511:559-565. [PMID: 30824188 DOI: 10.1016/j.bbrc.2019.02.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
Developing novel therapeutic agents against chondrosarcoma is important. SF2523 is a PI3K-Akt-mTOR and bromodomain-containing protein 4 (BRD4) dual inhibitor. Its activity in human chondrosarcoma cells is tested. Our results show that SF2523 potently inhibited survival, proliferation and migration, and induced apoptosis activation in SW1353 cells and primary human chondrosarcoma cells. The dual inhibitor was yet non-cytotoxic to the primary human osteoblasts and OB-6 osteoblastic cells. SF2523 blocked Akt-mTOR activation and downregulated BRD4-regulated genes (Bcl-2 and c-Myc) in chondrosarcoma cells. It was more efficient in killing chondrosarcoma cells than other established PI3K-Akt-mTOR and BRD4 inhibitors, including JQ1, perifosine and OSI-027. In vivo, intraperitoneal injection of SF2523 (30 mg/kg) potently inhibited subcutaneous SW1353 xenograft tumor growth in severe combined immunodeficient mice. Akt-mTOR inhibition as well as Bcl-2 and c-Myc downregulation were detected in SF2523-treated SW1353 tumor tissues. In conclusion, targeting PI3K-Akt-mTOR and BRD4 by SF2523 potently inhibited chondrosarcoma cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Jia-Xue Zhu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian-Ru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
31
|
Walker S, Wankell M, Ho V, White R, Deo N, Devine C, Dewdney B, Bhathal P, Govaere O, Roskams T, Qiao L, George J, Hebbard L. Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. PLoS One 2019; 14:e0212860. [PMID: 30794695 PMCID: PMC6386388 DOI: 10.1371/journal.pone.0212860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Liver cancer is a poor prognosis cancer with limited treatment options. To develop a new therapeutic approach, we derived HCC cells from a known model of murine hepatocellular carcinoma (HCC). We treated adiponectin (APN) knock-out mice with the carcinogen diethylnitrosamine, and the resulting tumors were 7-fold larger than wild-type controls. Tumors were disassociated from both genotypes and their growth characteristics evaluated. A52 cells from APN KO mice had the most robust growth in vitro and in vivo, and presented with pathology similar to the parental tumor. All primary tumors and cell lines exhibited activity of the mammalian target of Rapamycin (mTOR) and Src pathways. Subsequent combinatorial treatment, with the mTOR inhibitor Rapamycin and the Src inhibitor Dasatinib reduced A52 HCC growth 29-fold in vivo. Through protein and histological analyzes we observed activation of these pathways in human HCC, suggesting that targeting both mTOR and Src may be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Sarah Walker
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | - Vikki Ho
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Rose White
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Nikita Deo
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Carol Devine
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Brittany Dewdney
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | | | - Olivier Govaere
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Leuven, Belgium
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Leuven, Belgium
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Lionel Hebbard
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
- * E-mail:
| |
Collapse
|
32
|
The papilla as a biomarker in the molecular era of bladder oncology. SURGICAL AND EXPERIMENTAL PATHOLOGY 2018. [DOI: 10.1186/s42047-018-0023-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
Conventional optical microscopy has been fundamental in the diagnosis of cancer for over a century. Tumor morphology has prognostic value and impact on treatment choice, but integration with molecular knowledge can enhance the correlation with clinical behavior. A papillary structure implies that the proliferating epithelium has been able to interact with its microenvironment to conceive a fibrovascular core, suggesting a fair degree of differentiation.
Main body
In the bladder, a papillary architecture carries a favorable outcome and its presence is uniform in all non-invasive urothelial lesions, except for carcinoma in situ. Despite the increase in bladder cancer incidence, mortality has remained fairly stable for the last three decades, raising concern for overdiagnosis. Therefore, bladder cancer nomenclature has evolved to better communicate with the clinical scenario, including clinicians and patients. During this time, the need to incorporate new tools into morphology has raised a search for molecular biomarkers that grew exponentially with technology and scientific foment. Activating mutations in oncogenes like HRAS, PIK3 and FGFR3 are a hallmark of non-invasive papillary neoplasms, and their detection in advanced carcinomas is a favorable predictor of outcome. These alterations result in sustained proliferative stimuli and independent control of metabolism. Through the amplified interface of a papillary axis, the lamina propria can continue to supply nutrients, oxygen, hormones and other vital cellular needs to an increasing population of urothelial cells. mTOR regulates processes that require a substantial amount of matter and energy and alterations in this pathway are among the most frequent in urothelial tumors. Recent genomic landscape studies have provided data for molecularly subtyping urothelial cancers as luminal and basal. Within the luminal subtype, a p53-like signature is associated with chemoresistance. Luminal tumors, which phenotype is reminiscent of mature differentiated superficial cells, are enriched for papillary morphology and downregulation of miRNA involved in mTOR pathway regulation.
Conclusion
Because the papillary structure is the result of a transcriptional program and its post-transcriptional modifications, it is likely that its presence will be maintained in classification schemes as a powerful tool for clinical translation.
Collapse
|
33
|
Abstract
Chondrosarcomas constitute a heterogeneous group of primary bone cancers characterized by hyaline cartilaginous neoplastic tissue. They are the second most common primary bone malignancy. The vast majority of chondrosarcomas are conventional chondrosarcomas, and most conventional chondrosarcomas are low- to intermediate-grade tumors (grade 1 or 2) which have indolent clinical behavior and low metastatic potential. Recurrence augurs a poor prognosis, as conventional chondrosarcomas are both radiation and chemotherapy resistant. Recent discoveries in the biology, genetics, and epigenetics of conventional chondrosarcomas have significantly advanced our understanding of the pathobiology of these tumors and offer insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Warren A Chow
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
34
|
Rapamycin attenuates mitochondrial injury and renal tubular cell apoptosis in experimental contrast-induced acute kidney injury in rats. Biosci Rep 2018; 38:BSR20180876. [PMID: 30341250 PMCID: PMC6246763 DOI: 10.1042/bsr20180876] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/30/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) overproduction and renal tubular epithelial cell (TEC) apoptosis are key mechanisms of contrast-induced acute kidney injury (CI-AKI). Mitochondria are the main source of intracellular ROS. In the present study, the characteristics of mitophagy and the effects of rapamycin on contrast-induced abnormalities in oxidative stress, mitochondrial injury and mitophagy, TEC apoptosis and renal function were investigated in a CI-AKI rat model. Rats were divided into control group, CI-AKI group, and pretreatment groups (with rapamycin dose of 2 or 5 mg/kg). CI-AKI was induced by intraperitoneal injection of iohexol (12.25 g iodine/kg). Renal malondialdehyde (MDA) and catalase (CAT) were measured as oxidative markers. Light-chain 3 (LC3), P62, Beclin-1, PTEN-induced putative kinase (Pink1), and cytochrome c (Cyt c) expression were measured by Western blot. Mitochondrial membrane potential (ΔΨm) was determined by JC-1, colocalization of LC3-labeled autophagosomes with TOMM20-labeled mitochondria or LAMP2-labeled lysosomes was observed by fluorescence microscopy. Significantly increased serum creatinine (Scr), MDA and CAT, obvious mitochondrial injury including increase in cytosolic/mitochondrial Cyt c and decrease in ΔΨm, TEC apoptosis were induced by contrast administration. Contrast administration induced an increased expression of LC3II/I, Beclin-1, and Pink1 and decreased expression of P62. Rapamycin pretreatment induced overexpression of LC3II/I and Beclin-1. Moreover, LC3-labeled autophagosomes increasingly overlapped with TOMM20-labeled mitochondria and LAMP2-labeled lysosomes in CI-AKI, which was further enhanced by rapamycin administration. Contrast-induced Scr increase, oxidative stress, mitochondrial injury, TEC apoptosis, and necrosis were dose-dependently attenuated by rapamycin pretreatment. Rapamycin exerts renoprotective effects against CI-AKI by attenuating mitochondrial injury and oxidative stress, which might be associated with increasing mitophagy.
Collapse
|
35
|
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis. It has undergone in-depth clinical and laboratory investigations, with the help of the most important research groups all over the world. Nonetheless the cure for this kind of neoplasia is not right around the corner, given its complexity and multi-faceted feature, that lead researchers to think at "one person one ACC." Currently total resection is the most concrete option for ACC patients, whenever possible. Mitotane remains the main drug for primary or adjuvant therapy, but gives partial and unsatisfactory therapeutic results, especially in metastatic ACC. This prompted the researchers to find other ways to fight against this malignancy: targeted therapy seems the most promising answer, as it is based on biomolecular and genetic cancer signature. Numerous specific targets were explored for the treatment of ACC, such as those involving angiogenesis, steroidogenesis, Wnt/β-catenin pathway and many others key factors. Even if large efforts have been made, no effective target therapy entered in the clinical use. This data should not be considered only as detrimental, rather it should propel scientific research to invest more resources into the therapeutic exploration of ACC and in particular on the most promising strategy, the targeted therapy.
Collapse
Affiliation(s)
- Jacopo Manso
- Unit of Endocrinology, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Raffaele Pezzani
- Unit of Endocrinology, Department of Medicine (DIMED), University of Padua, Padua, Italy - .,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padua, Italy
| |
Collapse
|
36
|
Qian J, Chen Y, Meng T, Ma L, Meng L, Wang X, Yu T, Zask A, Shen J, Yu K. Molecular regulation of apoptotic machinery and lipid metabolism by mTORC1/mTORC2 dual inhibitors in preclinical models of HER2+/PIK3CAmut breast cancer. Oncotarget 2018; 7:67071-67086. [PMID: 27563814 PMCID: PMC5341858 DOI: 10.18632/oncotarget.11490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a rational target for cancer treatment. While the mTORC1-selective rapalogs have shown significant benefits in the clinic, antitumor response may be further improved by inhibiting both mTORC1 and mTORC2. Herein, we established target profile of a novel mTOR kinase inhibitor (mTOR-KI) MTI-31 and employed it to study new therapeutic mechanism in breast cancer. MTI-31 demonstrated a potent mTOR binding affinity with >5000 fold selectivity over the related PI3K family isoforms. MTI-31 inhibited mTORC1- and mTORC2 function at ≤120 nM in cellular assays or 5 mg/kg orally in tumor-bearing mice. In a panel of breast cancer lines, the antitumor efficacy of MTI-31 was dependent on HER2+ and/or PIK3CAmut (HER2+/PIK3CAmut) status of the tumors and required mTORC2-specific modulation of Bim, MCL-1 and GSK3. Inactivation of Bim or GSK3 each attenuated apoptotic death resulting in mTOR-KI resistance. The antitumor response also required a suppression of lipid metabolism in therapy-sensitive tumors. Treatment with MTI-31 or AZD8055 substantially reduced lipogenesis and acetyl-CoA homeostasis, which was mechanistically linked to a blockade of mTORC2-dependent glucose-to-lipid conversion rate. We also found that the basal levels of carnitine palmitoyltransferase 1A and lipid catabolism were elevated in HER2+/PIK3CAmut breast cells and were inhibited upon mTOR-KI treatment. A CPT1A inhibitor etomoxir mimicked MTI-31 action in selective downregulation of cellular lipid catabolism. Co-treatments with MTI-31 and etomoxir enhanced the suppression of cyclin D1, c-Myc and cell growth in HER2+/PIK3CAmut tumors. These new mechanistic findings provide a rationale for targeting mTORC1 and mTORC2 in HER2+/PIK3CAmut breast cancer.
Collapse
Affiliation(s)
- Jianchang Qian
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yaqing Chen
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Tao Meng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lanping Ma
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lanfang Meng
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Xin Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ting Yu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jingkang Shen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
37
|
Tong Z, Narayanan R, Atsriku C, Nissel J, Li Y, Liu H, Wang X, Surapaneni S. Assessment of drug-drug interaction potential and PBPK modeling of CC-223, a potent inhibitor of the mammalian target of rapamycin kinase. Xenobiotica 2018; 49:54-70. [PMID: 29297772 DOI: 10.1080/00498254.2018.1424377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. CC-223 was studied in vitro for metabolism and drug-drug interactions (DDI), and in clinic for interaction with ketoconazole. 2. In vitro, human metabolites of CC-223 included O-desmethyl CC-223 (M1), keto (M2), N-oxide (M3) and imine (M13), with M1 being the most prominent metabolite. 3. CC-223 was metabolized by CYP2C9 and CYP3A, while metabolism of M1 was mediated by CYP2C8 and CYP3A. Ketoconazole increased CC-223 and M1 exposure by 60-70% in healthy volunteers. 4. CC-223 (IC50 ≥ 27 µM) and M1 (IC50 ≥ 46 µM) were inhibitors of CYP2C9 and CYP2C19 in human liver microsomes. CC-223 and M1 were moderate inducers of CYP3A in human hepatocytes. 5. CC-223 was a substrate of BCRP, and M1 was a substrate of P-gp and BCRP. CC-223 was an inhibitor of P-gp (IC50 = 3.67 µM) and BCRP (IC50 = 11.7 µM), but at a clinically relevant concentration showed no inhibition of other transporters examined. M1 is a weak inhibitor of P-gp and BCRP. 6. PBPK model of CC-223 and M1 was developed and verified using clinical results. Model based predictions of DDI with ketoconazole were in agreement with observed results enabling prospective predictions of DDIs between CC-223 and CYP3A4 inhibitors.
Collapse
Affiliation(s)
- Zeen Tong
- a Nonclinical Development , Celgene Corporation , Summit , NJ , USA and
| | | | - Christian Atsriku
- a Nonclinical Development , Celgene Corporation , Summit , NJ , USA and
| | - Jim Nissel
- b Clinical Pharmacology , Celgene Corporation , Summit , NJ , USA
| | - Yan Li
- b Clinical Pharmacology , Celgene Corporation , Summit , NJ , USA
| | - Hong Liu
- a Nonclinical Development , Celgene Corporation , Summit , NJ , USA and
| | - Xiaomin Wang
- a Nonclinical Development , Celgene Corporation , Summit , NJ , USA and
| | - Sekhar Surapaneni
- a Nonclinical Development , Celgene Corporation , Summit , NJ , USA and
| |
Collapse
|
38
|
Chen Y, Qian J, He Q, Zhao H, Toral-Barza L, Shi C, Zhang X, Wu J, Yu K. mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer. Oncotarget 2018; 7:25224-40. [PMID: 27015560 PMCID: PMC5041899 DOI: 10.18632/oncotarget.8279] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a major regulator of cell growth and is frequently dysregulated in cancer. While mTOR complex-1 (mTORC1) is a validated cancer target, the role of mTOR complex-2 (mTORC2) remains less defined. Here, we reveal mTORC2 as a critical regulator of breast cancer metabolism. We showed that hyperphosphorylation in ATP citrate lyase (ACL) occurs frequently in human breast tumors and correlates well with HER2+ and/or PIK3CA-mutant (HER2+/PIK3CAmut) status in breast tumor cell lines. In HER2+/PIK3CAmut cells, mTORC2 controls Ser-455 phosphorylation of ACL thereby promoting acetyl-CoA production, de novo lipogenesis and mitochondrial physiology, all of which were inhibited by an mTORC1/mTORC2 kinase inhibitor (mTOR-KI) or cellular depletion of mTORC2 or ACL. mTOR-KI but not rapamycin blocked the IGF-1-induced ACL phosphorylation and glucose to lipid conversion. Depletion of mTORC2 but not mTORC1 specifically inhibited the ACL-dependent acetyl-CoA production. In the HER2+/PIK3CAmut MDA361, MDA453, BT-474 and T47D cells, depletion of mTORC2 or ACL led to growth inhibition and mitochondrial hyperpolarization, which were partially rescued by an alternate source of acetyl-CoA. These same changes were not apparent in mTORC2- or ACL-depleted HER2-/PIK3CAwt MDA231 and HCC1806 cells, highlighting a differential dependence of mTORC2-ACL for survival in these two cell types. Moreover, ACL Ser-455 mutants S455E (phosphomimetic) and S455A (non-phosphorylatable) each increased or decreased, respectively, the acetyl-CoA production, mitochondrial homeostasis and survival in ACL-depleted MDA453 cells. These studies define a new and rapamycin-resistant mechanism of mTORC2-ACL in lipogenesis and acetyl-CoA biology and provide a rationale for targeting of mTORC1 and mTORC2 in HER2+/PIK3CAmut breast cancer.
Collapse
Affiliation(s)
- Yaqing Chen
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jianchang Qian
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Qun He
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Hui Zhao
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | | | - Celine Shi
- Oncology Research, Pfizer Pharmaceuticals, Pearl River, NY, USA
| | - Xuesai Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jiang Wu
- Oncology Research, Pfizer Pharmaceuticals, Pearl River, NY, USA
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
39
|
Tong Z, Atsriku C, Yerramilli U, Wang X, Nissel J, Li Y, Surapaneni S. Absorption, distribution, metabolism, and excretion of mTOR kinase inhibitor CC-223 in rats, dogs, and humans. Xenobiotica 2017; 49:43-53. [DOI: 10.1080/00498254.2017.1413718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zeen Tong
- Nonclinical Development, Celgene Corporation, Summit, NJ, USA and
| | | | - Usha Yerramilli
- Nonclinical Development, Celgene Corporation, Summit, NJ, USA and
| | - Xiaomin Wang
- Nonclinical Development, Celgene Corporation, Summit, NJ, USA and
| | - Jim Nissel
- Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Yan Li
- Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | | |
Collapse
|
40
|
Mechanism study of isoflavones as an anti-retinoblastoma progression agent. Oncotarget 2017; 8:88401-88409. [PMID: 29179444 PMCID: PMC5687614 DOI: 10.18632/oncotarget.19365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023] Open
Abstract
Isoflavones, bioactive soy compounds, are known to exhibit anticancer activities. The present study investigated the anticancer activities of isoflavones on human retinoblastoma Y79 cells in vitro and in vivo. An MTT cell viability assay showed that the half maximal inhibitory concentration value of isoflavones against human retinoblastoma Y79 cells is 1.23 ± 0.42 μmol/l. Flow cytometry analysis indicated that isoflavones blocked G1/S progression. Western blot analysis demonstrated that the mammalian target of rapamycin (mTOR) pathway in Y79 cells was inhibited by isoflavones, with a concomitant decrease in cyclin E1, which accounted for the isoflavone-mediated G1 phase arrest. Isoflavones also inhibited human retinoblastoma growth in vivo; western blot analysis showed inhibition of mTOR and downregulation of cyclin E1 in an isoflavone-treated xenograft mouse model. Together, these results illustrate that isoflavones inhibit retinoblastoma tumour growth in vitro and vivo and that inactivation of the mTOR pathway and downregulation of cyclin E1 is involved in this action. The results of this study suggest that isoflavones could be tested as promising anti-retinoblastoma agent.
Collapse
|
41
|
Amoroso L, Haupt R, Garaventa A, Ponzoni M. Investigational drugs in phase II clinical trials for the treatment of neuroblastoma. Expert Opin Investig Drugs 2017; 26:1281-1293. [PMID: 28906153 DOI: 10.1080/13543784.2017.1380625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neuroblastoma (NB) is an embryonal tumor originating from undifferentiated neural crest cell, highly heterogeneous ranging from spontaneous regression to progression despite multimodal treatments. Approximately, 20% of patients are refractory to frontline therapy and 50% will relapse/progress after an initial response. The overall five year survival for high-risk neuroblastoma ranges from 35-45%. Despite enhanced understanding of NB biology and the addition of myeloablative chemotherapy, isotretinoin and immunotherapy, survival for high risk NB remains less than 50%. Areas covered: This review summarizes and gives a critical overview of phase II trials investigating therapies for relapsed-refractory and high risk neuroblastoma. Expert opinion: Several novel molecules have been developed and are currently under investigation for the treatment of NB. The trend of novel targeted agents is one towards individualized, tailored therapy, based on the molecular and biological differences that characterize tumors that seem similar based solely on histological analysis. The task of developing new molecules is particularly difficult for NB, given the recurrent development of new patterns of drug resistance. However, even if current research is focused towards identifying the best treatments for each children and young adult with a NB defined disease, a deeper knowledge of the molecular biology and genetics is needed.
Collapse
Affiliation(s)
- Loredana Amoroso
- a Department of Pediatric Oncology , Istituto G.Gaslini , Genova , Italy
| | - Riccardo Haupt
- b Epidemiology and Biostatistics Unit , Istituto G.Gaslini , Genova , Italy
| | - Alberto Garaventa
- a Department of Pediatric Oncology , Istituto G.Gaslini , Genova , Italy
| | - Mirco Ponzoni
- c Experimental Therapy Unit in Oncology , Istituto G. Gaslini , Genova , Italy
| |
Collapse
|
42
|
CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro. Oncotarget 2017; 8:74688-74702. [PMID: 29088817 PMCID: PMC5650372 DOI: 10.18632/oncotarget.20342] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
CC-115, a selective dual inhibitor of the mammalian target of rapamycin (mTOR) kinase and DNA-dependent protein kinase (DNA-PK), is undergoing Phase 1 clinical studies. Here we report the characterization of DNA-PK inhibitory activity of CC-115 in cancer cell lines. CC-115 inhibits auto-phosphorylation of the catalytic subunit of DNA-PK (DNA-PKcs) at the S2056 site (pDNA-PK S2056), leading to blockade of DNA-PK-mediated non-homologous end joining (NHEJ). CC-115 also indirectly reduces the phosphorylation of ataxia-telangiectasia mutated kinase (ATM) at S1981 and its substrates as well as homologous recombination (HR). The mTOR kinase and DNA-PK inhibitory activity of CC-115 leads to not only potent anti-tumor activity against a large panel of hematopoietic and solid cancer cell lines but also strong induction of apoptosis in a subset of cancer lines. Mechanistically, CC-115 prevents NHEJ by inhibiting the dissociation of DNA-PKcs, X-ray repair cross-complementing protein 4 (XRCC4), and DNA ligase IV from DNA ends. CC-115 inhibits colony formation of ATM-deficient cells more potently than ATM-proficient cells, indicating that inhibition of DNA-PK is synthetically lethal with the loss of functional ATM. In conclusion, CC-115 inhibits both mTOR signaling and NHEJ and HR by direct inhibition of DNA-PK. The mechanistic data not only provide selection of potential pharmacodynamic (PD) markers but also support CC-115 clinical development in patients with ATM-deficient tumors.
Collapse
|
43
|
Hwang HY, Cho SM, Kwon HJ. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin Drug Discov 2017; 12:909-923. [PMID: 28758515 DOI: 10.1080/17460441.2017.1349751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, development of novel bioactive small molecules targeting autophagy has been implicated for autophagy-related disease treatment. Screening new small molecules regulating autophagy allows for the discovery of novel autophagy machinery and therapeutic agents. Areas covered: Two major screening methods for novel autophagy modulators are introduced in this review, namely target based screening and phenotype based screening. With increasing attention focused on chemical compound libraries, coupled with the development of new assay systems, this review attempts to provide an efficient strategy to explore autophagy biology and discover small molecules for the treatment of autophagy-related diseases. Expert opinion: Adopting an appropriate autophagy screening strategy is important for developing small molecules capable of treating neurodegenerative diseases and cancers. Phenotype based screening and target based screening were both used for developing effective small molecules. However, each of these methods has many pros and cons. An efficient approach is suggested to screen for novel lead compounds targeting autophagy, which could provide new hits with better efficiency and rapidity.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Sung Min Cho
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Ho Jeong Kwon
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
44
|
Nakajima E, Leger P, Mayer IA, Neuss MN, Chism DD, Rathmell WK. A Case Report of Severe Type B Lactic Acidosis Following First Dose of Nivolumab in a VHL-Mutated Metastatic Renal Cell Carcinoma. KIDNEY CANCER 2017; 1:83-88. [PMID: 30334008 PMCID: PMC6179105 DOI: 10.3233/kca-160004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a case of severe type B lactic acidosis (LA) in a 51-year-old male, 12 days after he received his first dose of nivolumab for metastatic Von Hippel Lindau (VHL)-mutated, clear cell renal cell carcinoma. Throughout his hospital course, infection, hypoperfusion, and tissue necrosis were not identified. We propose that his LA may have resulted from either inherent tumor glycolysis or immune activation and enhanced metabolism. The patient’s course was complicated by acute renal failure, and his LA rose progressively, eventually necessitating daily hemodialysis (HD). After receiving five consecutive days of HD, the patient started everolimus daily with the intent of reducing glycolytic metabolism. Subsequently, the rate of lactic acid production slowed, and HD was no longer required after two doses of everolimus. To our knowledge, this is the first reported case of type B LA following nivolumab administration, and the use of everolimus to treat type B LA in a patient with renal cancer.
Collapse
Affiliation(s)
- Erica Nakajima
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul Leger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ingrid A Mayer
- Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael N Neuss
- Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David D Chism
- Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Krajewski KM, Braschi-Amirfarzan M, DiPiro PJ, Jagannathan JP, Shinagare AB. Molecular Targeted Therapy in Modern Oncology: Imaging Assessment of Treatment Response and Toxicities. Korean J Radiol 2017; 18:28-41. [PMID: 28096716 PMCID: PMC5240491 DOI: 10.3348/kjr.2017.18.1.28] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/11/2016] [Indexed: 12/15/2022] Open
Abstract
Oncology is a rapidly evolving field with a shift toward personalized cancer treatment. The use of therapies targeted to the molecular features of individual tumors and the tumor microenvironment has become much more common. In this review, anti-angiogenic and other molecular targeted therapies are discussed, with a focus on typical and atypical response patterns and imaging manifestations of drug toxicities.
Collapse
Affiliation(s)
- Katherine M Krajewski
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marta Braschi-Amirfarzan
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pamela J DiPiro
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jyothi P Jagannathan
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Atul B Shinagare
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02215, USA.; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
46
|
P300/CBP-associated factor (PCAF) inhibits the growth of hepatocellular carcinoma by promoting cell autophagy. Cell Death Dis 2016; 7:e2400. [PMID: 27711074 PMCID: PMC5133959 DOI: 10.1038/cddis.2016.247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/31/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023]
Abstract
Aberrant autophagic processes have been found to have fundamental roles in the pathogenesis of different kinds of tumors, including hepatocellular carcinoma (HCC). P300/CBP-associated factor (PCAF), a histone acetyltransferase (HAT), performs its function by acetylating both histone and non-histone proteins. Our previous studies showed that PCAF was downregulated in HCC tissues and its high expression was significantly associated with patient survival after surgery, serving as a prognostic marker. In this study we found that overexpression of PCAF induced autophagy of HCC cells and its knockdown depressed autophagy. As type II programmed cell death, autophagy induced by PCAF-elicited cell death in HCC cells. In vivo experiments confirmed that PCAF-induced autophagy inhibited tumor growth. Subsequent in vitro experiments showed that PCAF promoted autophagy by inhibiting Akt/mTOR signaling pathway. Our findings show that PCAF is a novel modulator of autophagy in HCC, and can serve as an attractive therapeutic strategy of HCC treatment.
Collapse
|
47
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
48
|
Zhang Y, Zhu X, Huang T, Chen L, Liu Y, Li Q, Song J, Ma S, Zhang K, Yang B, Guan F. β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicol Lett 2016; 261:49-58. [PMID: 27586268 DOI: 10.1016/j.toxlet.2016.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/08/2016] [Accepted: 08/14/2016] [Indexed: 12/26/2022]
Abstract
Recently, we reported that β-carotene exhibited anticancer activity against human esophageal squamous cell carcinoma cells in vitro. In the present study, we examined a novel therapeutic strategy by combining β-carotene with 5-fluorouracil (5-FU) in human esophageal cancer in vitro and in vivo, and elucidated the underlying mechanisms. We found that the combination of 5-FU and β-carotene displayed greater growth inhibitory effects than did either compound alone in esophageal squamous cell carcinoma (ESCC) cells. In addition, the combination of 5-FU and β-carotene displayed greater tumor growth inhibition in an Eca109 xenograft mouse model than did a single agent with low systemic toxicity. β-Carotene enhanced 5-FU-induced apoptosis. TUNEL staining revealed that the rate of TUNEL-positive cells was markedly increased in tumor tissues after treatment with 5-FU and β-carotene. Western blotting and immunohistochemistry revealed the down-regulation of Bcl-2 and PCNA and the up-regulation of Bax and caspase-3 in tumor tissues. Further studies demonstrated that the combined administration of 5-FU and β-carotene significantly down-regulated the protein levels of Cav-1, p-AKT, p-NF-κB, p-mTOR and p-p70S6K in Eca109 cells more effectively than did 5-FU alone. These data suggested that the combined therapy of 5-FU and β-carotene exerted synergistic antitumor effects in vivo and in vitro and could constitute a novel therapeutic treatment for ESCC.
Collapse
Affiliation(s)
- Yanting Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangzhan Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lei Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanxia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qinghua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jishi Song
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
49
|
Hamdane N, Herdman C, Mars JC, Stefanovsky V, Tremblay MG, Moss T. Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-independent apoptotic death in transformed cells. Oncotarget 2016; 6:27519-36. [PMID: 26317157 PMCID: PMC4695006 DOI: 10.18632/oncotarget.4823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
Cisplatin-DNA adducts act as strong decoys for the Upstream Binding Factor UBF (UBTF) and have been shown to inhibit transcription of the ribosomal RNA genes by RNA polymerase I. However, it is unclear if this plays a significant role in the chemotherapeutic activity of cis- or carboplatin. We find that cisplatin in fact induces a very rapid displacement of UBF from the ribosomal RNA genes and strong inhibition of ribosomal RNA synthesis, consistent with this being an important factor in its cytotoxicity. Using conditional gene deletion, we recently showed that UBF is an essential factor for transcription of the ribosomal RNA genes and for ribosome biogenesis. We now show that loss of UBF arrests cell proliferation and induces fully penetrant, rapid and synchronous apoptosis, as well as nuclear disruption and cell death, specifically in cells subjected to oncogenic stress. Apoptosis is not affected by homozygous deletion of the p53 gene and occurs equally in cells transformed by SV40 T antigens, by Myc or by a combination of Ras & Myc oncogenes. The data strongly argue that inhibition of UBF function is a major factor in the cytotoxicity of cisplatin. Hence, drug targeting of UBF may be a preferable approach to the use of the highly toxic platins in cancer therapy.
Collapse
Affiliation(s)
- Nourdine Hamdane
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada.,Present address: Inserm, U1110, Institute of Viral and Liver Diseases, Strasbourg, France
| | - Chelsea Herdman
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Jean-Clement Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Victor Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
50
|
Li Z, Yang N, Zhou L, Gu P, Wang H, Zhou Y, Zhou P, Lu L, Chou KY. A peptide tetramer Tk-tPN induces tolerance of cardiac allografting by conversion of type 1 to type 2 immune responses via the Toll-like receptor 2 signal-promoted activation of the MCP1 gene. Immunology 2016; 147:355-66. [PMID: 26694804 DOI: 10.1111/imm.12569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/24/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
The plant protein trichosanthin (Tk) and its derived peptide tetramer Tk-tPN have been shown to stimulate the type 2 immune responses for treating autoimmune disease. This work explores the possibility of using Tk-tPN as a non-toxic immunosuppressant to induce transplantation tolerance using the mechanisms by which T-cell-mediated immune responses are transferred from type 1 to type 2 through innate immunity-related pathways. Immunocytes and cytokine secretions involved in the mouse cardiac allografting model with Tk-tPN treatment were characterized. Identification of critical genes and analysis of their functions through Toll-like receptor (TLR) -initiated signalling and the possible epigenetic changes were performed. Mean survival times of the cardiac allografts were delayed from 7.7 ± 0.3 days (control) to 22.7 ± 3.9 days (P < 0.01) or 79.1 ± 19.2 days (P < 0.0001) when Tk-tPN was introduced into the recipients alone or together with rapamycin, respectively. The grafting tolerance was donor-specific. The secretion pattern of the type 1 cytokine/transcription factor (IL-2(+) IFN-γ(+) T-bet(+)), which is responsible for the acute graft rejection, was shifted to the type 2 factor (IL-4(+) IL-10(+) Gata3+), together with a selective expansion of the IL-4/IL-10-producing CD8+ CD28- regulatory T-cell subset. A TLR2-initiated high expression of chemokine gene MCP1 was detectable simultaneously. Epigenetically Tk/Tk-tPN could also acetylate the histone H3K9 of MCP1 promoter to skew the immunity towards T helper type 2 responses. Tk/Tk-tPN is therefore capable of down-regulating the type 1 response-dominant rejection of cardiac allografts by evoking type 2 immunity through the activation of a TLR2-initiated signalling pathway and MCP1 gene to expand the IL-4/IL-10-secreting CD8+ CD28- regulatory T cells. Tk-tPN could be a promising novel immunosuppressant to induce tolerance in allotransplantation.
Collapse
Affiliation(s)
- Zuoqing Li
- Shanghai Institute of Immunology, Shanghai, China
| | - Neng Yang
- Department of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhou
- Shanghai Institute of Immunology, Shanghai, China
| | - Peng Gu
- Department of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Wang
- Transplantation Unit, Shanghai Ruijin Hospital, Shanghai, China
| | - Yun Zhou
- Shanghai Institute of Immunology, Shanghai, China
| | - Peijun Zhou
- Transplantation Unit, Shanghai Ruijin Hospital, Shanghai, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai, China
| | - Kuang-Yen Chou
- Department of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|